1
|
Khare A, Jadhao P, Vaidya AN, Kumar AR. Non-essential use of benzotriazole ultraviolet stabilizers in single-use plastics manufactured in India: An avoidable class of plastic additives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178916. [PMID: 39986041 DOI: 10.1016/j.scitotenv.2025.178916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Benzotriazole ultraviolet stabilizers (BUVs) are extensively utilized as additives in various polymeric formulations to protect against harmful UV radiation. Classified as persistent, mobile, and toxic additives, BUVs have attracted the attention of researchers and regulatory bodies worldwide. However, there is limited information on the BUVs content in different plastics. This study investigated the presence of six major BUVs in plastic debris collected from Indian water bodies. Based on the usage, plastic debris was categorized into food contact materials (FCMs), personal care products (PCPs), and household items. Plastic debris made of high-density polyethylene had the highest concentrations of UV-P, followed by UV-327, UV-326, and UV-328. UV-329 was the predominant UV stabilizer detected in the PCP sachet, while UV-320 was not detected in any of the plastic debris analyzed. Leaching experiments showed that plastic debris could serve as a mobile source of BUVs to the surrounding water and pose a low to moderate ecological risk (RQ ≥ 0.1) to planktons. The content of UV stabilizer was highest in FCMs (mean ± SD: 27787.98 ± 2304.14 ng/g), compared to PCPs (mean ± SD: 9115.49 ± 2891.18 ng/g) and household items (mean ± SD: 3215.03 ± 521.92 ng/g). The occurrence of BUVs in short-lived plastics such as FCMs, PCPs sachets and daily household items raises human health concerns, questioning the necessity of adding BUVs in these plastics.
Collapse
Affiliation(s)
- Ankur Khare
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India
| | - Pradip Jadhao
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India
| | - Atul Narayan Vaidya
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India.
| |
Collapse
|
2
|
Li F, Chen L, Shi S, Hong WJ, Li M, Guo LH. Perfluorobutanoic acid: A short-chain perfluoroalkyl substance exhibiting estrogenic effects through the estrogen-related receptor γ pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136947. [PMID: 39708599 DOI: 10.1016/j.jhazmat.2024.136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptor γ (ERRγ) pathways. In vivo experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. In vitro, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10 nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10 nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.
Collapse
Affiliation(s)
- Fangfang Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Sha Shi
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Liu X, Wu Z, Pei X, Lin T, Li J, Wang S, Guo Z, Yao Z. Benzotriazole ultraviolet absorbents in surface waters and sediments of the Bohai Sea and North Yellow Sea: Spatial trends and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174264. [PMID: 38936716 DOI: 10.1016/j.scitotenv.2024.174264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Benzotriazole ultraviolet absorbents (BUAs) of emerging concern were recently monitored in seawater and sediments from the Bohai Sea (BS) and North Yellow Sea (NYS), which are impacted by human activities, to elucidate their regional occurrence patterns, phase distributions, and contamination profiles. Although environmental variables such as sedimentary organic carbon, particle size, and salinity, as well as hydrological conditions, affected the environmental occurrence of BUAs in the BS and NYS, the source dependence of BUA distributions associated with urban impacts and riverine inputs was highlighted. Substantial spatial variability in the composition patterns and contamination profiles of BUAs identified through correlation and principal component analyses were likely caused by region-specific sources and characteristics. The distribution of target BUAs between the sediment and seawater phases showed no dependence on the octanol-water partition coefficient (KOW) but exhibited marked spatial variations. The diversity of BUA sorption behaviors was further explained by the total organic carbon (TOC)-normalized distribution coefficient (KTOC). Classic logKTOC-logKOW linear relationships accurately predicted the phase distributions of UV-326, UV-328, and UV-234, but deviations were found for lighter and heavier BUAs, possibly due to the influences of physical disturbance and microparticle binding.
Collapse
Affiliation(s)
- Xing Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zilan Wu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Xiaodan Pei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaojiao Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Sha Wang
- Agilent Technologies (China) Co. Ltd., Beijing 100102, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
4
|
Zhao Y, Bai L, Wang X, Huo M, Gao W, Jiang L, Jin J, Wang Y, Cao D. Exposure Assessment of Benzotriazole Ultraviolet Absorbers in Plastic Sports Field Dust and Indoor Dust: Are Plastic Sports Fields High Exposure Scenarios? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17419-17428. [PMID: 39292546 DOI: 10.1021/acs.est.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Benzotriazole ultraviolet absorbers (BUVs), as emerging contaminants of extensive use, especially in plastic sports fields, have aroused increasing concern due to their potential human and environmental impacts. However, BUV exposure from plastic sports field dust is still unknown. This study compared BUVs in plastic sports field dust and indoor dust for the first time. The order of the geometric mean concentrations of the total BUVs (ΣBUVs) in plastic sports field dust was indoor badminton courts (11023 ng g-1) > basketball courts (4777 ng g-1) > plastic tracks (3779 ng g-1) > synthetic turf (1920 ng g-1) > tennis courts (689 ng g-1). The geometric mean concentrations of ΣBUVs in indoor dust (1150 ng g-1) were lower than those in most plastic sports field dust. The dominant BUV was 2-hydroxy-4-(octyloxy)benzophenone (UV-531) in plastic sports field dust, while 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-2H-benzotriazole-2-yl)phenol] (UV-360) was the dominant BUV in indoor dust. Releases from plastic track materials, sneaker soles, and friction between them might be important BUV sources in plastic track dust. The average estimated daily intakes of ΣBUVs from plastic sports field dust for general exercisers were lower than those from indoor dust, but those for exercisers with long time or professional athletes might be higher, potentially posing health risks.
Collapse
Affiliation(s)
- Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengmeng Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
5
|
Sondermann NC, Momin AA, Arold ST, Haarmann-Stemmann T. Benzotriazole UV stabilizers disrupt epidermal growth factor receptor signaling in human cells. ENVIRONMENT INTERNATIONAL 2024; 190:108886. [PMID: 39024829 DOI: 10.1016/j.envint.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Phenolic benzotriazole UV stabilizers (BUV) are commonly used additives in synthetic polymeric products, which constantly leak into the environment. They are persistent and bioaccumulative, and have been detected not only in fish, birds, and sea mammals, but also in humans, including breast milk samples. Several authorities including the European Chemical Agency already consider some BUVs as Substances of Very High Concern in need of further information, e.g. mechanistical studies and biomonitoring. In this study, we are addressing this need by investigating the effect of several BUVs on the activity of the human epidermal growth factor receptor (EGFR), an important regulator of cellular processes that has recently been identified as a cell-surface receptor for environmental organic chemicals. By combining in silico docking, mutant analyses, receptor binding and internalization assays, we demonstrate that BUVs, particularly the chlorinated variants, bind to the extracellular domain of EGFR and thereby prevent the binding of growth factors. Accordingly, BUVs can inhibit EGFR downstream events, such as ERK1/2 phosphorylation and DNA synthesis, in human keratinocytes. Our data establish EGFR as a plasma membrane receptor for BUVs, offering novel mechanistic insights into the biological effects induced by these widespread and persistent chemicals. The findings of this study may not only improve hazard assessment for BUVs, but also contribute to the development of novel EGFR-targeting drugs.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Afaque A Momin
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
6
|
Monkley C, Reay MK, Evershed RP, Lloyd CEM. Mass spectral characterisation of cyclic oligoesters in a biodegradable mulch film. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9726. [PMID: 38525923 DOI: 10.1002/rcm.9726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
RATIONALE Plastic mulch film manages weed growth and moisture loss on the surface of cropping beds. The chemical components of such plastics include polymer(s), additives and non-intentionally added substances (NIASs). The unknown chemical nature and behaviours of these constituents require investigation due to their potential to add to the anthropogenic chemical burden in the agrifood system. METHODS Solvent extracts of a commercial 15% polylactic acid (PLA)/85% poly(butylene adipate-co-terephthalate) mulch film were investigated using gas chromatography-mass spectrometry (GC-MS) with electron ionisation to characterise the additive and NIAS components. The obscurity of some of the NIASs meant their identification was not readily achieved through routine MS library comparisons. As such, the identification of several polymer-derived compounds required interpretation of the MS data and re-application of the derived fragmentation patterns with reference to the wider literature. Unknowns were confirmed using commercially available compounds. RESULTS Unknown NIASs were identified as cyclic oligoesters comprised of the monomeric building blocks of the polymer system. Cyclic structures derived from the monomers of polybutylene adipate (PBA) and polybutylene terephthalate (PBT) fragmented through a primary pathway involving 1,5- and 1,3-H transfers at ester linkages. Characteristic ions at m/z 111, 129, 183 and 201 for PBA-derived cyclic oligoesters and m/z 104, 132, 149 and 221 for PBT-derived cyclic oligoesters were assigned in the mass spectra of unknowns. Cyclic oligoesters containing sebacate moieties were also identified, indicating the presence of polybutylene sebacate as an unexpected component of the mulch. CONCLUSIONS Systematic analyses of the sort reported here are valuable for providing alternative approaches for the identification of plastic-related chemicals. Open publication of MS spectral data is required to build a greater understanding of the mulch film chemical components contributing to the environmental chemical load introduced to agroecosystems.
Collapse
Affiliation(s)
- Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Michaela K Reay
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- School of Geographical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Guo Z, Li H, Yu W, Ren Y, Zhu Z. Insights into the effect of benzotriazoles in liver using integrated metabolomic and transcriptomic analysis. ENVIRONMENT INTERNATIONAL 2024; 187:108716. [PMID: 38723456 DOI: 10.1016/j.envint.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Benzotriazoles (BTRs) are a class of benzoheterocyclic chemicals that are frequently used as metal-corrosive inhibitors, both in industry and daily use. However, the exposure effect information on BTRs remains relatively limited. In this study, an integrated metabolomic and transcriptomic approach was utilized to evaluate the effect of three BTRs, benzotriazole, 6-chloro-1-hydroxi-benzotriazole, and 1-hydroxy-benzotriazole, in the mouse liver with results showing disrupted basal metabolic processes and vitamin and cofactor metabolism after 28 days. The expression of several genes that are related to the inflammatory response and aryl hydrocarbon receptor pathways, such as Gstt2 and Arntl, was altered by the exposure to BTRs. Exposure to BTRs also affected metabolites and genes that are involved in the immune system and xenobiotic responses. The altered expression of several cytochrome P450 family genes reveal a potential detoxification mechanism in the mouse liver. Taken together, our findings provide new insights into the multilayer response of the mouse liver to BTRs exposure as well as a resource for further exploration of the molecular mechanisms by which the response occurs.
Collapse
Affiliation(s)
- Zeqin Guo
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| | - Huimin Li
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Wenmin Yu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Yaguang Ren
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Zhiguo Zhu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| |
Collapse
|
8
|
Struk-Sokołowska J, Faszczewska A, Kotowska U, Mielcarek A. Comparison of benzotriazole ultraviolet stabilizers (BUVs) removal from wastewater after subsequent stages of sequencing batch reactor (SBR) treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169813. [PMID: 38184258 DOI: 10.1016/j.scitotenv.2023.169813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The research focused on benzotriazole ultraviolet stabilizers (BUVs) which are commonly used compounds despite being found dangerous, e.g. promoting breast cancer cell proliferation, damaging vital organs such as hearts, brains livers and kidneys. The aim of the study was to analyse the efficiency and removal rate of BUVs from wastewater depending on the quantity of tested compounds and SBR anaerobic-aerobic conditions. The study was conducted in sequencing batch reactors (SBRs - 17 L) with real flocculent activated sludge (8 L) and model wastewater (5 L) containing UV-326, UV-327, UV-328, UV-329 and UV-P from 50 to 600 μg∙L-1. The SBR were operated in 390 cycles of 7 h and 10 min over 130 days. The similarity of the technological parameters of the treatment process to those used in a real wastewater treatment plant was maintained. Efficiency removal of individual BUVs was strictly dependent on the dose of compounds introduced into wastewater and ranged from 68.2 to 97 %. Removal of UV-329 occurred with lowest efficiency (from 68.2 to 85.2 %) while UV-326 was most efficiently removed from the wastewater (from 94.1 to 97 %). UV-329 was removed from wastewater with the lowest (0.0968-0.9524 μg∙L-1∙min-1) average removal rate while UV-327 with the highest (0.16-1.3357 μg∙L-1∙min-1), irrespective of BUVs dose in the influent. Secondary release of BUVs into the wastewater occurred in SBR during the settling phase and was dependent on the type and concentration of the BUVs in the raw wastewater. This occurrence was noted for UV-326 ≥ 100; UV-327 = 600; UV-328 ≥ 200; UV-329 ≥ 50 and UV-P ≥ 100 μg∙L-1. The settling phase needs to be shortened to the required minimum. This is an important conclusion for WWTPs in regards to SBR cycle duration and technological parameters of the treatment process.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Białystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Białystok, Poland.
| | - Alicja Faszczewska
- Białystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Białystok, Poland
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Artur Mielcarek
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Warszawska 117a, 10-719 Olsztyn, Poland.
| |
Collapse
|
9
|
Khare A, Jadhao P, Vaidya AN, Kumar AR. Benzotriazole UV stabilizers (BUVs) as an emerging contaminant of concern: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121370-121392. [PMID: 37996596 DOI: 10.1007/s11356-023-30567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Chen L, Lin X, Shi S, Li M, Mortimer M, Fang W, Li F, Guo LH. Activation of estrogen-related receptor: An alternative mechanism of hexafluoropropylene oxide homologs estrogenic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166257. [PMID: 37574057 DOI: 10.1016/j.scitotenv.2023.166257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Xicha Lin
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Sha Shi
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Wendi Fang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
11
|
He W, Sun P, Zhao Y, Pu Q, Yang H, Hao N, Li Y. Source toxicity characteristics of short- and medium-chain chlorinated paraffin in multi-environmental media: Product source toxicity, molecular source toxicity and food chain migration control through silica methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162861. [PMID: 36931521 DOI: 10.1016/j.scitotenv.2023.162861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Short and medium-chain chlorinated paraffin (SCCP/MCCP) have been widely studied because of their extensive environmental hazards. In this study, product source toxicity, molecular source toxicity and food chain migration of SCCP and MCCP in multi-environmental media were comprehensively considered. The additive combination of SCCP and MCCP in the air, water and soil environment was adjusted, and PVC, PU and rubber products with the lowest source toxicity were screened. The source toxicity of SCCP and MCCP in the water environment was inhibited by design of the feed additive addition scheme (highest inhibition was 16.29 %), and the source toxicity of SCCP and MCCP in the soil environment was affected by different field management measures (highest inhibition was 38.22 %). A forage fertilizer addition plan, a cattle feed addition plan and a special population healthy complementary food regulation plan were developed to prevent the migration step by step and absorption of SCCP and MCCP in the terrestrial food chain. In addition, by means of density functional theory and analysis of key amino acid residues, the mechanism of toxicity difference between SCCP and MCCP was analyzed from the level of chemical interaction, and rationality of the inhibition scheme designed in this study was verified.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
12
|
Zhang J, Chen H, Tong T, Liu R, Yan S, Liang X, Martyniuk CJ, Zha J. Comparative toxicogenomics of benzotriazole ultraviolet stabilizers at environmental concentrations in Asian clam (Corbicula fluminea): Insight into molecular networks and behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130811. [PMID: 36669413 DOI: 10.1016/j.jhazmat.2023.130811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widespread emerging pollutants, which can pose exposure risks to benthic organisms. However, the toxicity and mechanisms of BUVSs congeners in benthic clams are far from elucidated. In this study, Asian clams (Corbicula fluminea) were exposed to one of UV-234, UV-326, UV-329, or UV-P at environmentally relevant levels (0.1, 1, and 10 μg/L) for 21 days. Filtration rate (FR) was increased in clams exposed to all BUVSs and there were notable histopathologic changes, including irregular digestive lumen, lipid droplet vacuolation, and degraded epithelial cells. To determine the molecular underpinnings following BUVSs exposure, the transcriptome responses in digestive glands were compared. Differentially expressed genes shared among BUVSs treatments were associated with focal adhesion, TNF-α/NF-κB proinflammatory pathways, and apoptosis. Following this, biochemical analysis of biomarkers related to apoptosis were conducted to further validate response. Exposure to BUVSs inhibited anti-oxidant enzyme activity and induced oxidative stress. Heat shock proteins were also triggered with exposure, and there was an induction of caspase-3 and caspase-9 activity. Molecular responses were not identical in the digestive gland of C. fluminea when comparing responses to BUVSs; nevertheless conserved mechanism (impairment of the oxidative defense system, immune system disruption, and induction of apoptosis) among BUVSs congeners was noted. This study provides novel insight into the toxicity and hazards of BUVSs in benthic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Tong
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Saihong Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Li S, Ma J, Ji X, Ostovan A, Li J, Yu J, Wang X, Sun X, Chen L. Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. J Chromatogr A 2023; 1695:463929. [PMID: 37003076 DOI: 10.1016/j.chroma.2023.463929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) that are added to pharmaceutical and personal care products (PPCPs) have raised global concerns because of their high toxicity. An efficient method to monitor its pollution level is urgently imperative. Here, a nitrogen-doped metal-organic framework (MOF) derived porous carbon (UiO-66-NH2/DC) was prepared and integrated into polyvinylidene fluoride mixed matrix membrane (PVDF MMM) as an adsorbent for the first time. The hydrophobic UiO-66-NH2/DC with a pore size of 162 Å exhibited outstanding extraction performance for BUVSs, which solves the problem of difficult enrichment of large-size and hydrophobic targets. Notably, the density functional theory simulation was employed to reveal the structure of the derived carbon material and explored the recognition and enrichment mechanism (synergy of π-π conjugation, hydrogen bond, coordination, hydrophobic interaction and mesoporous channel) of BUVSs by UiO-66-NH2/DC-PVDF MMM. And then, an influential method based on dispersive membrane extraction (DME) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous analysis of four BUVSs in environmental water samples. The validated method benefited from the high sensitivity (the limits of detection within 0.25-1.40 ng/L), accuracy (recoveries of 71.9-102.8% for wastewater) and rapidity (50 min to enrich 9 samples). This study expands the application prospects of porous carbon derived from MOF for sample pretreatment of pollutants in water.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Xuefeng Ji
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jialuo Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Jin LP, Zhang C, Xie Q, Xu J, Wang L, Yang LC, Huang EF, Wan DCC, Hu C. Design, synthesis and biological activity against estrogen receptor-dependent breast cancer of furo[1]benzofuran derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|