1
|
Lin Y, Shi R, Wang M, Wang Y, Han Y, Ma Y, Li L, Xia X. MCPA-Na exposure in aquatic systems: disruption of pathways and increased susceptibility to infection in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107405. [PMID: 40354689 DOI: 10.1016/j.aquatox.2025.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
MCPA-Na (2-methyl-4-chlorophenoxyacetic acid) is a selective herbicide widely used in agricultural cultivation. Despite monitoring indicating risks to aquatic life, the specific organ effects and pathogen susceptibility are unclear. Therefore, we constructed a "compound-core target-signaling pathway" network using network toxicology methods, and the results showed that MCPA-Na interacted with multiple organs of loach (including intestine, liver, kidney, heart, gills, skin and blood). STRING and Cytoscape software were used to screen the core targets: PPAR (Peroxisome proliferator-activated receptor), ACE (angiotensin converting enzyme), REN (Renin), and CA9 (carbonic anhydrase). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the core targets of each tissue were significantly enriched in the renin-angiotensin system, NF-κB signaling pathway, adherens junctions and cholinergic synapses. The relationship between the toxicology and molecular markers of MCPA-Na was further explored by using animal experiments, and the susceptibility of Misgurnus anguillicaudatus (loach) to opportunistic pathogens after toxic exposure was simulated by using opportunistic pathogen challenge Aeromonas hydrophila (A. hydrophila). It was found that the compound induced oxidative stress and triggered intestinal inflammation and promoted apoptosis. These processes undermine the intestinal barrier and increase the susceptibility of loach to the A. hydrophila, thereby exacerbating the challenge of aquaculture food safety.
Collapse
Affiliation(s)
- Yanxia Lin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ran Shi
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Mengzhen Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yali Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunfan Han
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yongcui Ma
- College of Agriculture and Life Sciences, Zhaotong University, Zhaotong 657000, PR China
| | - Liyin Li
- Lincang Meteorological Bureau, Yunnan Province, Lincang 677000, PR China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, PR China.
| |
Collapse
|
2
|
Cheng Y, Yu Q, Zhang W, Liu Z, Ding J, Pan H, Li Y, Wu D, Zhu M, Xie X, Zhu N. Diet dependent trophic transfer of nanoparticles (ZnO and TiO 2) along the "photic biofilm-snail" food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137657. [PMID: 40010214 DOI: 10.1016/j.jhazmat.2025.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Multispecies biofilm exhibited high resistance to nanotoxicity by secreting extracellular polymeric substances (EPS) and undergoing alterations in the community composition. Scarce information was available to assess how these changes could further influence the transfer of nanoparticles (NPs) through the biofilm-based food chain. Photic biofilm was exposed to two distinct NPs (ZnO and TiO2) and subsequently grazed by snails. Exposure to different NPs led to variations in biomass, chlorophyll content, EPS productivity, alpha diversity, and community composition of the photic biofilm. The presence of ZnO NPs facilitated the growth of phylum Cyanobacteria while TiO2 promoted EPS productivity of photic biofilm. EPS were capable of embedding NPs (TiO2 and ZnO) within its matrix, thereby mitigating their aggregation within the biofilm matrix. These alterations were subsequently confirmed to have an impact on the trophic transfer factors (TTF) of NPs through the constructed biofilm-snail food chain. The TTF of ZnO was lower than that of TiO2 in feeding scenario 1 (only fed on TiO2 or ZnO biofilm) but higher than that of TiO2 in feeding scenario 2 (fed on TiO2 and ZnO biofilm simultaneously), which was attributed to the shifts in the algae composition and a smaller size of ZnO NPs in EPS. This study demonstrated that the response of photic biofilm to NPs further affected the TTFs of NPs through the food chain.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Weihua Zhang
- Management Service Center of Yuncheng Chemical Industry Park, Heze 274700, China
| | - Zhiqiang Liu
- Jiangsu Changhuan Environment Technology Co. Ltd., Changzhou 213002, China
| | - Jue Ding
- School of Geographical Sciences, Jiangsu Second Normal University, Nanjing 211200, China
| | - Hongzhe Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dan Wu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing, China
| | - Minghua Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
3
|
Izma G, Ijzerman MM, McIsaac D, Raby M, Prosser RS, Rooney RC. Dietary exposure of stormwater contaminants in biofilm to two freshwater macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177390. [PMID: 39510286 DOI: 10.1016/j.scitotenv.2024.177390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Aquatic habitats in urban environments are exposed to complex contaminant mixtures that may harm aquatic biota. The impact of contaminant transfer from contaminated biofilm through aquatic food webs is still understudied, as is the current state of knowledge on dietary exposure of urban contaminants to biota residing in stormwater ponds. Our overall objective was to characterize urban pesticide accumulation in a common aquatic food source (biofilm) in stormwater ponds and to investigate the potential toxicity of that food source by testing the responses of two freshwater macroinvertebrates to experimental exposure. We conducted two dietary bioassays using biofilm collected from 15 stormwater ponds in Brampton, Ontario: an acute exposure with the mayfly Neocloeon triangulifer, and a chronic exposure with the freshwater snail Planorbella pilsbryi. We screened for 542 current-use and legacy pesticides to measure pesticide burden (the number of pesticides detected) and the concentration of pesticides in the biofilm. We also quantified chlorophyll-a, pheophytin, and ash-free dry weight content which we used as indicators of biofilm quality. We found no correlations between pesticide burden and chlorophyll-a, pheophytin, or ash-free dry weight of the biofilm diets. Compared to control diets, biofilms collected from stormwater ponds caused a reduction in survival and growth endpoints for both test species, indicating that biofilm-consuming invertebrates living in stormwater ponds may be experiencing risks previously unaccounted for by traditional ecological risk assessments. Pesticide occurrences in biofilm diets did not relate to mayfly survival, growth, or biomass production. Nor were they related to snail growth. This suggests that other contaminants in stormwater-cultivated biofilm are contributing to the observed effects. Snail survival and biomass production were negatively related to pesticide burden in the diets. This implies that duration of exposure may influence the degree and manifestation of pesticide toxicity via dietary exposure.
Collapse
Affiliation(s)
- Gab Izma
- Department of Biology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada
| | - Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, 50 Stone Road E., Guelph, Ontario N1G 2W1, Canada
| | - Daniel McIsaac
- Department of Biology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada
| | - Melanie Raby
- Ontario Ministry of Environment, Conservation, and Parks, 125 Resources Rd, Etobicoke, Ontario M9P 3V6, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, 50 Stone Road E., Guelph, Ontario N1G 2W1, Canada
| | - Rebecca C Rooney
- Department of Biology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
4
|
Malbezin L, Morin S, Lavoie I. Effects of atrazine and S-metolachlor on stream periphyton taxonomic and fatty acid compositions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:190-204. [PMID: 38386230 DOI: 10.1007/s10646-024-02738-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.
Collapse
Affiliation(s)
- Laura Malbezin
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada.
| | - Soizic Morin
- INRAE, EABX, 50 avenue de Verdun, 33612, Cestas Cedex, France
| | - Isabelle Lavoie
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada
| |
Collapse
|
5
|
Bakenhus I, Jongsma R, Michler-Kozma D, Hölscher L, Gabel F, Holert J, Philipp B. A domesticated photoautotrophic microbial community as a biofilm model system for analyzing the influence of plastic surfaces on invertebrate grazers in limnic environments. Front Microbiol 2023; 14:1238913. [PMID: 38033587 PMCID: PMC10687189 DOI: 10.3389/fmicb.2023.1238913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
The environmental fate of plastic particles in water bodies is influenced by microbial biofilm formation. Invertebrate grazers may be affected when foraging biofilms on plastics compared to biofilms on natural substrata but the mechanistic basis for these effects is unknown. For analyzing these effects in ecotoxicological assays stable and reproducible biofilm communities are required that are related to the environmental site of interest. Here, a defined biofilm community was established and used to perform grazing experiments with a freshwater snail. For this, snippets of different plastic materials were incubated in the photic zone of three different freshwater sites. Amplicon sequencing of biofilms formed on these snippets showed that the site of incubation and not the plastic material dominated the microbial community composition. From these biofilms, individual microbial strains as well as photoautotrophic consortia were isolated; these consortia consisted of heterotrophic bacteria that were apparently nourished by microalga. While biofilms formed by defined dual cultures of a microalga and an Alphaproteobacterium were not accepted by the snail P. fontinalis, a photoautotrophic consortium (Co_3) sustained growth and metabolism of this grazer. Amplicon sequencing revealed that consortium Co_3, which could be stably maintained on solid medium under photoautotrophic conditions, reproducibly formed biofilms of a defined composition on three different plastic materials and on glass surfaces. In conclusion, our study shows that the generation of domesticated photoautotrophic microbial communities is a valid novel approach for establishing laboratory ecotoxicological assays with higher environmental relevance than those based on defined microbiota.
Collapse
Affiliation(s)
- Insa Bakenhus
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Rense Jongsma
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | | | - Lea Hölscher
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Friederike Gabel
- Institute for Landscape Ecology, Universität Münster, Münster, Germany
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
- Fraunhofer-Institut für Molekulare und Angewandte Ökologie IME, Umweltmikrobiologie, Schmallenberg, Germany
| |
Collapse
|
6
|
Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities. NPJ Biofilms Microbiomes 2022; 8:61. [PMID: 35869094 PMCID: PMC9307524 DOI: 10.1038/s41522-022-00322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPhototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.
Collapse
|