1
|
Li Y, Li H, Liang X, Lin G, Xu D, Gao Y, Zhu L, Zhao J. Crystalline phase regulates transformation and methylation of mercury sulfide nanoparticles in paddy systems. WATER RESEARCH 2025; 279:123496. [PMID: 40106862 DOI: 10.1016/j.watres.2025.123496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Mercury sulfide nanoparticles (HgSNPs) represent an important source of bioavailable mercury (Hg) for microbial methylation in paddy systems, depending on their size and crystalline phases. However, little is known about the phase compositions of HgSNPs in Hg-contaminated paddy fields with dynamically changed redox conditions, their transformation, and methylation potential. Applying transmission electron microscopy (TEM) and synchrotron radiation X-ray absorption spectroscopy (SR-XAS), we found β-HgSNPs as the predominant Hg species in newly contaminated areas, whereas α-HgSNPs dominated in paddies near mining areas. Subsequent incubation assays indicated minimal phase transformation between α-HgSNPs and β-HgSNPs in simulated paddy systems, suggesting their high stability under natural conditions. Compared to α-HgSNPs, β-HgSNPs exhibited a higher methylation potential, as evidenced by greater production of methylmercury (MeHg) and elevated levels of Sn(II)-reducible Hg(II), a proxy for bioavailable Hg. Further experiments and density functional theory (DFT) calculations reveal that the higher bioavailability of β-HgSNPs is closely linked to their crystalline phases and higher atomic binding energy for Hg2+ adsorption, as compared to α-HgSNPs. This study, for the first time, unravels the significance of the crystalline phase in governing the bioavailability of HgSNPs in paddy fields and provides novel insights into the ecological risk of HgS in wetland-like ecosystems.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, PR China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Diandou Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Yan J, Li R, Wang C, Yang S, Shao M, Zhang L, Li P, Feng X. Transport and transformation of colloidal and particulate mercury in contaminated watershed. WATER RESEARCH 2025; 278:123428. [PMID: 40049095 DOI: 10.1016/j.watres.2025.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/25/2025] [Accepted: 03/01/2025] [Indexed: 04/14/2025]
Abstract
Submicron colloids ubiquitously present in aquatic environments and can facilitate long transport of absorbed contaminants. Impact of particle size distribution on mercury (Hg) mobility and transformation in the complex aqueous matrices is still unclear. In this study, we considered Hg mine wastes as a natural Hg releasing source to local rivers, and collected water samples from the source to the downstream during high and low flow periods. The water samples were analyzed for Hg morphology, concentration, speciation, and isotope to understand transport and transformation dynamics along the river flows. We found that visible Hg compounds observed by transmission electron microscopy were mainly bound to particles with size fractions of <0.05 and >0.45 μm in the upstream, while the proportion of Hg bound to particles with 0.05-0.45 μm only accounted for 20.0 ± 17.1 % of the total Hg (THg). With increasing distance from the mine waste pile in the downstream, the <50 nm size fraction Hg became the dominant from due to settling of large particles and remained constant throughout the whole river. The Hg isotope results also revealed that the <50 nm size fraction Hg could migrate steadily for long distances into the downstream. Most importantly, a significantly positive correlation was observed between the proportion of the <50 nm size fraction Hg to water THg and the proportion of methylmercury (MeHg) to water THg, indicating the <50 nm size fraction Hg as an important substrate for Hg methylation in the river. These results highlighted the pivotal role of the the <50 nm size particles as a significant reservoir for Hg in aquatic environment.
Collapse
Affiliation(s)
- Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H5T4, Canada
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cai W, Dang F, Wang Y. Uptake and efflux of mercury sulfide nanoparticles in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138143. [PMID: 40199073 DOI: 10.1016/j.jhazmat.2025.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Mercury sulfide nanoparticles (HgS NPs) are ubiquitous in nature and are methylated to neurotoxic methylmercury (MeHg) by microorganisms. However, there is a paucity of knowledge regarding the biokinetics of HgS NPs in microorganisms. Here, the biokinetic uptake and efflux of HgS NPs in the model bacterium (Escherichia coli) were quantified and compared with those of Hg-dissolved organic matter complexes (Hg-DOM). The results demonstrate that the uptake of HgS NPs was time- and concentration-dependent. The uptake rate constant of HgS NPs was 0.031 ± 0.006 L g-1 h-1, which was 2.4-fold higher than that of Hg-DOM. Meanwhile, the internalized Hg in E. coli was depurated, as evidenced by the presence of Hg-containing NPs in the culture media. The efflux rate constant of HgS NPs and Hg-DOM were comparable (0.028 ± 0.007 h-1 vs. 0.031 ± 0.009 h-1). Consequently, HgS NPs exhibited a significantly higher bioconcentration factor (BCF; 1107 ± 63 L kg⁻1) than Hg-DOM (419 ± 57 L kg⁻1), suggesting their enhanced bioavailability and therefore greater methylation potential in Hg-methylating bacteria. These results demonstrate the unique characteristics of HgS NP uptake kinetics, which are essential for capturing their bioaccumulation mechanisms and providing more reliable and accurate risk assessments.
Collapse
Affiliation(s)
- Weiping Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Fei Dang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Méndez-López M, Parente-Sendín A, Acemel-Míguez L, Fonseca F, Santos I, de Figueiredo T, Arias-Estévez M, Alonso-Vega F, Nóvoa-Muñoz JC. Mobilization of mercury by sediment transport after a prescribed fire in NE Portugal: Insight into size classes and temporal variation. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136657. [PMID: 39637819 DOI: 10.1016/j.jhazmat.2024.136657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Terrestrial ecosystems are important sinks for atmospheric mercury (Hg). It is well known that high severity wildfires can mobilize Hg in the surroundings of burned areas due to changes in ecosystem stability, but it is unclear whether this also occurs after lower severity fires, such as prescribed fires. The present study determined Hg concentrations and mobilization rates in different size fractions of sediments collected after a prescribed fire in a scrubland area. Sediments, collected from eight erosion plots on six occasions, were analysed for total Hg, C and N in several size classes (<0.2 mm, 0.2-0.5 mm, 0.5-2 mm and >2 mm) and Hg mobilization rates (HgST) were calculated for each size fraction. Average total Hg were 38, 57, 94 and 126 µg kg-1 for size fractions > 2, 0.5-2, 0.2-0.5 and < 0.2 mm, respectively. Total Hg was negatively correlated with C/N ratio, involving the humification degree of organic matter of sediments in Hg retention. In the last event (eight months after fire), sediments had 45-106 % more Hg, depending on size fraction, compared to the initial event. Mercury mobilization rates varied between 32 and 78 mg ha-1, with the fraction 0.5-2 mm accounting for 46 % of the mobilized Hg. The results revealed that prescribed fires can mobilize Hg, so their use to prevent wildfires must be done with caution.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| | - Andrea Parente-Sendín
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Lara Acemel-Míguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Felicia Fonseca
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Israel Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Tomás de Figueiredo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| |
Collapse
|
5
|
Galloway JM, Parsons MB, Ardakani OH, Falck H, Fewster RE, Swindles GT, Sanei H, Palmer MJ, Nasser NA, Patterson RT. Organic matter is a predominant control on total mercury concentration of near-surface lake sediments across a boreal to low Arctic tundra transect in northern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176466. [PMID: 39332738 DOI: 10.1016/j.scitotenv.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Mercury (Hg) is a bioavailable and toxic element with concentrations that are persistently high or rising in some Arctic and subarctic lakes despite reduced atmospheric emissions in North America. This is due to rising Hg emissions to the atmosphere outside of North America, enhanced sequestration of Hg to sediments by climate-mediated increases in primary production, and ongoing release of Hg from terrestrial reservoirs. To evaluate the influence of organic matter and other parameters on Hg accumulation in northern lakes, near-surface sediments were sampled from 60 lakes across a boreal to shrub tundra gradient in the central Northwest Territories, Canada. The organic matter of the lake sediments, assessed using programmed pyrolysis and petrology, is composed of a mixture of terrestrial, aquatic, and inert organic matter. The proportion of algal-derived organic matter is higher in sediments of lakes below treeline relative to shrub tundra sites. Total sedimentary Hg concentration is correlated to all organic matter constituents but is unrelated to latitude or lake position below or above treeline. The concentrations of Ag, Ca, P, S, U, Ti, Y, Cd, and Zn are also strong predictors of total sedimentary Hg concentration, indicating input from a common geogenic source and/or common sequestration pathways associated with organic matter. Catchment area is a strong negative predictor of total sedimentary Hg concentration, particularly in lakes above treeline, possibly due to retention capacity of Hg and other elements in local sinks. This research highlights the complexity of controls on Hg sequestration in sediment and shows that while organic matter is a strong predictor of total sedimentary Hg concentration on a landscape scale and across extreme gradients in climate and associated vegetation and permafrost, other factors such as catchment area and sources from mineralized bedrock are also important.
Collapse
Affiliation(s)
- Jennifer M Galloway
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada; Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Michael B Parsons
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Omid H Ardakani
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada
| | - Hendrik Falck
- Diamonds, Royalties and Financial Analysis, Government of the Northwest Territories, P.O. Box 1320, Yellowknife, NT X1A 2L9, Canada
| | - Richard E Fewster
- Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Graeme T Swindles
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Hamed Sanei
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2 Building 1671, Aarhus 8000, Denmark
| | - Michael J Palmer
- Aurora Research Institute, Aurora College, 5004-54 St, Yellowknife, NT X1A 2R3, Canada
| | - Nawaf A Nasser
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - R Timothy Patterson
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
Zhang Z, Zhang Z, Zhang C, Chang Q, Fang Q, Liao C, Chen J, Alvarez PJJ, Chen W, Zhang T. Simultaneous Reduction and Methylation of Nanoparticulate Mercury: The Critical Role of Extracellular Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18368-18378. [PMID: 39370945 DOI: 10.1021/acs.est.4c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mercury nanoparticles are abundant in natural environments. Yet, understanding their contribution to global biogeochemical cycling of mercury remains elusive. Here, we show that microbial transformation of nanoparticulate divalent mercury can be an important source of elemental and methylmercury.Geobacter sulfurreducensPCA, a model bacterium predominant in anoxic environments (e.g., paddy soils), simultaneously reduces and methylates nanoparticulate Hg(II). Moreover, the relative prevalence of these two competing processes and the dominant transformation pathways differ markedly between nanoparticulate Hg(II) and its dissolved and bulk-sized counterparts. Notably, even when intracellular reduction of Hg(II) nanoparticles is constrained by cross-membrane transport (a rate-limiting step that also regulates methylation), the overall Hg(0) formation remains substantial due to extracellular electron transfer. With multiple lines of evidence based on microscopic and electrochemical analyses, gene knockout experiments, and theoretical calculations, we show that nanoparticulate Hg(II) is preferentially associated with c-type cytochromes on cell membranes and has a higher propensity for accepting electrons from the heme groups than adsorbed ionic Hg(II), which explains the surprisingly larger extent of reduction of nanoparticles than dissolved Hg(II) at relatively high mercury loadings. These findings have important implications for the assessment of global mercury budgets as well as the bioavailability of nanominerals and mineral nanoparticles.
Collapse
Affiliation(s)
- Zhiying Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chenyang Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Qing Chang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Qingxuan Fang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chengmei Liao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- School of Ecology and Environment, Inner Mongolia University, 235 West College Road, Hohhot 010021, China
| | - Jiubin Chen
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
7
|
Zhou Z, Ding F, Li Y. Study of mercury bioavailability using isotope dilution and BCR sequential extraction in the sediment of Yellow Sea and East China Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134712. [PMID: 38795492 DOI: 10.1016/j.jhazmat.2024.134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Mercury (Hg) emitted from East Asian has increased the risk of Hg in China Marginal Seas for decades. However, the speciation of Hg (especially the bioavailable Hg) in these regions remains unclear. To address this problem, we analyzed total Hg (THg) and methylmercury (MeHg) in the sediment and porewater of Yellow sea (YS) and East China Sea (ECS) and determined the speciation of Hg using both improved BCR sequential extraction and isotope dilution (ID) techniques. Nearshore areas of YS and ECS exhibited higher THg levels in sediments and porewater, suggesting the significant contribution of terrestrial inputs. The spatial distribution of MeHg showed similar trends with THg, but the sites with higher MeHg concentrations did not align with those of THg. The improved BCR sequential extraction method showed the residual fraction dominated Hg content (∼44 %) in both systems, with a minor bioavailable carbonate fraction (1 %). The Spearman correlation analysis indicates that Eh and pH are the two factors significantly affected Hg bioavailability in the sediment. The bioavailability of Hg (estimated by the BCR method) showed a significant positive correlation with MeHg levels in the sediment (R²=0.47, P < 0.05), suggesting that BCR can be used to estimate the potential of Hg methylation in the sediment. However, the extent of bioavailable Hg in BCR and ID method were 1.15 ± 0.38 % and 29.5 ± 14.8 %, respectively, implying that Hg bioavailability may be underestimated by BCR techniques compared to ID methods (T-test, P < 0.01).
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengju Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
de Souza JPR, Garnier J, Quintarelli JM, de Sousa Tonhá M, Roig HL, Seyler P, de Souza JR. Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon. TOXICS 2024; 12:326. [PMID: 38787105 PMCID: PMC11125949 DOI: 10.3390/toxics12050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Artisanal small-scale gold mining (ASGM), an increasingly prevalent activity in South America, generates mercury-contaminated tailings that are often disposed of in the environment, leading to the introduction of mercury into ecosystems and the food web, where it bioaccumulates. Therefore, studying the geochemical processes involved in the desorption and dissolution of mercury in these tailings is essential for critical risk evaluations in the short and long term. For this purpose, sequential extraction procedures (SEPs) can be useful because they help to identify the phases to which Hg is associated, although they also have limitations such as a lack of selectivity and specificity. In this work, we propose a modified four-step SEP: exchangeable mercury (F1), oxidizable mercury (F2), mercury bound to Fe oxides (F3), and strongly bound mercury (F4). To test this adapted sequential extraction method, we evaluated the Hg contamination in mercury-contaminated tailings of the Amazon basin. The results revealed a total mercury concentration of 103 ± 16 mg·kg-1 in the tailings, with a significant portion in F1 (28% of the total), where Hg was bioavailable. The large Hg concentration in F3 (36%) suggested that Fe oxides likely contribute to mercury retention. Together, the SEP results emphasize the urgent need for improved surveillance of gold mining activities and responsible tailings management practices to mitigate environmental contamination and safeguard the health of the Amazon ecosystem.
Collapse
Affiliation(s)
| | - Jeremie Garnier
- Institute of Geosciences, University of Brasília, Asa Norte, Brasilia 70910-900, Brazil; (J.G.); (M.d.S.T.); (H.L.R.)
| | - Julia Mançano Quintarelli
- Institute of Geosciences, University of Brasília, Asa Norte, Brasilia 70910-900, Brazil; (J.G.); (M.d.S.T.); (H.L.R.)
| | - Myller de Sousa Tonhá
- Institute of Geosciences, University of Brasília, Asa Norte, Brasilia 70910-900, Brazil; (J.G.); (M.d.S.T.); (H.L.R.)
| | - Henrique Llacer Roig
- Institute of Geosciences, University of Brasília, Asa Norte, Brasilia 70910-900, Brazil; (J.G.); (M.d.S.T.); (H.L.R.)
| | - Patrick Seyler
- HydroSciences Montpellier, Université de Montpellier, Institut de Recherche Our le Développement, Centre National de la Recherche Scientifique, 34090 Montpellier, France;
| | | |
Collapse
|
9
|
Peng X, Yang Y, Yang S, Li L, Song L. Recent advance of microbial mercury methylation in the environment. Appl Microbiol Biotechnol 2024; 108:235. [PMID: 38407657 PMCID: PMC10896945 DOI: 10.1007/s00253-023-12967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.
Collapse
Affiliation(s)
- Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Yan Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Liyan Song
- School of resources and environmental engineering, Anhui University, No 111 Jiulong Road, Economic and Technology Development Zone, Hefei, 230601, People's Republic of China.
| |
Collapse
|
10
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
11
|
Zhou J, Moore RET, Rehkämper M, Kreissig K, Coles B, Wu L, Luo Y, Christie P. Cadmium and zinc isotope compositions indicate metal sources and retention mechanisms in different soil particle size fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132560. [PMID: 37734314 DOI: 10.1016/j.jhazmat.2023.132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Soil particle size may significantly affect metal distribution and stable isotopic behavior. Here, two soils were separated into four particle size fractions, namely fine sand, silt, fine silt, and colloidal particles and used to determine cadmium (Cd) and zinc (Zn) concentrations and isotope compositions. Concentrations of Cd and Zn were generally enriched in the finer particles and positively correlated with the iron (Fe) and manganese (Mn) oxide contents. However, Cd concentration in the fine sand was higher than in the silt fraction due to the higher soil organic matter contents in the former particle fraction. The maximum δ114/110Cd value was found in the colloidal particles (-0.02 and 0.01‰) of both soils while the minimum was in the silt particles (-0.12 and 0.06‰). Incorporation into the mineral lattice of Fe and Mn oxides is suggested to explain the slight enrichment of heavy Cd isotopes in the colloidal fraction. The similar δ66Zn values of the four particle fractions (0.20-0.29‰ with a mean of 0.25‰) indicate similar Zn sources in different particle sizes. Metal isotopic fingerprint of different soil particle size fractions provides further insight into the underlying metal retention mechanisms within soil micro-zones and helps in tracing metal sources and biogeochemical processes.
Collapse
Affiliation(s)
- Jiawen Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Katharina Kreissig
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Barry Coles
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Xu J, Chen C, Hu X, Chen D, Bland G, Wielinski J, Kaegi R, Lin D, Lowry GV. Particle-Scale Understanding of Arsenic Interactions with Sulfidized Nanoscale Zerovalent Iron and Their Impacts on Dehalogenation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21917-21926. [PMID: 38091483 PMCID: PMC10753793 DOI: 10.1021/acs.est.3c08635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.
Collapse
Affiliation(s)
- Jiang Xu
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Chaohuang Chen
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Xiaohong Hu
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Du Chen
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Garret Bland
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jonas Wielinski
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ralf Kaegi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Daohui Lin
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Gregory V. Lowry
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Dong H, Liu L, Zhou Q, Tang Y, Wang H, Yin Y, Shi J, He B, Li Y, Hu L, Jiang G. Transformation of Mercuric Ions to Mercury Nanoparticles in Diatom Chaetoceros curvisetus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19772-19781. [PMID: 37932229 DOI: 10.1021/acs.est.3c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Particulate HgS play crucial roles in the mercury (Hg) cycle. Approximately 20-90% of dissolved Hg can be transformed into particulate HgS by algae. However, detailed knowledge regarding these particles, including sizes and distribution, remains unknown. The present study explored the formation, distribution, and excretion of mercury nanoparticles (HgNPs) in diatom Chaetoceros curvisetus. The results demonstrated that HgNPs (HgS nanoparticles, 29.6-66.2 nm) formed intracellularly upon exposure to 5.0-100.0 μg L-1 Hg(II), accounting for 12-27% of the total Hg. HgNP concentrations significantly increased with increasing intracellular Hg(II) concentrations, while their sizes remained unaffected. HgNPs formed intracellularly and partly accumulated inside the cells (7-11%). Subsequently, the sizes of intracellular HgNPs gradually decreased to facilitate expulsion, 21-50% of which were excreted. These suggested the vital roles of HgNPs in comprehending marine Hg fate. Their unique physicochemical properties and bioavailability would influence Hg biotransformation in the ocean. Additionally, both intracellular and extracellular HgNPs contributed to Hg settling with cells, ultimately leading to Hg burial in sediments. Overall, these findings further deepened our understanding of Hg biotransformation and posed challenges in accurately estimating marine Hg flux and Hg burial.
Collapse
Affiliation(s)
- Hongzhe Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiling Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
14
|
Chen D, Hu X, Chen C, Lin D, Xu J. Tailoring Fe 0 Nanoparticles via Lattice Engineering for Environmental Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17178-17188. [PMID: 37903754 DOI: 10.1021/acs.est.3c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure-property-activity relationships. The materials' reactivity-selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements' amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Xiang Y, Guo Y, Liu G, Liu Y, Song M, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Direct Uptake and Intracellular Dissolution of HgS Nanoparticles: Evidence from a Bacterial Biosensor Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14994-15003. [PMID: 37755700 DOI: 10.1021/acs.est.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Mercury sulfide nanoparticles (HgSNPs), which occur widely in oxic and anoxic environments, can be microbially converted to highly toxic methylmercury or volatile elemental mercury, but it remains challenging to assess their bioavailability. In this study, an Escherichia coli-based whole-cell fluorescent biosensor was developed to explore the bioavailability and microbial activation process of HgSNPs. Results show that HgSNPs (3.17 ± 0.96 nm) trigger a sharp increase in fluorescence intensity of the biosensor, with signal responses almost equal to that of ionic Hg (Hg(II)) within 10 h, indicating high bioavailability of HgSNP. The intracellular total Hg (THg) of cells exposed to HgSNPs (200 μg L-1) was 3.52-8.59-folds higher than that of cells exposed to Hg(II) (200 μg L-1), suggesting that intracellular HgSNPs were only partially dissolved. Speciation analysis using size-exclusion chromatography (SEC)-inductively coupled plasma mass spectrometry (ICP-MS) revealed that the bacterial filtrate was not responsible for HgSNP dissolution, suggesting that HgSNPs entered cells in nanoparticle form. Combined with fluorescence intensity and intracellular THg analysis, the intracellular HgSNP dissolution ratio was estimated at 22-29%. Overall, our findings highlight the rapid internalization and high intracellular dissolution ratio of HgSNPs by E. coli, and intracellular THg combined with biosensors could provide innovative tools to explore the microbial uptake and dissolution of HgSNPs.
Collapse
Affiliation(s)
- Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
von Hellfeld R, Gade C, Koppel DJ, Walters WJ, Kho F, Hastings A. An approach to assess potential environmental mercury release, food web bioaccumulation, and human dietary methylmercury uptake from decommissioning offshore oil and gas infrastructure. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131298. [PMID: 36996541 DOI: 10.1016/j.jhazmat.2023.131298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Subsea pipelines carrying well fluids from hydrocarbon fields accumulate mercury. If the pipelines (after cleaning and flushing) are abandoned in situ, their degradation may release residual mercury into the environment. To justify pipeline abandonment, decommissioning plans include environmental risk assessments to determine the potential risk of environmental mercury. These risks are informed by environmental quality guideline values (EQGVs) governing concentrations in sediment or water above which mercury toxicity may occur. However, these guidelines may not consider e.g., the bioaccumulation potential of methylated mercury. Therefore, EQGVs may not protect humans from exposure if applied as the sole basis for risk assessments. This paper outlines a process to assess the EQGVs' protectiveness from mercury bioaccumulation, providing preliminary insights to questions including how to (1) determine pipeline threshold concentrations, (2) model marine mercury bioaccumulation, and (3) determine exceedance of the methylmercury tolerable weekly intake (TWI) for humans. The approach is demonstrated with a generic example using simplifications to describe mercury behaviour and a model food web. In this example, release scenarios equivalent to the EQGVs resulted in increased marine organism mercury tissue concentrations by 0-33 %, with human dietary methylmercury intake increasing 0-21 %. This suggests that existing guidelines may not be protective of biomagnification in all circumstances. The outlined approach could inform environmental risk assessments for asset-specific release scenarios but must be parameterised to reflect local environmental conditions when tailored to local factors.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK
| | - Darren J Koppel
- Curtin Oil and Gas Innovation Centre, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia; Australian Institute of Marine Science, Perth, Australia
| | - William J Walters
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, PA, USA
| | - Fenny Kho
- Curtin Oil and Gas Innovation Centre, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia; Curtin Corrosion Centre, Curtin University, Perth, WA, Australia
| | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, School of Biological Sciences, Aberdeen, UK; National Decommissioning Centre, Ellon, UK
| |
Collapse
|
17
|
Ziaei H, Rao B, Wood TV, Garza-Rubalcava U, Alborzi A, Zhou H, Bireta P, Grosso N, Reible D. Assessment and Management of Mercury Leaching from a Riverbank. TOXICS 2023; 11:179. [PMID: 36851054 PMCID: PMC9962584 DOI: 10.3390/toxics11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The South River located in the city of Waynesboro, Virginia, contains mercury (Hg) contamination due to historical releases from an industrial facility operating between 1929 and 1950. In 2015, two sampling events were conducted in two of the contaminated bank regions (Constitution Park and North Park) to evaluate non-particulate total mercury (THg) and methylmercury (MeHg) concentrations in bank interstitial waters during river base flows and during bank drainage after flooding events. Porewater THg and MeHg at the bank-water interface were measured using diffusive gradient in thin-film devices (DGTs). The results showed THg mercury concentrations during bank drainage were approximately a factor of 3 higher than during base flow conditions. To have a better understanding of the parameters that control Hg leaching, a series of laboratory experiments were designed using South River sediments. The field and laboratory assessment showed that drainage/inundation cycles can lead to high THg concentration leachate from contaminated sediment due to increased partitioning from solids under oxic bank conditions and mobilization by the drainage waters. The results also demonstrated that methyl mercury concentrations at the bank-water interface are highest under base flow when conditions are more reduced due to the absence of oxic water exchange with the surface water. A remedial approach was implemented involving partial removal of surficial sediments and placement of biochar (to reduce non-particulate THg) and an armoring layer (to reduce erosion). DGT Measurements after bank stabilization showed THg decreased by a factor of ~200 and MeHg concentration by a factor of more than 20.
Collapse
Affiliation(s)
- Hasti Ziaei
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Balaji Rao
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Tea V. Wood
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Huayun Zhou
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Paul Bireta
- Department of Civil Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy Grosso
- Corteva Agriscience, Indianapolis, IN 46268, USA
| | - Danny Reible
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
18
|
Guo Y, Xiang Y, Liu G, Chen Y, Liu Y, Song M, Li Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G. "Trojan Horse" Type Internalization Increases the Bioavailability of Mercury Sulfide Nanoparticles and Methylation after Intracellular Dissolution. ACS NANO 2023; 17:1925-1934. [PMID: 36688800 DOI: 10.1021/acsnano.2c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mercury sulfide nanoparticles (HgSNP), as natural metal-containing nanoparticles, are the dominant Hg species in anoxic zones. Although the microbial Hg methylation of HgSNP has been previously reported, the importance of this process in Hg methylation has yet to be clarified due to the lack of knowledge on the internalization and transformation of HgSNP. Here, we investigated the internalization and transformation of HgSNP in microbial methylator Geobacter sulfurreducens PCA through total Hg analysis and different Hg species quantification in medium and cytoplasm. We found that the microbial uptake of HgSNP, via a passive diffusion pathway, was significantly higher than that of the Hg2+-dissolved organic matter (Hg2+-DOM) complex. Internalized HgSNP were dissolved to Hg2+ in cytoplasm with a maximal dissolution of 41%, suggesting a "Trojan horse" mechanism. The intracellular Hg2+ from HgSNP exposure at the initial stage (8 h) was higher than that in Hg2+-DOM group, which led to higher methylation of HgSNP. Furthermore, no differences in methylmercury (MeHg) production from HgSNP were observed between the hgcAB gene knockout (ΔhgcAB) and wild-type strains, suggesting that HgSNP methylation may occur through HgcAB-independent pathways. Considering the possibility of a broad range of hgcAB-lacking microbes serving as methylators for HgSNP and the ubiquity of HgSNP in anoxic environments, this study highlights the importance of HgSNP internalization and methylation in MeHg production and demonstrates the necessity of understanding the assimilation and transformation of nutrient and toxic metal nanoparticles in general.
Collapse
Affiliation(s)
- Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ying Chen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| |
Collapse
|
19
|
Nguyen KT, Navidpour AH, Ahmed MB, Mojiri A, Huang Y, Zhou JL. Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115497. [PMID: 35751289 DOI: 10.1016/j.jenvman.2022.115497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| |
Collapse
|
20
|
Lei P, Zou N, Liu Y, Cai W, Wu M, Tang W, Zhong H. Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. J Environ Sci (China) 2022; 119:78-92. [PMID: 35934468 DOI: 10.1016/j.jes.2022.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Nan Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yujiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough Ontario, K9L 0G2, Canada.
| |
Collapse
|
21
|
Guan Q, Liu Z, Shao W, Tian J, Luo H, Ni F, Shan Y. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155096. [PMID: 35398134 DOI: 10.1016/j.scitotenv.2022.155096] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Previous studies lacked quantitative evaluation studies of the probability of ecology and human health risks from soil heavy metals. This study assessed heavy metal risk level by collecting topsoil samples from a typical oasis city (Wuwei) in northwest China and then quantitatively evaluating the ecological risk from heavy metals by incorporating the uncertainty of health risk model parameters into the risk assessment. This study found that anthropogenic activities have influenced the accumulation of heavy metals in the study area and that the risk of contamination of soil heavy metals was characterized as light to moderate contamination and low ecological risk. On this basis, the species sensitivity distribution curves of heavy metals were constructed using species acute toxicity data, the predicted no effect concentrations of heavy metals were derived, and a probabilistic ecological risk evaluation was conducted. The results show that the current soil environmental quality standards in China are not effective in protecting species diversity. In addition, the probability of ecological risk for Cr, Ni and As in the study area was 63.3%, 23.8% and 7.1%, however, traditional pollution assessment methods underestimate the hazard of Cr. Monte Carlo simulations have shown that the probability of the carcinogenic risk of Cr (adults: 79.4%; children: 94.5%) and As (adults: 78.9%; children: 94.0%) is high, the probability of the total carcinogenic risk exceeding 1E-06 is 99.0%, the probability of the non-carcinogenic risk is low, and the slope factor and reference dose can significantly affect the evaluation of human health risks.
Collapse
Affiliation(s)
- Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhan Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Tian
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Xiao S, Shoaib A, Xu J, Lin D. Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154914. [PMID: 35364147 DOI: 10.1016/j.scitotenv.2022.154914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nanopesticides are attracting increasing attention as a promising technology in agriculture to improve insecticidal efficacy, decrease pesticides uses, and reduce potential environmental impacts. We synthesized mesoporous silica nanoparticles, i.e., Mobil Composition of Matter No.48 (MCM-48), with different sizes (63-130 nm), charges (-22 to 12 mV), and hydrophobicity (water contact angle 29-103°) to assess their loading amount and release of a typical poorly soluble halogenated pyrethroid (i.e., lambda-cyhalothrin particles, LCNS). The smallest MCM-48 displayed relatively higher loading amount of LCNS (~16%) compared to the larger MCM-48 nanoparticles, likely because of its higher pore volume (1.46 cm3 g-1) and pore size (3.56 nm). LCNS loading amount was further improved to ~26% and ~36% after -NH2 (positively charged) and -CH3 (hydrophobic) functionalization, respectively, probably due to hydrogen bonding, electrostatic, and hydrophobic interactions with LCNS. Loading LCNS in MCM-48 nanoparticles also significantly improved its dispersion in water and ultraviolet (UV) light stability, with a 3-7 times longer half-life than that of free LCNS. Although the -NH2 and -CH3 modifications of MCM-48 slightly decreased the UV stability of LCNS, they significantly decreased the release efficiency of LCNS, possibly because of their stronger interactions with LCNS. In addition, the insecticidal effects of LCNS-loaded MCM-48 were more efficient and longer than those of free LCNS. The findings clarify the relationships between physicochemical properties and performance of mesoporous silica nanoparticles, and will inform the rational design of materials for controlled release of pesticides and sustainable control of pests.
Collapse
Affiliation(s)
- Shuting Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ali Shoaib
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Xiang Y, Guo Y, Liu G, Liu Y, Song M, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6754-6764. [PMID: 35502862 DOI: 10.1021/acs.est.1c08946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle-bound mercury (HgP), ubiquitously present in aquatic environments, can be methylated into highly toxic methylmercury, but it remains challenging to assess its bioavailability. In this study, we developed anEscherichia coli-based whole-cell biosensor to probe the microbial uptake of inorganic Hg(II) and assess the bioavailability of HgP sorbed on natural and model particles. This biosensor can quantitatively distinguish the contribution of dissolved Hg(II) and HgP to intracellular Hg. Results showed that the microbial uptake of HgP was ubiquitous in the environment, as evidenced by the bioavailability of sorbed-Hg(II) onto particulate matter and model particles (Fe2O3, Fe3O4, Al2O3, and SiO2). In both oxic and anoxic environments, HgP was an important Hg(II) source for microbial uptake, with enhanced bioavailability under anoxic conditions. The composition of particles significantly affected the microbial uptake of HgP, with higher bioavailability being observed for Fe2O3 and lower for Al2O3 particles. The bioavailability of HgP varied also with the size of particles. In addition, coating with humic substances and model organic compound (cysteine) on Fe2O3 particles decreased the bioavailability of HgP. Overall, our findings highlight the role of HgP in Hg biogeochemical cycling and shed light on the enhanced Hg-methylation in settling particles and sediments in aquatic environments.
Collapse
Affiliation(s)
- Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Cai W, Wang Y, Feng Y, Liu P, Dong S, Meng B, Gong H, Dang F. Extraction and Quantification of Nanoparticulate Mercury in Natural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1763-1770. [PMID: 35005907 DOI: 10.1021/acs.est.1c07039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticulate mercury (Hg-NPs) are ubiquitous in nature. However, the lack of data on their concentration in soils impedes reliable risk assessments. This is due to the analytical difficulties resulting from low ambient Hg concentrations and background interferences of heterogeneous soil components. Here, coupled to single particle inductively coupled plasma-mass spectrometry (spICP-MS), a standardized protocol was developed for extraction and quantification of Hg-NPs in natural soils with a wide range of properties. High particle number-, particle mass-, and total mass-based recoveries were obtained for spiked HgS-NPs (74-120%). Indigenous Hg-NPs across soils were within 107-1011 NPs g-1, corresponding to 3-40% of total Hg on a mass basis. Metacinnabar was the primary Hg species in extracted samples from the Wanshan mercury mining site, as characterized by X-ray absorption spectroscopy and transmission electron microscopy. In agreement with the spICP-MS analysis, electron microscopy revealed comparable size distribution for nanoparticles larger than 27 nm. These indigenous Hg-NPs contributed to 5-65% of the measured methylmercury in soils. This work paves the way for experimental determinations of indigenous Hg-NPs in natural soils, which is critical to understand the biogeochemical cycling of mercury and thereby the methylation processes governing the public exposure to methylmercury.
Collapse
Affiliation(s)
- Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shuofei Dong
- Agilent Technologies Co., Ltd (China), Beijing 100102, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Hua Gong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|