1
|
Lang VA, Camilleri SF, van der Lee S, Rowangould G, Antonczak B, Thompson TM, Harris MH, Harkins C, Tong DQ, Janssen M, Adelman ZE, Horton DE. Intercomparison of Modeled Urban-Scale Vehicle NO x and PM 2.5 Emissions-Implications for Equity Assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4560-4570. [PMID: 40015689 PMCID: PMC11912330 DOI: 10.1021/acs.est.4c09777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Accurate characterization of emissions is essential for understanding spatiotemporal variations of air pollutants and their societal impacts, including population exposure, health outcomes, and environmental justice implications. Characterizing emissions from the transportation sector is challenging due to uncertainties in emission-producing processes and in fleet composition and activity-factors that lead to differences across modeled vehicle emissions data sets. Here, we compare four data sets─Fuel-Inventory Vehicle Emissions, Neighborhood Emission Mapping Operation, Lake Michigan Air Director Consortium-Northwestern University, and University of Vermont─over the Greater Chicago region at three shared spatial resolutions (1.0, 1.3, and 4 km2). While domain-level data set agreement is strongest at the coarsest resolution, at finer resolutions we find notable inconsistencies, particularly at local scales. At 1 km2, simulated domain total NOx emissions across the four data sets differ up to 82% (∼32-58 k tons/year), while grid cell maximum PM2.5 emissions vary up to 272% (∼1.5-5.5 tons/km2/year). Intercompared emissions data sets share similar inputs; however, divergent outcomes arise from differences in emission factors, simulated vehicle processes, and characterization of traffic data. While domain-level emission burdens among racial/ethnic subgroups are generally ranked similarly across data sets, the magnitude of relative disparities can vary up to 11%-a potentially consequential factor to consider in downstream impact analyses.
Collapse
Affiliation(s)
- Victoria A. Lang
- Department
of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara F. Camilleri
- Department
of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Suzan van der Lee
- Department
of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory Rowangould
- Department
of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brittany Antonczak
- Department
of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | | | - Maria H. Harris
- Environmental
Defense Fund, New York, New York 10010, United States
| | - Colin Harkins
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Daniel Q. Tong
- Department
of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Mark Janssen
- Lake
Michigan Air Directors Consortium, Chicago, Illinois 60624, United States
| | | | - Daniel E. Horton
- Department
of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Kim J, Berelson WM, Rollins NE, Asimow NG, Newman C, Cohen RC, Miller JB, McDonald BC, Peischl J, Lehman SJ. Observing Anthropogenic and Biogenic CO 2 Emissions in Los Angeles Using a Dense Sensor Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3508-3517. [PMID: 39945325 PMCID: PMC11866928 DOI: 10.1021/acs.est.4c11392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Urban areas are major contributors to greenhouse gas emissions, necessitating effective monitoring systems to evaluate mitigation strategies. A dense sensor network, such as the Berkeley Environmental Air-quality & CO2 Observation Network (BEACO2N), offers a unique opportunity to monitor urban emissions at high spatial resolution. Here, we describe a simple approach to quantifying urban emissions with sufficient precision to constrain seasonal and annual trends. Measurements from 12 BEACO2N sites in Los Angeles (called the USC Carbon Census) are analyzed within a box model framework. By combining CO2 and CO observations, we partition total CO2 emissions into fossil fuel and biogenic emissions. We infer temporal changes in biogenic emissions that correspond to the MODIS enhanced vegetation index (EVI) and show that net biogenic exchange can consume up to 60% of fossil fuel emissions in the growing season during daytime hours. While we use the first year of observations to describe seasonal variation, we demonstrate the feasibility of this approach to constrain annual and longer trends.
Collapse
Affiliation(s)
- Jinsol Kim
- Department
of Earth Science, University of Southern
California, Los Angeles, California 90089, United States
| | - William M. Berelson
- Department
of Earth Science, University of Southern
California, Los Angeles, California 90089, United States
| | - Nick Everett Rollins
- Department
of Earth Science, University of Southern
California, Los Angeles, California 90089, United States
| | - Naomi G. Asimow
- Department
of Earth and Planetary Science, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Catherine Newman
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ronald C. Cohen
- Department
of Earth and Planetary Science, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - John B. Miller
- National
Oceanic and Atmospheric Administration Global Monitoring Laboratory, Boulder, Colorado 80305, United States
| | - Brian C. McDonald
- National
Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jeff Peischl
- National
Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Scott J. Lehman
- Institute
of Arctic and Alpine Research, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Vohra K, Marais EA, Achakulwisut P, Lu G, Kelly JM, Harkins C, McDonald B. Influence of Oil and Gas End-Use on Summertime Particulate Matter and Ozone Pollution in the Eastern US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19736-19747. [PMID: 39417565 PMCID: PMC11542890 DOI: 10.1021/acs.est.4c10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The influence of oil and gas end-use activities on ambient air quality is complex and understudied, particularly in regions where intensive end-use activities and large biogenic emissions of isoprene coincide. In these regions, vehicular emissions of nitrogen oxides (NOx≡NO + NO2) modulate the oxidative fate of isoprene, a biogenic precursor of the harmful air pollutants ozone, formaldehyde, and particulate matter (PM2.5). Here, we investigate the direct and indirect influence of the end-use emissions on ambient air quality. To do so, we use the GEOS-Chem model with focus on the eastern United States (US) in summer. Regional mean end-use NOx of 1.4 ppb suppresses isoprene secondary organic aerosol (OA) formation by just 0.02 μg m-3 and enhances abundance of the carcinogen formaldehyde by 0.3 ppb. Formation of other reactive oxygenated volatile organic compounds is also enhanced, contributing to end-use maximum daily mean 8-h ozone (MDA8 O3) of 8 ppb. End-use PM2.5 is mostly (67%) anthropogenic OA, followed by 20% secondary inorganic sulfate, nitrate and ammonium and 11% black carbon. These adverse effects on eastern US summertime air quality suggest potential for severe air quality degradation in regions like the tropics with year-round biogenic emissions, growing oil and gas end-use and limited environmental regulation.
Collapse
Affiliation(s)
- Karn Vohra
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Eloise A. Marais
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Ploy Achakulwisut
- Stockholm
Environment Institute US, Seattle, Washington 98101, United States
| | - Gongda Lu
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Jamie M. Kelly
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Brian McDonald
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
4
|
Dressel IM, Zhang S, Demetillo MAG, Yu S, Fields K, Judd LM, Nowlan CR, Sun K, Kotsakis A, Turner AJ, Pusede SE. Neighborhood-Level Nitrogen Dioxide Inequalities Contribute to Surface Ozone Variability in Houston, Texas. ACS ES&T AIR 2024; 1:973-988. [PMID: 39295746 PMCID: PMC11406531 DOI: 10.1021/acsestair.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
In Houston, Texas, nitrogen dioxide (NO2) air pollution disproportionately affects Black, Latinx, and Asian communities, and high ozone (O3) days are frequent. There is limited knowledge of how NO2 inequalities vary in urban air quality contexts, in part from the lack of time-varying neighborhood-level NO2 measurements. First, we demonstrate that daily TROPOspheric Monitoring Instrument (TROPOMI) NO2 tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale NO2 inequalities in Houston, comparing NO2 inequalities based on TROPOMI TVCDs and spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking Aerosol Convection ExpeRiment-Air Quality (TRACER-AQ). We further evaluate the application of daily TROPOMI TVCDs to census tract-scale NO2 inequalities (May 2018-November 2022). This includes explaining differences between mean daily NO2 inequalities and those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO2 column-surface relationships weaken as a function of observation separation distance. Second, census tract-scale NO2 inequalities, city-wide high O3, and mesoscale airflows are found to covary using principal component and cluster analysis. A generalized additive model of O3 mixing ratios versus NO2 inequalities reproduces established nonlinear relationships between O3 production and NO2 concentrations, providing observational evidence that neighborhood-level NO2 inequalities and O3 are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian communities will have co-benefits, reducing both NO2 disparities and high O3 days city wide.
Collapse
Affiliation(s)
- Isabella M Dressel
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sixuan Zhang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mary Angelique G Demetillo
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Shan Yu
- Department of Statistics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kimberly Fields
- Carter G. Woodson Institute for African American and African Studies, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Laura M Judd
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Caroline R Nowlan
- Atomic and Molecular Physics Division, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts 02138, United States
| | - Kang Sun
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
- Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Alexander Kotsakis
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Alexander J Turner
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Koolik LH, Alvarado Á, Budahn A, Plummer L, Marshall JD, Apte JS. PM 2.5 exposure disparities persist despite strict vehicle emissions controls in California. SCIENCE ADVANCES 2024; 10:eadn8544. [PMID: 39259801 PMCID: PMC11389777 DOI: 10.1126/sciadv.adn8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
As policymakers increasingly focus on environmental justice, a key question is whether emissions reductions aimed at addressing air quality or climate change can also ameliorate persistent air pollution exposure disparities. We examine evidence from California's aggressive vehicle emissions control policy from 2000 to 2019. We find a 65% reduction in modeled statewide average exposure to PM2.5 from on-road vehicles, yet for people of color and overburdened community residents, relative exposure disparities increased. Light-duty vehicle emissions are the main driver of the exposure and exposure disparity, although smaller contributions from heavy-duty vehicles especially affect some overburdened groups. Our findings suggest that a continued trend of emissions reductions will likely reduce concentrations and absolute disparity but may not reduce relative disparities without greater attention to the systemic factors leading to this disparity.
Collapse
Affiliation(s)
- Libby H Koolik
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720, USA
| | - Álvaro Alvarado
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Amy Budahn
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Laurel Plummer
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua S Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
6
|
Dolan RH, Wallington TJ, Anderson JE. Large Decreases in Tailpipe Criteria Pollutant Emissions from the U.S. Light-Duty Vehicle Fleet Expected in 2020-2040. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38323898 DOI: 10.1021/acs.est.3c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The U.S. EPA MOVES3 model was used to assess the impact of the large-scale introduction of electric vehicles on emissions of criteria pollutants (CO, hydrocarbons [HC], NOx, and particulate matter [PM]) and CO2 from the U.S. light-duty vehicle fleet. Large reductions in emissions of these criteria pollutants occurred in 2000-2020. These trends are expected to continue through 2040 driven by turnover of the conventional fleet with old vehicles being replaced by battery electric vehicles (BEVs) and by new internal combustion engine vehicles (ICEVs) with modern emission control systems. Without the introduction of BEVs, the absolute emissions of CO, NOx, HC, and PM2.5 from the U.S. light-duty vehicle fleet are expected to decrease by approximately 61, 88, 55, and 20% from 2020 to 2040. Introduction of BEVs with market share increasing linearly to 100% in 2040 provides additional benefits, which, combined with ICEV fleet turnover, would lead to decreases of absolute emissions of CO, NOx, HC, and PM2.5 of approximately 77, 94, 71, and 37% from 2020 to 2040. Reductions in CO2 emissions follow a similar pattern. Large decreases in criteria pollutant and CO2 emissions from light duty vehicles lie ahead.
Collapse
Affiliation(s)
- Rachael H Dolan
- Ford Motor Company, Research & Advanced Engineering, Dearborn, Michigan 48121, United States
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - James E Anderson
- Ford Motor Company, Research & Advanced Engineering, Dearborn, Michigan 48121, United States
| |
Collapse
|
7
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
8
|
McNeil W, Tong F, Harley RA, Auffhammer M, Scown CD. Corridor-Level Impacts of Battery-Electric Heavy-Duty Trucks and the Effects of Policy in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:33-42. [PMID: 38109378 PMCID: PMC10785805 DOI: 10.1021/acs.est.3c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Electrifying freight trucks will be key to alleviating air pollution burdens on disadvantaged communities and mitigating climate change. The United States plans to pursue this aim by adding vehicle charging infrastructure along specific freight corridors. This study explores the coevolution of the electricity grid and freight trucking landscape using an integrated assessment framework to identify when each interstate and drayage corridor becomes advantageous to electrify from a climate and human health standpoint. Nearly all corridors achieve greenhouse gas emission reductions if electrified now. Most can reduce health impacts from air pollution if electrified by 2040 although some corridors in the Midwest, South, and Mid-Atlantic regions remain unfavorable to electrify from a human health standpoint, absent policy support. Recent policy, namely, the Inflation Reduction Act, accelerates this timeline to 2030 for most corridors and results in net human health benefits on all corridors by 2050, suggesting that near-term investments in truck electrification, particularly drayage corridors, can meaningfully reduce climate and health burdens.
Collapse
Affiliation(s)
- Wilson
H. McNeil
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | - Fan Tong
- School
of Economics and Management, Beihang University, Beijing 100191, People’s Republic of China
- Lab
for Low-carbon Intelligent Governance, Beihang
University, Beijing 100191, People’s Republic
of China
- Peking
University Ordos Research Institute of Energy, Ordos City 017000, Inner Mongolia, People’s Republic of
China
| | - Robert A. Harley
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maximilian Auffhammer
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Agricultural and Resource Economics, University of California, Berkeley, Berkeley, California 94720, United States
- National
Bureau of Economic Research, Cambridge, Massachusetts 02138, United States
| | - Corinne D. Scown
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Life-Cycle,
Economics and Agronomy Division, Joint BioEnergy
Institute, Emeryville, California 94608, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy
and Biosciences Institute, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Yu K, Li M, Harkins C, He J, Zhu Q, Verreyken B, Schwantes RH, Cohen RC, McDonald BC, Harley RA. Improved Spatial Resolution in Modeling of Nitrogen Oxide Concentrations in the Los Angeles Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20689-20698. [PMID: 38033264 PMCID: PMC10720381 DOI: 10.1021/acs.est.3c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The extent to which emission control technologies and policies have reduced anthropogenic NOx emissions from motor vehicles is large but uncertain. We evaluate a fuel-based emission inventory for southern California during the June 2021 period, coinciding with the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. A modified version of the Fuel-based Inventory of Vehicle Emissions (FIVE) is presented, incorporating 1.3 km resolution gridding and a new light-/medium-duty diesel vehicle category. NOx concentrations and weekday-weekend differences were predicted using the WRF-Chem model and evaluated using satellite and aircraft observations. Model performance was similar on weekdays and weekends, indicating appropriate day-of-week scaling of NOx emissions and a reasonable distribution of emissions by sector. Large observed weekend decreases in NOx are mainly due to changes in on-road vehicle emissions. The inventory presented in this study suggests that on-road vehicles were responsible for 55-72% of the NOx emissions in the South Coast Air Basin, compared to the corresponding fraction (43%) in the planning inventory from the South Coast Air Quality Management District. This fuel-based inventory suggests on-road NOx emissions that are 1.5 ± 0.4, 2.8 ± 0.6, and 1.3 ± 0.7 times the reference EMFAC model estimates for on-road gasoline, light- and medium-duty diesel, and heavy-duty diesel, respectively.
Collapse
Affiliation(s)
- Katelyn
A. Yu
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Meng Li
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Colin Harkins
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Jian He
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Qindan Zhu
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Bert Verreyken
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Rebecca H. Schwantes
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Ronald C. Cohen
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Robert A. Harley
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Miyazaki K, Bowman K. Predictability of fossil fuel CO 2 from air quality emissions. Nat Commun 2023; 14:1604. [PMID: 36959192 PMCID: PMC10034258 DOI: 10.1038/s41467-023-37264-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
Quantifying the coevolution of greenhouse gases and air quality pollutants can provide insight into underlying anthropogenic processes enabling predictions of their emission trajectories. Here, we classify the dynamics of historic emissions in terms of a modified Environmental Kuznets Curve (MEKC), which postulates the coevolution of fossil fuel CO2 (FFCO2) and NOx emissions as a function of macroeconomic development. The MEKC broadly captures the historic FFCO2-NOx dynamical regimes for countries including the US, China, and India as well as IPCC scenarios. Given these dynamics, we find the predictive skill of FFCO2 given NOx emissions constrained by satellite data is less than 2% error at one-year lags for many countries and less than 10% for 4-year lags. The proposed framework in conjunction with an increasing satellite constellation provides valuable guidance to near-term emission scenario development and evaluation at time-scales relevant to international assessments such as the Global Stocktake.
Collapse
Affiliation(s)
- Kazuyuki Miyazaki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Kevin Bowman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
11
|
Song K, Guo K, Lv Y, Ma D, Cheng Y, Shi JW. Rational Regulation of Reducibility and Acid Site on Mn-Fe-BTC to Achieve High Low-Temperature Catalytic Denitration Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4132-4143. [PMID: 36631929 DOI: 10.1021/acsami.2c20545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selective catalytic reduction with ammonia is the mainstream technology of flue gas denitration (de-NOx). The reducibility and acid site are two important factors affecting the de-NOx performance, and effective regulation between them is the key to obtain a highly efficient de-NOx catalyst. Herein, a series of Mn-Fe-BTC with different ratios of Mn and Fe are synthesized, among which 2Mn-1Fe-BTC with 2:1 molar ratio of Mn and Fe has excellent low-temperature (LT) de-NOx performance (above 90% NO conversion between 60 and 270 °C) and good tolerance to H2O and SO2 poisoning (88% NO conversion at 150 °C with 100 ppm of SO2 and/or 6% H2O). It is revealed that the reducibility properties and acid sites of Mn-Fe-BTC can be flexibly tuned by the ratio of Mn and Fe. The difference in electronegativity between Fe and Mn leads to the redistribution of valence electrons, which enables the controllable reducibility of Mn-Fe-BTC. Furthermore, different amounts of Mn and Fe lead to different electron transport, which determines the type and number of acid sites. The synergistic effect of Mn and Fe endows Mn-Fe-BTC with enhanced surface molecular adsorption capacity and enables the catalyst to selectively chemisorb NH3 and NO at different active sites. This research provides guidance for the flexible regulation of reducibility and acid site of LT de-NOx catalyst.
Collapse
Affiliation(s)
- Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaiyu Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yixuan Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Dressel I, Demetillo MA, Judd LM, Janz SJ, Fields KP, Sun K, Fiore AM, McDonald BC, Pusede SE. Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15298-15311. [PMID: 36224708 PMCID: PMC9670852 DOI: 10.1021/acs.est.2c02828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on time-averaged measurements, limiting our understanding of how neighborhood-level NO2 inequalities co-vary with urban air quality and climate. Here, we use fine-scale (250 m × 250 m) airborne NO2 remote sensing to demonstrate that daily TROPOMI observations resolve a major portion of census tract-scale NO2 inequalities in the New York City-Newark urbanized area. Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82-0.97), with slopes of 0.82-1.05 for relative and 0.76-0.96 for absolute inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018-September 2021, reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.
Collapse
Affiliation(s)
- Isabella
M. Dressel
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Mary Angelique
G. Demetillo
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Laura M. Judd
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Scott J. Janz
- NASA
Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Kimberly P. Fields
- Carter
G. Woodson Institute for African American and African Studies, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kang Sun
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
- Research
and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Arlene M. Fiore
- Department
of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, NOAA Earth System Research
Laboratories, Boulder, Colorado 80305, United
States
| | - Sally E. Pusede
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Sugrue RA, Preble CV, Tarplin AG, Kirchstetter TW. In-Use Passenger Vessel Emission Rates of Black Carbon and Nitrogen Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7679-7686. [PMID: 35584102 DOI: 10.1021/acs.est.2c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study quantified emission factors of black carbon (BC) and nitrogen oxides (NOx) from 21 engines on in-use excursion vessels and ferries operating in California's San Francisco Bay, including EPA uncertified and Tier 1-4 engines and across engine operating modes. On average, ∼60 fuel-based emission factors per engine were measured using a novel combination of exhaust plume capture combined with GPS location and speed data that can be more readily deployed than common portable emissions measurement systems. BC and NOx emission factors (g kg-1) were lowest and least variable during fast cruising and highest during maneuvering and docked operation. Selective catalytic reduction (SCR) reduced NOx emissions by ∼80% when functional. However, elevated NOx emissions that exceeded corresponding exhaust standards were measured on most Tier 3 and Tier 4 engines sampled, which can be attributed to inactive SCR during frequent low engine load operation. In contrast, BC emissions exceeded the PM emission standard for only one engine, and SCR systems employed as a NOx reduction technology also reduced emitted BC. Using these measured emission factors to compare commuting options, we show that the CO2-equivalent emissions per passenger-kilometer are comparable when commuting by car and ferry, but BC and NOx emissions can be several to more than ten times larger when commuting by ferry.
Collapse
Affiliation(s)
- Rebecca A Sugrue
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chelsea V Preble
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anna G Tarplin
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas W Kirchstetter
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Abstract
The past 60 years have seen large reductions in vehicle emissions of particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs), sulfur dioxide (SO2), and lead (Pb). Advanced emission after-treatment technologies have been developed for gasoline and diesel vehicles to meet increasingly stringent regulations, yielding absolute emission reductions from the on-road fleet despite increased vehicle miles traveled. As a result of reduced emissions from vehicles and other sources, the air quality in cities across the U.S. and Europe has improved greatly. Turn-over of the on-road fleet, increasingly stringent emission regulations (such as Tier 3 in the U.S., LEV III in California, Euro 6 in Europe, and upcoming rules in these same regions), and the large-scale introduction of electric vehicles will lead to even lower vehicle emissions and further improvements in air quality. We review historical vehicle emissions and air quality trends and discuss the future outlook.
Collapse
|
15
|
Bishop GA, Haugen MJ, McDonald BC, Boies AM. Utah Wintertime Measurements of Heavy-Duty Vehicle Nitrogen Oxide Emission Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1885-1893. [PMID: 35044770 DOI: 10.1021/acs.est.1c06428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There have only been a few wintertime studies of heavy-duty vehicle (HDV) NOx emissions in the United States, and while they have observed increased emissions, fleet characterization to identify the cause has been lacking. We have collected wintertime measurements of NOx emission factors from 1591 HDVs at a Utah Port of Entry in December 2020 that includes individual vehicle identification. In general, NOx emission factors for 2011 and newer chassis model year HDV are significantly higher than those for 2017 spring measurements from California. The newest chassis model year HDV (2017-2021) NOx emission factors are similar, indicating no significant emission deterioration over the 5 year period, though they are still approximately a factor of 3 higher than the portable emission measurement on-road enforcement standard. We estimate that ambient temperature increases NOx emissions no more than 25% in the newer HDV, likely through reductions in catalyst efficiencies. NOx emissions increase to a significantly higher level for the 2011-2013 chassis model year vehicles, where within the uncertainties, they have emissions similar to older precontrol vehicles, indicating that they have lost their NOx control capabilities within 8 years. MOVES3 modeling of the Utah fleet underpredicted mean NOx emissions by a factor of 1.8 but the MOVES3 estimate is helped by including a larger fraction of high-emitting glider kit trucks (new chassis with pre-emission control engines) than found in the observations.
Collapse
Affiliation(s)
- Gary A Bishop
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Molly J Haugen
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Brian C McDonald
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Adam M Boies
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
16
|
An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Road transport is an integral part of economic activity and is therefore essential for its development. On the downside, it accounts for 30% of the world’s GHG emissions, almost a third of which correspond to the transport of freight in heavy goods vehicles by road. Additionally, means of transport are still evolving technically and are subject to ever more demanding regulations, which aim to reduce their emissions. In order to analyse the sustainability of this activity, this study proposes the application of novel Artificial Intelligence techniques (more specifically, Machine Learning). In this research, the use of Hybrid Unsupervised Exploratory Plots is broadened with new Exploratory Projection Pursuit techniques. These, together with clustering techniques, form an intelligent visualisation tool that allows knowledge to be obtained from a previously unknown dataset. The proposal is tested with a large dataset from the official survey for road transport in Spain, which was conducted over a period of 7 years. The results obtained are interesting and provide encouraging evidence for the use of this tool as a means of intelligent analysis on the subject of developments in the sustainability of road transportation.
Collapse
|