1
|
Rajan BP, Mergelsberg ST, Bowden ME, Peterson KA, Burton SD, Bowers GM, Wietsma TW, Graham TR, Qafoku O, Thompson CJ, Kerisit SN, Loring JS. Decreasing Hygroscopicity Slows Forsterite Carbonation under Low-Water Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9049-9059. [PMID: 40294359 DOI: 10.1021/acs.est.5c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A fundamental understanding of processes that slow divalent metal silicate carbonation is important for developing effective strategies to durably store carbon dioxide and mitigate atmospheric CO2. This study presents a detailed investigation of a passivation effect unique to low-water conditions during the carbonation of forsterite (Mg2SiO4) and highlights the importance of hygroscopicity in influencing metal silicate carbonation. Integrated in situ and ex situ experimental results showed that the decrease in the carbonation rate of forsterite observed after ∼10 h in humid supercritical CO2 (50 °C, 90 bar) correlates with a reduction in water film thickness, and in particular, weakly hydrogen bonded adsorbed water that facilitates ion transport. We attribute the decrease in thickness to a drop in the concentrations of hygroscopic Mg2+, MgHCO3+, and HCO3- ions within the film as the predominate forsterite carbonation product evolves from amorphous magnesium carbonate (AMC) to magnesite (MgCO3). When more soluble AMC is present, hygroscopic ion concentrations are higher, drawing more water from the supercritical phase to the forsterite surface. Carbonation rates are faster because thicker water films can better mobilize ions to growing carbonates. In contrast, when less soluble magnesite predominates, hygroscopic ion concentrations are lower, water films are thinner, and carbonate rates are slower.
Collapse
Affiliation(s)
- Bavan P Rajan
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kelly A Peterson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sarah D Burton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Geoffrey M Bowers
- Department of Biochemistry and Chemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, United States
| | - Thomas W Wietsma
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Trent R Graham
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Odeta Qafoku
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher J Thompson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Camacho Meneses G, Weber J, Hermann R, Wanhala A, Stubbs JE, Eng PJ, Yuan K, Borisevich AY, Boebinger MG, Liu T, Stack AG, Bracco JN. Inhibition of Reaction Layer Formation on MgO(100) by Doping with Trace Amounts of Iron. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3457-3468. [PMID: 40008203 PMCID: PMC11848909 DOI: 10.1021/acs.jpcc.4c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025]
Abstract
Despite extensive research on MgO's reactivity in the presence of CO2 under various conditions, little is known about whether impurities incorporated into the solid, such as iron, enhance or impede hydroxylation and carbonation reactions. The purity of the MgO required for the successful implementation of MgO looping as a direct air capture technology affects the deployment costs. With this motivation, we tested how incorporated iron impacts MgO (100) reactivity and passivation layer formation under ambient conditions by using atomic force microscopy, electron microscopy, and synchrotron-based X-ray scattering. Based on electron microprobe analysis, our MgO samples were 0.5 wt % iron, and Mössbauer spectroscopy results indicated that 70% of the iron is present as Fe(II). We find that even these low levels of iron dopants impeded both the hydroxylation at various relative humidities (10%, 33%, 75%, and >95%) and carbonation in CO2 (33%, 75%, and >95%) on the (100) surface. Crystalline reaction products were formed. Reaction layers on the sample were easily removed by exposing the sample to deionized water for 2 min. Overall, our findings demonstrate that the presence of iron dopants slows the reaction rate of MgO, indicating that MgO without incorporated iron is preferable for mineral looping applications.
Collapse
Affiliation(s)
- Gabriela Camacho Meneses
- School
of Earth and Environmental Sciences, Queens College, City University of New York, New York Queens 11367-0904, United States
| | - Juliane Weber
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raphaël
P. Hermann
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anna Wanhala
- Center
for Advanced Radiation Sources, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Joanne E. Stubbs
- Center
for Advanced Radiation Sources, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Peter J. Eng
- Center
for Advanced Radiation Sources, The University
of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ke Yuan
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Albina Y. Borisevich
- Center
for
Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew G. Boebinger
- Center
for
Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tingting Liu
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew G. Stack
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacquelyn N. Bracco
- School
of Earth and Environmental Sciences, Queens College, City University of New York, New York Queens 11367-0904, United States
- Earth
and Environmental Sciences, Graduate Center, City, University of New York, New York, New York 10016-4309, United States
| |
Collapse
|
3
|
Rangel-Jurado N, Kong XZ, Kottsova A, Grafulha Morales L, Ma N, Games F, Brehme M, Bernasconi SM, Saar MO. Reactivity of Wet scCO 2 toward Reservoir and Caprock Formations under Elevated Pressure and Temperature Conditions: Implications for CCS and CO 2-Based Geothermal Energy Extraction. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:1679-1693. [PMID: 39877643 PMCID: PMC11770833 DOI: 10.1021/acs.energyfuels.4c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Carbon capture and storage (CCS) and CO2-based geothermal energy are promising technologies for reducing CO2 emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO2 interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO2-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO2 remains largely overlooked by academics and practitioners alike. We address this knowledge gap by conducting core-scale laboratory experiments, focusing on the chemical reactivity of water-bearing supercritical CO2 (wet scCO2) with reservoir and caprock lithologies and simulating deep reservoir conditions (35 MPa, 150 °C). Employing a suite of high-resolution analytical techniques, we characterize the evolution of morphological and compositional properties, shedding light on the ion transport and mineral dissolution processes, caused by both the aqueous and nonaqueous phases. Our results show that fluid-mineral interactions involving wet scCO2 are significantly less severe than those caused by equivalent CO2-bearing aqueous solutions. Nonetheless, our experiments reveal that wet scCO2 can induce mineral dissolution reactions upon contact with dolomite. This dissolution appears limited, incongruent, and self-sealing, characterized by preferential leaching of calcium over magnesium ions, leading to supersaturation of the scCO2 phase and reprecipitation of secondary carbonates. The markedly differing quantities of Ca2+ and Mg2+ ions transported by wet scCO2 streams provide clear evidence of the nonstoichiometric dissolution of dolomite. More importantly, this finding represents the first reported observation of ion transport processes driven by water continuously dissolved in the scCO2 phase, which challenges prevailing views on the chemical reactivity of this fluid and highlights the need for further investigation. A comprehensive understanding of the chemical behavior of CO2-rich supercritical fluids is critical for ensuring the feasibility and security of deep geological CO2 storage and CO2-based geothermal energy.
Collapse
Affiliation(s)
- Nicolás Rangel-Jurado
- Geothermal
Energy and Geofluids Group, Institute of Geophysics, Department of
Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
- Computational
Geoscience, Geothermics, and Reservoir Geophysics, RWTH Aachen, Aachen 52074, Germany
| | - Xiang-Zhao Kong
- Geothermal
Energy and Geofluids Group, Institute of Geophysics, Department of
Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Anna Kottsova
- Geothermal
Energy and Geofluids Group, Institute of Geophysics, Department of
Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Luiz Grafulha Morales
- Scientific
Centre for Optical and Electron Microscopy (ScopeM), ETH Zurich, Zurich 8093, Switzerland
| | - Ning Ma
- Institute
of Geochemistry and Petrology, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| | | | - Maren Brehme
- Geothermal
Energy and Geofluids Group, Institute of Geophysics, Department of
Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Stefano M. Bernasconi
- Climate
Geology, Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Martin O. Saar
- Geothermal
Energy and Geofluids Group, Institute of Geophysics, Department of
Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Pang J, Liang Y, Mi F, Jiang G, Tsuji T, Ning F. Nanoscale Understanding on CO 2 Diffusion and Adsorption in Clay Matrix Nanopores: Implications for Carbon Geosequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20401-20411. [PMID: 39381980 DOI: 10.1021/acs.est.4c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Carbon capture and storage (CCS) in subsurface reservoirs represents a highly promising and viable strategy for mitigating global carbon emissions. In the context of CCS implementation, it is particularly crucial to understand the complex molecular diffusive and adsorptive behaviors of anthropogenic carbon dioxide (CO2) in the subsurface at the nanoscale. Yet, conventional molecular models typically represent only single-slit pores and overlook the complexity of interconnected nanopores. In this work, finite kaolinite lamellar assemblages with abundant nanopores (r < 2 nm) were used. Molecular dynamics simulations were performed to quantify the spatial distribution correlations, adsorption preference, diffusivity, and residence time of the CO2 molecules in kaolinite nanopores. The movement of the CO2 molecules primarily occurs in the central and proximity regions of the siloxane surfaces, progressing from larger to smaller nanopores. CO2 prefers smaller nanopores over larger ones. The diffusion coefficients increase, while residence times decrease, with the pore size increasing, differing from typical slit-pore models due to the pore shape and interconnectivity. The perspectives in this study, which would be challenging in conventional slit-pore models, will facilitate our comprehension of the CO2 molecular behaviors in the complex subsurface clay sediments for developing quantitative estimation techniques throughout the CCS project durations.
Collapse
Affiliation(s)
- Jiangtao Pang
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
- National Center for International Research on Deep Earth Drilling and Resource Development, Wuhan, Hubei 430074, China
| | - Yunfeng Liang
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Fengyi Mi
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Guosheng Jiang
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
- National Center for International Research on Deep Earth Drilling and Resource Development, Wuhan, Hubei 430074, China
| | - Takeshi Tsuji
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Fulong Ning
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
- National Center for International Research on Deep Earth Drilling and Resource Development, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Loring JS, Webb TE, Bowden ME, Engelhard MH, Kerisit SN. Cobalt substitution slows forsterite carbonation in low-water supercritical carbon dioxide. Phys Chem Chem Phys 2024; 26:26465-26471. [PMID: 39392438 DOI: 10.1039/d4cp02092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cobalt recovery from low-grade mafic and ultramafic ores could be economically viable if combined with CO2 storage under low-water conditions, but the impact of Co on metal silicate carbonation and the fate of Co during the carbonation reaction must be understood. In this study, in situ infrared spectroscopy was used to investigate the carbonation of Co-doped forsterite ((Mg,Co)2SiO4) in thin water films in humidified supercritical CO2 at 50 °C and 90 bar. Rates of carbonation of Co-doped forsterite to Co-rich magnesite ((Mg,Co)CO3) increased with water film thickness but were at least 10 times smaller than previously measured for pure forsterite at similar conditions. We suggest that the smaller rates are due to thermodynamic drivers that cause water films on Co-doped forsterite to be much less oversaturated with respect to Co-doped magnesite, compared to the pure minerals.
Collapse
Affiliation(s)
- John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Tenley E Webb
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Mark H Engelhard
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
6
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
7
|
Li W, Wang C, Che G, Su M, Zhang Z, Liu W, Lin Z, Zhang J. Enhanced extraction of heavy metals from gypsum-based hazardous waste by nanoscale sulfuric acid film at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134027. [PMID: 38508110 DOI: 10.1016/j.jhazmat.2024.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.
Collapse
Affiliation(s)
- Wenjing Li
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China
| | - Chunli Wang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Guiquan Che
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Min Su
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Zhihao Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Weizhen Liu
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China; School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Jing Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China.
| |
Collapse
|
8
|
Bracco JN, Camacho Meneses G, Colón O, Yuan K, Stubbs JE, Eng PJ, Wanhala AK, Einkauf JD, Boebinger MG, Stack AG, Weber J. Reaction Layer Formation on MgO in the Presence of Humidity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:712-722. [PMID: 38157368 DOI: 10.1021/acsami.3c14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mineralization by MgO is an attractive potential strategy for direct air capture (DAC) of CO2 due to its tendency to form carbonate phases upon exposure to water and CO2. Hydration of MgO during this process is typically assumed to not be rate limiting, even at ambient temperatures. However, surface passivation by hydrated phases likely reduces the CO2 capture capacity. Here, we examine the initial hydration reactions that occur on MgO(100) surfaces to determine whether they could potentially impact CO2 uptake. We first used atomic force microscopy (AFM) to explore changes in reaction layers in water (pH = 6 and 12) and MgO-saturated solution (pH = 11) and found the reaction layers on MgO are heterogeneous and nonuniform. To determine how relative humidity (R.H.) affects reactivity, we reacted samples at room temperature in nominally dry N2 (∼11-12% R.H.) for up to 12 h, in humid (>95% R.H.) N2 for 5, 10, and 15 min, and in air at 33 and 75% R.H. for 8 days. X-ray reflectivity and electron microscopy analysis of the samples reveal that hydrated phases form rapidly upon exposure to humid air, but the growth of the hydrated reaction layer slows after its initial formation. Reaction layer thickness is strongly correlated with R.H., with denser reaction layers forming in 75% R.H. compared with 33% R.H. or nominally dry N2. The reaction layers are likely amorphous or poorly crystalline based on grazing incidence X-ray diffraction measurements. After exposure to 75% R.H. in air for 8 days, the reaction layer increases in density as compared to the sample reacted in humid N2 for 5-15 min. This may represent an initial step toward the crystallization of the reaction layer. Overall, high R.H. favors the formation of a hydrated, disordered layer on MgO. Based on our results, DAC in a location with a higher R.H. will be favorable, but growth may slow significantly from initial rates even on short timescales, presumably due to surface passivation.
Collapse
Affiliation(s)
- Jacquelyn N Bracco
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367-0904, United States
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York 10016-4309, United States
| | - Gabriela Camacho Meneses
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367-0904, United States
| | - Omar Colón
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367-0904, United States
| | - Ke Yuan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joanne E Stubbs
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Peter J Eng
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna K Wanhala
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew G Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Juliane Weber
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Bowers GM, Loganathan N, Loring JS, Schaef HT, Yazaydin AO. Chemistry and Dynamics of Supercritical Carbon Dioxide and Methane in the Slit Pores of Layered Silicates. Acc Chem Res 2023. [PMID: 37339149 DOI: 10.1021/acs.accounts.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
ConspectusIn the mid 2010s, high-pressure diffraction and spectroscopic tools opened a window into the molecular-scale behavior of fluids under the conditions of many CO2 sequestration and shale/tight gas reservoirs, conditions where CO2 and CH4 are present as variably wet supercritical fluids. Integrating high-pressure spectroscopy and diffraction with molecular modeling has revealed much about the ways that supercritical CO2 and CH4 behave in reservoir components, particularly in the slit-shaped micro- and mesopores of layered silicates (phyllosilicates) abundant in caprocks and shales. This Account summarizes how supercritical CO2 and CH4 behave in the slit pores of swelling phyllosilicates as functions of the H2O activity, framework structural features, and charge-balancing cation properties at 90 bar and 323 K, conditions similar to a reservoir at ∼1 km depth. Slit pores containing cations with large radii, low hydration energy, and large polarizability readily interact with CO2, allowing CO2 and H2O to adsorb and coexist in these interlayer pores over a wide range of fluid humidities. In contrast, cations with small radii, high hydration energy, and low polarizability weakly interact with CO2, leading to reduced CO2 uptake and a tendency to exclude CO2 from interlayers when H2O is abundant. The reorientation dynamics of confined CO2 depends on the interlayer pore height, which is strongly influenced by the cation properties, framework properties, and fluid humidity. The silicate structural framework also influences CO2 uptake and behavior; for example, smectites with increasing F-for-OH substitution in the framework take up greater quantities of CO2. Reactions that trap CO2 in carbonate phases have been observed in thin H2O films near smectite surfaces, including a dissolution-reprecipitation mechanism when the edge surface area is large and an ion exchange-precipitation mechanism when the interlayer cation can form a highly insoluble carbonate. In contrast, supercritical CH4 does not readily associate with cations, does not react with smectites, and is only incorporated into interlayer slit mesopores when (i) the pore has a z-dimension large enough to accommodate CH4, (ii) the smectite has low charge, and (iii) the H2O activity is low. The adsorption and displacement of CH4 by CO2 and vice versa have been studied on the molecular scale in one shale, but opportunities remain to examine behavioral details in this more complicated, slit-pore inclusive system.
Collapse
Affiliation(s)
- Geoffrey M Bowers
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, 47645 College Drive, St. Mary's City, Maryland 20686, United States
| | - Narasimhan Loganathan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - John S Loring
- Computational and Molecular Sciences Directorate, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99352, United States
| | - Herbert Todd Schaef
- Computational and Molecular Sciences Directorate, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99352, United States
| | - A Ozgur Yazaydin
- Department of Chemical Engineering, University College London, London, U.K. WC1E 7JE
| |
Collapse
|
10
|
Mechanochemical activation for improving the direct mineral carbonation efficiency and capacity of a timber biomass ash. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nat Rev Chem 2022; 6:598-613. [PMID: 37117714 DOI: 10.1038/s41570-022-00418-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
Abstract
The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
Collapse
|