1
|
Batool N, Farooq MA, Jaleel W, Noureldeen A, Alghamdi A, Darwish H, Ashri NH, Naqqash MN. Impact of field evolved resistance on biological parameters of non-targeted Aedes aegypti populations. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:381-391. [PMID: 39671068 DOI: 10.1007/s10646-024-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae. aegypti. Monitoring insecticide resistance is essential for resistance management in Ae. aegypti. This study involved the collection of Ae. aegypti populations from four important cotton-growing regions in southern Punjab, Pakistan, for resistance monitoring over a two-year period (2021-2022). This study also assessed the impact of insecticide resistance on biological parameters of Ae. aegypti. Moderate-to-high levels of resistance were observed against all the tested insecticides viz., chlorpyrifos, chlorfenapyr, deltamethrin, flonicamid, spirotetramat, and spinetoram. However, compared to the Lab-susceptible population, higher levels of resistance to buprofezin (59.03-84.40) and imidacloprid (68.49-100.01) were found in all populations. This high resistance can be attributed to increased use of these two insecticides in cotton fields, as compared to other insecticides. In the lab-susceptible population, higher values for the intrinsic rate of increase (r) and the net reproductive rate (R0) i.e., 0.20 per day and 23.24 offspring/female were observed, respectively. This was also validated by population projection data where more than 2.5-fold adults (1,020,361.80 individuals) were calculated in the Lab-susceptible population as compared to the most resistant populations. Sublethal exposure to insecticides may induce physiological or biochemical changes in organisms, subsequently influencing the biological traits. Resistance monitoring provides essential guidance before launching a successful chemical-based vector management program.
Collapse
Affiliation(s)
- Nimra Batool
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Muhammad Asif Farooq
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Waqar Jaleel
- Entomology Section, Horticulture Research Station, Bahawalpur, Pakistan.
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Akram Alghamdi
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Naif H Ashri
- Department of Biology, Faculty of Sciences, Umm Al Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
2
|
Coutellec MA, Chaumot A, Sucré E. Neglected impacts of plant protection products on invertebrate aquatic biodiversity: a focus on eco-evolutionary processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2847-2856. [PMID: 38459285 DOI: 10.1007/s11356-024-32767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The application of plant protection products (PPPs) may have delayed and long-term non-intentional impacts on aquatic invertebrates inhabiting agricultural landscapes. Such effects may induce population responses based on developmental and transgenerational plasticity, selection of genetic resistance, as well as increased extirpation risks associated with random genetic drift. While the current knowledge on such effects of PPPs is still scarce in non-target aquatic invertebrate species, evidences are accumulating that support the need for consideration of evolutionary components of the population response to PPPs in standard procedures of risk assessment. This mini-review, as part of a contribution to the collective scientific assessment on PPP impacts on biodiversity and ecosystem services performed in the period 2020-2022, presents a brief survey of the current results published on the subject, mainly in freshwater crustaceans, and proposes some research avenues and strategies that we feel relevant to fill this gap.
Collapse
Affiliation(s)
- Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, IFREMER, 35042, Rennes, France.
| | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Elliott Sucré
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
- Université de Mayotte, Dembeni, 97660, Mayotte, France
| |
Collapse
|
3
|
Castro MS, Guimarães PS, Barbosa FG, Schneck F, Martins CDMG. Impacts of warming and acidification on pesticide toxicity in continental aquatic environments: A scientometric and systematic map. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125384. [PMID: 39586451 DOI: 10.1016/j.envpol.2024.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Carbon dioxide emissions are altering aquatic ecosystems by causing water acidification and temperature increases, and these environments are also facing pesticide contamination. We present a scientometric and systematic map of these impacts in continental aquatic environments, aiming to provide an overview of research investigating the effects of temperature and acidification on pesticide toxicity. Our findings reveal a significant increase in research output on this topic, especially over the past seven years, with the United States leading due to high pesticide use and rigorous environmental monitoring. International collaborations remain low. High-impact journal publications underscore the importance of this topic. The primary focus is on temperature-pesticide interactions, highlighting the need for studies on pesticide-acidification interactions driven by climate change. The most studied class of pesticides is insecticides, particularly chlorpyrifos. Animals such as fish and crustaceans are the most frequently used organisms in ecotoxicological tests, indicating the need for broader assessments of impacts on other aquatic groups. Synergistic effects in interactions were prevalent, stressing the importance of an integrated approach in considering the interplay between temperature, pH, and pesticides. The information presented in this study directs and encourages studies in areas that have not yet addressed this topic.
Collapse
Affiliation(s)
- Muryllo Santos Castro
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Fabiana Gonçalves Barbosa
- MBA em Ciência de Dados, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Fabiana Schneck
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
4
|
Van de Maele M, Janssens L, Stoks R. The Benefit of Evolution of Pesticide Tolerance Is Overruled under Combined Stressor Exposure due to Synergistic Stressor Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1496-1505. [PMID: 39815777 DOI: 10.1021/acs.est.4c07144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Despite pleas to consider both evolutionary and multistressor climate change perspectives to improve ecological risk assessment, the much needed combination of both perspectives is largely missing. This is especially important when evaluating the costs of the evolution of genetic tolerance to pollutants as these costs may become visible only under combined exposure to the pollutant and warming due to energetic constraints. We investigated the costs of chlorpyrifos tolerance in Daphnia magna when sequentially exposed to 4-day pesticide treatments and 4-day heat spike treatments. Exposure to chlorpyrifos reduced the fitness of chlorpyrifos-sensitive clones (reduced survival, mass, and reproductive performance), while it had positive (hormetic) effects on clones selected for chlorpyrifos tolerance. We did not find any costs of chlorpyrifos tolerance in the absence of the stressors and only a weak sublethal cost when only exposed to the heat spike. Notably, when sequentially exposed to the pesticide and the heat spike, the benefit of the evolution of chlorpyrifos tolerance was nullified as the chlorpyrifos-tolerant clones experienced (stronger) synergistic interactions between both stressors and stronger thermal costs when preceded by exposure to the pesticide. This highlights the importance of multistressor studies to correctly assess the costs of genetic pesticide tolerance and the potential of evolution of pesticide tolerance to rescue nontarget populations.
Collapse
Affiliation(s)
- Marlies Van de Maele
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Soose LJ, Krauss M, Landripet M, Laier M, Brack W, Hollert H, Klimpel S, Oehlmann J, Jourdan J. Acanthocephalans as pollutant sinks? Higher pollutant accumulation in parasites may relieve their crustacean host. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177998. [PMID: 39693644 DOI: 10.1016/j.scitotenv.2024.177998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Increasing chemical pollution calls for a closer look at ecologically highly relevant host-parasite interactions to understand the persistence of organisms and populations in a polluted environment. The impact of chemical exposure within the host-parasite interactions - particularly the distinctive bioaccumulation behavior of organic micropollutants - can substantially influence the persistence of a species. This significance has been emphasized by previous research showing a higher tolerance of Gammarus roeselii (Amphipoda, Crustacea) infected with acanthocephalans during acute exposure to a pyrethroid. This suggests the presence of infection-related benefits within polluted environments. The present study addressed this complex relationship by investigating the chemical body burden and internal pollutant concentrations of both G. roeselii and its acanthocephalan parasites across a pollution gradient. Specifically, we analyzed 405 organic micropollutants and identified 123 of these in gammarids and their acanthocephalan parasites. Among the detected compounds, 22 are either banned or are no longer permitted for use in Germany. Remarkably, we discovered that the concentrations of pollutants were up to 35 times higher in the acanthocephalan parasites than in their crustacean intermediate hosts. The log KOW, the most frequently used measure of chemical hydrophobicity, could not explain the accumulation. Instead, the accumulation is likely explained by the unique physiology and high absorption capacity of acanthocephalans, combined with potentially limited biotransformation and excretion ability. This results in a redistribution of micropollutants within the host-parasite system, reducing the burden on the host up to 13.9 % and potentially explaining the observed helpful effects of parasitized G. roeselii in polluted environments. Our study underscores the often overlooked but significant role of host-parasite interactions in human-altered ecosystems, revealing how these relationships can mediate and amplify the impacts of micropollutants within aquatic communities. These insights stress the need to consider the pervasive influence of metazoan parasites in environmental assessments and pollution management strategies.
Collapse
Affiliation(s)
- Laura J Soose
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Mia Landripet
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Melanie Laier
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Werner Brack
- Goethe University Frankfurt, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Sven Klimpel
- Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Department Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, D-60325 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Shahid N, Siddique A, Liess M. Synergistic interaction between a toxicant and food stress is further exacerbated by temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125109. [PMID: 39396725 DOI: 10.1016/j.envpol.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Global biodiversity is declining at an unprecedented rate in response to multiple environmental stressors. Effective biodiversity management requires deeper understanding of the relevant mechanisms behind such ecological impacts. A key challenge is understanding synergistic interactions between multiple stressors and predicting their combined effects. Here we used Daphnia magna to investigate the interaction between a pyrethroid insecticide esfenvalerate and two non-chemical environmental stressors: elevated temperature and food limitation. We hypothesized that the stressors with different modes of action can act synergistically. Our findings showed additive effects of food limitation and elevated temperature (25 °C, null model effect addition (EA)) with model deviation ratio (MDR) ranging from 0.7 to 0.9. In contrast, we observed strong synergistic interactions between esfenvalerate and food limitation at 20 °C, considerably further amplified at 25 °C. Additionally, for all stress combinations, the synergism intensified over time indicating the latent effects of the pesticide. Consequently, multiple stress substantially reduced the lethal concentration of esfenvalerate by a factor of 19 for the LC50 (0.45-0.024 μg/L) and 130 for the LC10 (0.096-0.00074 μg/L). The stress addition model (SAM) predicted increasing synergistic interactions among stressors with increasing total stress.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Germany.
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Kabus J, Hartmann V, Cocchiararo B, Dombrowski A, Enns D, Karaouzas I, Lipkowski K, Pelikan L, Shumka S, Soose L, Baker NJ, Jourdan J. Cryptic species complex shows population-dependent, rather than lineage-dependent tolerance to a neonicotinoid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124888. [PMID: 39260548 DOI: 10.1016/j.envpol.2024.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Cryptic species are rarely considered in ecotoxicology, resulting in misleading outcomes when using a single morphospecies that encompasses multiple cryptic species. This oversight contributes to the lack of reproducibility in ecotoxicological experiments and promotes unreliable extrapolations. The important question of ecological differentiation and the sensitivity of cryptic species is rarely tackled, leaving a substantial knowledge gap regarding the vulnerability of individual cryptic species within species complexes. In times of agricultural intensification and the frequent use of pesticides, there is an urgent need for a better understanding of the vulnerability of species complexes and possible differences in adaptive processes. We used the cryptic species complex of the aquatic amphipod Gammarus roeselii, which comprises at least 13 genetic mtDNA lineages and spans from small-scale endemic lineages in Greece to a large-scale widely distributed lineage in central Europe. We exposed eleven populations belonging to four lineages to the neonicotinoid thiacloprid in an acute toxicity assay. We recorded various environmental variables in each habitat to assess the potential pre-exposure of the populations to contaminants. Our results showed that the populations differed up to 4-fold in their tolerances. The lineage identity had a rather minor influence, suggesting that the cryptic species complex G. roeselii does not differ significantly in tolerance to the neonicotinoid thiacloprid. However, the observed population differentiation implies that recent pre-exposure to thiacloprid (or similar substances) or general habitat contamination has triggered adaptive processes. Though, the extent to which these mechanisms are equally triggered in all lineages needs to be addressed in the future. Our study provides two key findings: Firstly, it shows that observed phylogenetic differences within the G. roeselii species complex did not reveal differences in thiacloprid tolerance. Second, it confirms that differentiation occurs at the population level, highlighting that susceptibility to toxicants is population-dependent. The population-specific differences were within the range of accepted intraspecific variability from a regulatory standpoint. From an evolutionary-ecological perspective, it remains intriguing to observe how persistent stresses will continue to influence tolerance and whether different populations are on distinct pathways of adaptation. Given that the potential selection process has only lasted a relatively short number of generations, it is crucial to monitor these populations in the future, as even brief exposure periods significantly impact evolutionary responses.
Collapse
Affiliation(s)
- Jana Kabus
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany.
| | - Vanessa Hartmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Berardino Cocchiararo
- Senckenberg Research Institute, Conservation Genetics Section, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andrea Dombrowski
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Ioannis Karaouzas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7km Athens-Sounio Av., 19013, Anavyssos, Greece
| | - Konrad Lipkowski
- Goethe University Frankfurt, Department of Wildlife-/Zoo-Animal-Biology and Systematics, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Lars Pelikan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; University of Turku, Department of Biology, Vesilinnantie 5, FI-20014, Turku, Finland
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Albania
| | - Laura Soose
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Nathan J Baker
- Nature Research Centre, Akademijos Str. 2, Vilnius, LT-08412, Lithuania
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Wehrli M, Slotsbo S, Fomsgaard IS, Laursen BB, Gröning J, Liess M, Holmstrup M. A Dirt(y) World in a Changing Climate: Importance of Heat Stress in the Risk Assessment of Pesticides for Soil Arthropods. GLOBAL CHANGE BIOLOGY 2024; 30:e17542. [PMID: 39450625 DOI: 10.1111/gcb.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
The rise in global temperatures and increasing severity of heat waves pose significant threats to soil organisms, disrupting ecological balances in soil communities. Additionally, the implications of environmental pollution are exacerbated in a warmer world, as changes in temperature affect the uptake, transformation and elimination of toxicants, thereby increasing the vulnerability of organisms. Nevertheless, our understanding of such processes remains largely unexplored. The present study examines the impact of high temperatures on the uptake and effects of the fungicide fluazinam on the springtail Folsomia candida (Collembola, Isotomidae). Conducted under non-optimum but realistic high temperatures, the experiments revealed that increased temperature hampered detoxification processes in F. candida, enhancing the toxic effects of fluazinam. High temperatures and the fungicide exerted synergistic interactions, reducing F. candida's reproduction and increasing adult mortality beyond what would be predicted by simple addition of the heat and chemical effects. These findings highlight the need to reevaluate the current ecological risk assessment and the regulatory framework in response to climate changes. This research enhances our understanding of how global warming affects the toxicokinetics and toxicodynamics (TK-TD) of chemicals in terrestrial invertebrates. In conclusion, our results suggest that adjustments to regulatory threshold values are necessary to address the impact of a changing climate.
Collapse
Affiliation(s)
- Micha Wehrli
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Stine Slotsbo
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | | | - Bente B Laursen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jonas Gröning
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
| | - Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
9
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Tarazona JV, de Alba-Gonzalez M, Bedos C, Benoit P, Bertrand C, Crouzet O, Dagès C, Dorne JLC, Fernandez-Agudo A, Focks A, Gonzalez-Caballero MDC, Kroll A, Liess M, Loureiro S, Ortiz-Santaliestra ME, Rasmussen JJ, Royauté R, Rundlöf M, Schäfer RB, Short S, Siddique A, Sousa JP, Spurgeon D, Staub PF, Topping CJ, Voltz M, Axelman J, Aldrich A, Duquesne S, Mazerolles V, Devos Y. A conceptual framework for landscape-based environmental risk assessment (ERA) of pesticides. ENVIRONMENT INTERNATIONAL 2024; 191:108999. [PMID: 39276592 DOI: 10.1016/j.envint.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
While pesticide use is subject to strict regulatory oversight worldwide, it remains a main concern for environmental protection, including biodiversity conservation. This is partly due to the current regulatory approach that relies on separate assessments for each single pesticide, crop use, and non-target organism group at local scales. Such assessments tend to overlook the combined effects of overall pesticide usage at larger spatial scales. Integrative landscape-based approaches are emerging, enabling the consideration of agricultural management, the environmental characteristics, and the combined effects of pesticides applied in a same or in different crops within an area. These developments offer the opportunity to deliver informative risk predictions relevant for different decision contexts including their connection to larger spatial scales and to combine environmental risks of pesticides, with those from other environmental stressors. We discuss the needs, challenges, opportunities and available tools for implementing landscape-based approaches for prospective and retrospective pesticide Environmental Risk Assessments (ERA). A set of "building blocks" that emerged from the discussions have been integrated into a conceptual framework. The framework includes elements to facilitate its implementation, in particular: flexibility to address the needs of relevant users and stakeholders; means to address the inherent complexity of environmental systems; connections to make use of and integrate data derived from monitoring programs; and options for validation and approaches to facilitate future use in a regulatory context. The conceptual model can be applied to existing ERA methodologies, facilitating its comparability, and highlighting interoperability drivers at landscape level. The benefits of landscape-based pesticide ERA extend beyond regulation. Linking and validating risk predictions with relevant environmental impacts under a solid science-based approach will support the setting of protection goals and the formulation of sustainable agricultural strategies. Moreover, landscape ERA offers a communication tool on realistic pesticide impacts in a multistressors environment for stakeholders and citizens.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Carole Bedos
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Pierre Benoit
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Colette Bertrand
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Olivier Crouzet
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Cécile Dagès
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | - Ana Fernandez-Agudo
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | - Andreas Focks
- Research Center Environmental Systems Research, Osnabrück University, Osnabrück, Germany
| | | | - Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Dübendorf, Switzerland
| | - Matthias Liess
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Aachen, Germany
| | - Susana Loureiro
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | - Raphaël Royauté
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Ralf B Schäfer
- Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany; Research Centre One Health Ruhr, Research Alliance Ruhr, Germany
| | | | - Ayesha Siddique
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Pierre-François Staub
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Chris J Topping
- Social-Ecological Systems Simulation Centre, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Marc Voltz
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | | | | | - Vanessa Mazerolles
- Regulated Products Assessment Directorate, Anses (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Yann Devos
- European Food Safety Authority (EFSA), Parma, Italy
| |
Collapse
|
11
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
Ishimota M, Kodama M, Tomiyama N, Ohyama K. Increased extinction probability and altered physiological characteristics in pirimicarb-tolerant Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47690-47700. [PMID: 39002080 DOI: 10.1007/s11356-024-34386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
We evaluated the physiological characteristics of chemical-tolerant cladocerans. Over the course of 26 generations (F25), Daphnia magna was continuously exposed to pirimicarb (carbamate) solutions (0, 3.8, 7.5, and 15 µg/L) in sub-lethal or lethal levels. The 48 h EC50 values (29.2-29.9 µg/L) for 7.5 and 15 µg/L exposure groups were found to be nearly two times higher than that in the control (17.2 µg/L). Subsequently, we investigated whether the extinction probability changed when the chemical-tolerant daphnids were fed two different types of food, Chlorella vulgaris and Synechococcus leopoliensis. Furthermore, we ascertained how chemical tolerance influences respiration and depuration rates. The 48 h EC50 value was positively related to the extinction probability when the daphnids were fed S. leopoliensis. Because the measured lipid content of S. leopoliensis was three times lower than that of C. vulgaris, the tolerant daphnids struggled under nutrient-poor conditions. Respiration rates across all pirimicarb treatment groups were higher than those in the control group, suggesting that they may produce large amounts of energy through respiration to maintain the chemical tolerance. Since the pirimicarb depuration rate for 7.5 µg/L exposure groups was higher than that in the control, the altered metabolic/excretion rate may be one factor for acquiring chemical tolerance. These altered physiological characteristics are crucial parameters for evaluating the mechanisms of chemical tolerance and associated fitness costs.
Collapse
Affiliation(s)
- Makoto Ishimota
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan.
| | - Mebuki Kodama
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Naruto Tomiyama
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Kazutoshi Ohyama
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| |
Collapse
|
13
|
Siddique A, Shahid N, Liess M. Revealing the cascade of pesticide effects from gene to community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170472. [PMID: 38296075 DOI: 10.1016/j.scitotenv.2024.170472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Global pesticide exposure in agriculture leads to biodiversity loss, even at ultra-low concentrations below the legal limits. The mechanisms by which the effects of toxicants act at such low concentrations are still unclear, particularly in relation to their propagation across the different biological levels. In this study, we demonstrate, for the first time, a cascade of effects from the gene to the community level. At the gene level, agricultural pesticide exposure resulted in reduced genetic diversity of field-collected Gammarus pulex, a dominant freshwater crustacean in Europe. Additionally, we identified alleles associated with adaptations to pesticide contamination. At the individual level, this genetic adaptation to pesticides was linked to a lower fecundity, indicating related fitness costs. At the community level, the combined effect of pesticides and competitors caused a decline in the overall number and abundance of pesticides susceptible macroinvertebrate competing with gammarids. The resulting reduction in interspecific competition provided an advantage for pesticide-adapted G. pulex to dominate macroinvertebrate communities in contaminated areas, despite their reduced fitness due to adaptation. These processes demonstrate the complex cascade of effects, and also illustrate the resilience and adaptability of biological systems across organisational levels to meet the challenges of a changing environment.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Naeem Shahid
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100 Vehari, Pakistan.
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Liess M, Gröning J. Latent pesticide effects and their mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168368. [PMID: 37952673 DOI: 10.1016/j.scitotenv.2023.168368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Short pulses of toxicants can cause latent effects that occur long after the contamination event and are currently unpredictable. Here, we introduce an analytical framework for mechanistically predicting latent effects considering interactive effects of multiple stressors and hormetic effect compensation. We conducted an extensive investigation using high temporal resolution microcosm data of the mayfly Cloeon dipterum exposed to the pyrethroid pesticide esfenvalerate for 1 h. For 6 pesticide concentrations and 3 food levels we identified daily general stress information and predicted their synergistic interactions using the Stress Addition Model (SAM). Our analysis revealed that, especially at low concentrations, latent effects contributed most to the overall effect. At low concentrations ranging from 1/100 to 1/10,000 of the acute LC50, resulting in a 30-15 % mortality, latent effects prevailed, accounting for 92 % to 100 % of the observed effects. Notably, the concentration causing 15 % mortality 29 days post-exposure was 1000 times lower than the concentration causing the same mortality 4 days post-exposure, emphasizing the time-dependent nature of this Latent-Effect-Amplification (LEA). We identified both acute mortality and latent effects of pesticides on emergence. Furthermore, we observed pesticide-induced compensation mechanisms at both individual and population levels, transforming the initial monotonic concentration-response relationship into a hormetic, tri-phasic response pattern. Combining these processes enabled a quantification of the underlying causes of latent effects. Our findings highlight that short-term pesticide exposures can lead to latent effects of particular significance, especially at low effect concentrations.
Collapse
Affiliation(s)
- Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, Dept. System-Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| | - Jonas Gröning
- UFZ - Helmholtz Centre for Environmental Research, Dept. System-Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany; RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
| |
Collapse
|
15
|
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. ENVIRONMENT INTERNATIONAL 2024; 183:108368. [PMID: 38070438 DOI: 10.1016/j.envint.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
The comprehensive assessment of the long-term impacts of constant exposure to pollutants on wildlife populations remains a relatively unexplored area of ecological risk assessment. Empirical evidence to suggest that multigenerational exposure affects the susceptibility of organisms is scarce, and the underlying mechanisms in the natural environment have yet to be fully understood. In this study, we first examined the arthropod candidate species, Gammarus roeselii that - unlike closely related species - commonly occurs in many contaminated river systems of Central Europe. This makes it a suitable study organism to investigate the development of tolerances and phenotypic adaptations along pollution gradients. In a 96-h acute toxicity assay with the neonicotinoid thiacloprid, we indeed observed a successive increase in tolerance in populations coming from contaminated regions. This was accompanied by a certain phenotypic change, with increased investment into reproduction. To address the question of whether these changes are plastic or emerged from longer lasting evolutionary processes, we conducted a multigeneration experiment in the second part of our study. Here, we used closely-related Hyalella azteca and pre-exposed them for multiple generations to sublethal concentrations of thiacloprid in a semi-static design (one week renewal of media containing 0.1 or 1.0 µg/L thiacloprid). The pre-exposed individuals were then used in acute toxicity assays to see how quickly such adaptive responses can develop. Over only two generations, the tolerance to the neonicotinoid almost doubled, suggesting developmental plasticity as a plausible mechanism for the rapid adaptive response to strong selection factors such as neonicotinoid insecticides. It remains to be discovered whether the plasticity of rapidly developed tolerance is species-specific and explains why closely related species - which may not have comparable adaptive response capabilities - disappear in polluted habitats. Overall, our findings highlight the neglected role of developmental plasticity during short- and long-term exposure of natural populations to pollution. Moreover, our results show that even pollutant levels seven times lower than concentrations found in the study region have a clear impact on the developmental trajectories of non-target species.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany.
| | - Safia El Toum Abdel Fadil
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20 D-21033, Hamburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Lalouette A, Degli Esposti D, Garnero L, Allibert M, Dherret L, Dabrin A, Delorme N, Recoura-Massaquant R, Chaumot A. Acclimation and transgenerational plasticity support increased cadmium tolerance in Gammarus populations exposed to natural metal contamination in headwater streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166216. [PMID: 37567286 DOI: 10.1016/j.scitotenv.2023.166216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.
Collapse
Affiliation(s)
- Auréline Lalouette
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | | - Laura Garnero
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Maxime Allibert
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Lysiane Dherret
- INRAE, UR RiverLy, Laboratoire de chimie des milieux aquatiques, Villeurbanne F-69625, France
| | - Aymeric Dabrin
- INRAE, UR RiverLy, Laboratoire de chimie des milieux aquatiques, Villeurbanne F-69625, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France.
| |
Collapse
|
17
|
Kabus J, Cunze S, Dombrowski A, Karaouzas I, Shumka S, Jourdan J. Uncovering the Grinnellian niche space of the cryptic species complex Gammarus roeselii. PeerJ 2023; 11:e15800. [PMID: 37551343 PMCID: PMC10404395 DOI: 10.7717/peerj.15800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The discovery of cryptic species complexes within morphologically established species comes with challenges in the classification and handling of these species. We hardly know to what extent species within a species complex differ ecologically. Such knowledge is essential to assess the vulnerability of individual genetic lineages in the face of global change. The abiotic conditions, i.e., the Grinnellian niche that a genetic lineage colonizes, provides insights into how diverse the ecological requirements of each evolutionary lineage are within a species complex. MATERIAL AND METHODS We sampled the cryptic species complex of the amphipod Gammarus roeselii from Central Germany to Greece and identified genetic lineages based on cytochrome c oxidase subunit I (COI) barcoding. At the same time, we recorded various abiotic parameters and local pollution parameters using a series of in vitro assays to then characterize the Grinnellian niches of the morphospecies (i.e., Gammarus roeselii sensu lato) as well as each genetic lineage. Local pollution can be a significant factor explaining current and future distributions in times of increasing production and release of chemicals into surface waters. RESULTS We identified five spatially structured genetic lineages in our dataset that differed to varying degrees in their Grinnellian niche. In some cases, the niches were very similar despite the geographical separation of lineages, supporting the hypothesis of niche conservatism while being allopatrically separated. In other cases, we found a small niche that was clearly different from those of other genetic lineages. CONCLUSION The variable niches and overlaps of different dimensions make the G. roeselii species complex a promising model system to further study ecological, phenotypic and functional differentiation within this species complex. In general, our results show that the Grinnellian niches of genetically distinct molecular operational taxonomic units (MOTUs) within a cryptic species complex can differ significantly between each other, calling for closer inspection of cryptic species in a conservational and biodiversity context.
Collapse
Affiliation(s)
- Jana Kabus
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sarah Cunze
- Department of Integrative Parasitology and Zoophysiology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ioannis Karaouzas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Albania
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Delnat V, Verheyen J, Van Hileghem I, Stoks R. Genetic variation of the interaction type between two stressors in a single population: From antagonism to synergism when combining a heat spike and a pesticide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119654. [PMID: 35738518 DOI: 10.1016/j.envpol.2022.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Despite the surging interest in the interactions between toxicants and non-chemical stressors, and in evolutionary ecotoxicology, we have poor knowledge whether these patterns differ among genotypes within a population. Warming and toxicants are two widespread stressors in aquatic systems that are known to modify each other's effects. We studied to what extent effects of sequential exposure to a heat spike and the pesticide esfenvalerate differed among genotypes in the water flea Daphnia magna. Esfenvalerate had similar negative effects on survival and body size across genotypes, and for most genotypes it increased time to maturation, yet the effects on the reproductive performance were only detected in some genotypes and were inconsistent in direction. Across genotypes, the heat spike increased the heat tolerance, yet the negative effects of the heat spike on survival, reproductive performance and body size, and the positive effects on grazing rate and the shortened time to maturation were only seen in some genotypes. Notably, the interaction type between both stressors differed among genotypes. In contrast to our expectation, the impact of esfenvalerate was only magnified by the heat spike in some genotypes and only for a subset of the traits. For survival and time to maturation, the interaction type for the same stressor combination covered all three categories: additions, synergisms and antagonisms. This illustrates that categorizing the interaction type between stressors at the level of populations may hide considerable intrapopulation variation among genotypes. Opposite to our expectation, the more pesticide-tolerant genotypes showed a stronger synergism between both stressors. Genotype-dependent interaction patterns between toxicants and non-chemical stressors may explain inconsistencies among studies and challenges ecological risk assessment based on single genotypes. The observed genetic differences in the responses to the (combined) stressors may fuel the evolution of the stressor interaction pattern, a largely ignored topic in evolutionary ecotoxicology.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Ine Van Hileghem
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|