1
|
Zhang J, Wang W, Zhu K, Huang Z, Sheng L, Liao S, Yuan X, Hu Y, Liu J, Tang M, Huang X, Li J, Wang Z, Zheng J. The potentials of uncertainty analysis and Bayesian optimization in HONO source modeling diagnosis and improvement. ENVIRONMENTAL RESEARCH 2025; 276:121494. [PMID: 40157416 DOI: 10.1016/j.envres.2025.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Nitrous acid (HONO) plays a critical role in atmospheric chemistry, significantly influencing hydroxyl radical (OH) production and the formation of secondary pollutants. However, current atmospheric chemical transport models (CTMs) still underestimate HONO formation, due to uncertainties in source parameterizations. This study proposed a new framework that combines uncertainty analysis with Bayesian optimization (RFM-BMC) to diagnose and reduce uncertainties in HONO source parameterizations, using the North China Plain (NCP) as a case study. The results show that uncertainties in source parameterizations cause HONO simulation concentrations varying by 8-20 times the baseline values. The primary contributors to uncertainties in HONO simulations include heterogeneous reactions on aerosol (33-59 %) and ground surfaces (18-30 %), vehicle emissions (12-33 %), and nitrate photolysis (26-30 %). By optimizing these parameters using observational data, the accuracy of HONO simulations significantly improves, reducing the normalized mean bias by 59 %. Additionally, this study identifies soil emissions, light-induced NO2 heterogeneous reactions and underestimated nitrate as important underrepresented HONO sources in CTMs. These sources contribute to the systematic underestimation of HONO concentrations during midday (08:00-14:00). This work provides valuable insights for refining HONO source parameterizations and improving air quality simulations. Furthermore, the RFM-BMC framework can be applied to optimize parameterizations of other atmospheric chemical processes, such as sulfate and secondary organic aerosol formation.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Wending Wang
- State Key Laboratory of Atmospheric BoundaryLayer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyu Zhu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Zhijiong Huang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China.
| | - Li Sheng
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Songdi Liao
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Xin Yuan
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mengxue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jie Li
- State Key Laboratory of Atmospheric BoundaryLayer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric BoundaryLayer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyu Zheng
- Sustainable Energy and Environmental Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
2
|
Wang M, Liu W, Ding X, Liu T, Zhou W, Lou S, Venables DS, Varma R, Huang C, Chen J. Rapid and high-precision cavity-enhanced spectroscopic measurement of HONO and NO 2: Application to emissions from heavy-duty diesel vehicles in chassis dynamometer tests and in mobile monitoring. Talanta 2025; 285:127386. [PMID: 39689639 DOI: 10.1016/j.talanta.2024.127386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Nitrous acid (HONO) is crucial in atmospheric chemistry as it is a major precursor for hydroxyl radicals (OH), the dominant atmospheric oxidant. Hydroxyl radicals are essential in the formation of secondary air pollutants like ozone and particulate matter. This study presents a newly developed Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBBCEAS) system for precise and rapid measurements of HONO and nitrogen dioxide (NO2) emissions. The instrument's optical cavity (formed by two mirrors separated by 96 cm and with reflectivity of 0.99955 at 378 nm) resulted in an effective optical path length of 1.4 km. With an integration time of 5 s, the 1σ measurement precisions for HONO and NO2 were 0.19 ppb and 0.48 ppb with overall measurement uncertainties of 10 % and 7 %, respectively. Comparative analysis of the IBBCEAS and a commercial cavity-attenuated phase shift (CAPS) systems under non-emission conditions demonstrated excellent agreement (slope = 1.01 and R2 = 0.98). The instrument was applied to study HONO and NO2 emissions from heavy-duty vehicles in chassis dynamometer tests and mobile monitoring. Chassis dynamometer tests revealed that HONO and NO2 emissions depend strongly on vehicle speed and driving conditions. We find a HONO/NOX ratio of 1.01 × 10-2 across the entire China-World Transient Vehicle Cycle (C-WTVC) driving cycle. Mobile monitoring in urban areas shows emission characteristics similar to those observed in chassis dynamometer tests. Frequent acceleration-deceleration patterns of diesel vehicles under congested traffic conditions lead to higher HONO and NO2 emissions compared to driving under steady speed conditions. Improving traffic flow conditions will help reduce HONO and NO2 emissions.
Collapse
Affiliation(s)
- Meng Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Wenyang Liu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiang Ding
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Tao Liu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenxin Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shengrong Lou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Dean S Venables
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ravi Varma
- Department of Physics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jun Chen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Ren C, Huang X, Wang Y, Zhang L, Zhou X, Sun W, Zhang H, Liu T, Ding A, Wang T. Enhanced Soil Emissions of Reactive Nitrogen Gases by Fertilization and Their Impacts on Secondary Air Pollution in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5119-5130. [PMID: 40051057 DOI: 10.1021/acs.est.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nitrogen fertilizer application is accompanied by intense release of multiple reactive nitrogen (Nr) gases such as nitrous acid (HONO), ammonia (NH3), and nitric oxide (NO) from the soil, influencing atmospheric chemistry and air pollution. In current emission inventories, postfertilization soil emissions are poorly characterized due to inaccurate identification of fertilization timing and location. Moreover, pre-existing studies predominantly focus on individual Nr gases, and a comprehensive understanding of simultaneously emitted Nr gases from fertilization and their impacts on air quality is still limited. Here, we developed a novel method to identify the dryland fertilization activity based on satellite and reanalysis data sets. Then, we updated a dynamic soil Nr emissions model (WRF-SoilN-Chem) with lab-derived parametrization and applied it to analyze the time- and space-varying Nr emissions and their effects on air quality. It is estimated that the Nr emissions from a typical fertilization event in the Yangtze River Delta (YRD) region increased ozone (O3) and nitrate concentrations by 2.5 and 18.2%, respectively. HONO and NH3 emissions jointly enhanced nitrate production via gas-particle partitioning. An accurate representation of fertilization and meteorology-emission-chemistry coupled modeling would greatly improve the understanding of the soil Nr emissions and their impacts on regional air pollution.
Collapse
Affiliation(s)
- Chuanhua Ren
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing 210023, China
| | - Yanan Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
| | - Li Zhang
- California Air Resources Board, Riverside, California 92507, United States
| | - Xueyu Zhou
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Weihang Sun
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
| | - Haoran Zhang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing 210023, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing 210023, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
| |
Collapse
|
4
|
Wang Y, Li Q, Wang Y, Ren C, Saiz-Lopez A, Xue L, Wang T. Increasing soil nitrous acid emissions driven by climate and fertilization change aggravate global ozone pollution. Nat Commun 2025; 16:2463. [PMID: 40074733 PMCID: PMC11904233 DOI: 10.1038/s41467-025-57161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Soil microbial nitrous acid (HONO) production is an important source of atmospheric reactive nitrogen that affects air quality and climate. However, long-term global soil HONO emissions driven by climate change and fertilizer use have not been quantified. Here, we derive the global soil HONO emissions over the past four decades and evaluate their impacts on ozone (O3) and vegetation. Results show that climate change and the increased fertilizer use enhanced soil HONO emissions from 9.4 Tg N in 1980 to 11.5 Tg N in 2016. Chemistry-climate model simulations show that soil HONO emissions increased global surface O3 mixing ratios by 2.5% (up to 29%) and vegetation risk to O3, with increasing impact during 1980s-2016 in low-anthropogenic-emission regions. With future decreasing anthropogenic emissions, the soil HONO impact on air quality and vegetation is expected to increase. We thus recommend consideration of soil HONO emissions in strategies for mitigating global air pollution.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qinyi Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yurun Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chuanhua Ren
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
5
|
Zhang M, Zhang X, Gao C, Zhao H, Zhang S, Xie S, Ran L, Xiu A. Reactive nitrogen emissions from cropland and their dominant driving factors in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178919. [PMID: 39987829 DOI: 10.1016/j.scitotenv.2025.178919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The environmental impacts of reactive nitrogen (Nr) emitted from fertilized cropland present significant challenges for balancing food security, air pollution and climate change mitigation. As a leading agricultural producer, China requires high-resolution Nr emissions modeling within a comprehensive processed-based framework to address these issues effectively. In this study, we applied a process-based agroecological model (FEST-C*) to estimate daily Nr emissions at 0.25° in China during 2020 and analyzed the driving factors by using Structural Equation Modeling, Random Forest, and Dominance Analysis. The hotspots of annual Nr emissions were in North China, Southeast China, and Southwest China, collectively responsible for over 80 % of the total emissions. Approximately 81 % of the total Nr emissions were from wheat, maize, and rice fields. Timing and amount of basal and topdressing fertilization under different crop rotation systems determined the monthly and seasonal variations of Nr emissions. The impacts of various factors on Nr emissions varied with NH3 being mainly driven by fertilizer consumption and other Nr species (N2O, NO, and HONO) also affected by soil temperature and water content. The spatial distributions of monthly Nr emissions calculated by FEST-C* were more realistic than currently available emission inventories compared to satellite or field observations. These findings will enable policymakers to develop effective control measures that alleviate cropland Nr emissions while sustaining crop production in China.
Collapse
Affiliation(s)
- Mengduo Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chao Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongmei Zhao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shichun Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shengjin Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Limei Ran
- Nature Resources Conservation Service, United States Department of Agriculture, Greensboro, NC 27401, United States
| | - Aijun Xiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
6
|
Gao C, Zhang X, Lun X, Gao Y, Guenther A, Zhao H, Zhang S, Huang L, Song K, Huang X, Gao M, Ma P, Jia Z, Xiu A, Zhang Y. BVOCs' role in dynamic shifts of summer ozone formation regimes across China and policy implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124150. [PMID: 39970675 DOI: 10.1016/j.jenvman.2025.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Biogenic volatile organic compounds (BVOCs) are crucial players in atmospheric chemistry, significantly impacting the formation of tropospheric ozone (O₃). While China has made substantial strides in reducing anthropogenic VOC (AVOCs) emissions, O₃ levels persist, highlighting the complex interplay between biogenic and anthropogenic sources. A critical knowledge gap exists in understanding how BVOC emissions influence ozone formation regimes (OFRs) and how this knowledge can inform effective air quality policies. This study employs the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 3.2 and the Community Multiscale Air Quality Modeling System (CMAQ) version 5.3.3 models, combined with process analysis (PA) and the Integrated Source Apportionment Method (ISAM), to evaluate the impact of BVOC emissions on OFRs in China. The models simulate BVOC emissions and their effects on OFRs across various regions during July 2019. The findings highlight that BVOCs play a pivotal role in shifting OFRs, with significant implications for ozone mitigation strategies in China. The study suggests that effective ozone control measures must consider the dual impact of BVOCs and AVOCs, with tailored strategies for different regions and times of day. The study also proposes potential challenges in mitigating BVOC emissions and outlines future research directions for interdisciplinary collaboration to address the complexities of ozone pollution management. This research advances the understanding of BVOCs' roles in ozone formation dynamics and provides a foundation for developing more effective air quality management policies in China, especially as global greening and climate change continue to influence BVOC emissions.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xuelei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Gao
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Alex Guenther
- Earth System Science Department, University of California, Irvine, CA, 92697, USA
| | - Hongmei Zhao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shichun Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kaishan Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng Gao
- Department of Geography, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, China
| | - Pengfei Ma
- Satellite Environmental Application Center of the Ministry of Ecology and Environment, Beijing, 100080, China
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Aijun Xiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yuanhang Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Wang Y, Wang Y, Li Q, Tan Y, Li M, Zhang Y, He C, Wang T. Soil Emissions of Reactive Oxidized Nitrogen Reduce the Effectiveness of Anthropogenic Source Control in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21015-21024. [PMID: 39547667 DOI: 10.1021/acs.est.4c08526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nitrogen dioxide (NO2) has decreased by ∼33% across over 1200 monitoring sites in China during 2015-2023, following a series of clean air policies. However, most of these sites are located in or near cities, leading to uncertainties in NO2 trends beyond urban regions due to limited observations. Here, we used satellite measurements to examine the differences in NO2 trends between urban and rural China. In urban areas, NO2 columns decreased by 4.0% per annum (a-1) during summer 2011-2023, consistent with bottom-up anthropogenic emission inventory and in situ measurements. In contrast, rural NO2 columns showed a slower than expected reduction (-2.6 to -0.0% a-1) during the same period. Model simulations with updates in the soil reactive oxidized nitrogen (Nr) scheme indicated that increasing soil Nr emissions can be an important factor contributing to the observed slow NO2 decrease in rural areas. This unregulated source increased summertime pollutant levels, partially offsetting the national efforts to mitigate NO2, ozone (O3), and particulate nitrate (NO3-) levels by 20.9%, 15.4%, and 4.7%, respectively, from 2011 to 2020. In the agriculture-intensive North China Plain, the increase in soil Nr emissions offset 46.6% of the NO2 reductions achieved by clean air policies. Our results highlight the increasing significance of soil emissions and the need to control them in future air-quality policies.
Collapse
Affiliation(s)
- Yurun Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinyi Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yue Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yingnan Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cheng He
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
8
|
Zhao X, Song M, Zhao X, Xue C, Liu P, Ye C, He X, Mu Y, Hu B. Improvement of model simulation for summer PM 2.5 and O 3 through coupling with two new potential HONO sources in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175168. [PMID: 39094653 DOI: 10.1016/j.scitotenv.2024.175168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A large fraction of fine particulate matter (PM2.5) and ozone (O3) in the troposphere originates from secondary formation through photochemical processes, which remarkably contributes to the deterioration of regional air quality in China. The photochemical reactions initiated by hydroxyl radicals (OH) play vital roles in secondary PM2.5 and O3 formation. In contrast, the OH levels in polluted areas are underestimated by current chemical transport models (CTMs) because of the strongly unknown daytime sources of tropospheric nitric acid (HONO), which has been recognized as the dominant source of primary OH in polluted areas of China. In this study, the atmospheric HONO levels at two urban sites were found to be significantly underestimated by the WRF-Chem model based on available information on HONO sources. The HONO levels could be well reproduced by the WRF-Chem model after incorporating two new potential HONO sources from the photochemical reactions of NOx, as proposed in our previous study based on chamber experiment results. Comparing the simulations with available information of HONO sources, the simulated levels of atmospheric OH, secondary inorganic and organic aerosols (SIA and SOA), PM2.5 and daily maximum 8-h average (MDA8) O3 were evidently elevated or were closer to the observations over the North China Plain (NCP), with elevation percentages of 0.48-20.1 %, and a decrement percentage of -5.79 % for pNO3-. Additionally, the compensating errors in modeling PM2.5 and the gap in MDA8 O3 levels between observation and simulation in 2 + 26 cities became evidently smaller. The results of this study indicated that the empirical parameterization of two new potential HONO sources through photochemical reactions of NOx improved the model performance in modeling PM2.5 and O3 by narrowing the gap in daytime HONO levels between simulation and observation, although their detailed chemical mechanisms are still unknown and should be further investigated and explicitly parameterized.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Min Song
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Xiujuan Zhao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Chaoyang Xue
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Pengfei Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Ye
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowei He
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo Hu
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Ai HS, Fan B, Zhou ZQ, Liu J. The impact of nitrogen Fertilizer application on air Pollution: Evidence from China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122880. [PMID: 39413630 DOI: 10.1016/j.jenvman.2024.122880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
We examine the effects of nitrogen fertilizer application on air pollution in China. Distinct from the existing literature that tends to utilize field sampling method, we construct a comprehensive panel dataset and discover that 1 g nitrogen increase in fertilizer correlates with a rise of 0.55 μg/m³ in PM2.5 concentrations. Additionally, heterogenous results across the crops indicate that rice and corn crops exacerbate air pollution, whereas the impact of nitrogen fertilizer on wheat remains ambiguous, and these effects predominantly emerge during the initial growth stages. Our findings also suggest that while the nitrogen fertilizer contributes to heightened levels of PM2.5 and SO2, it conversely leads to a reduction in ozone concentrations, which is not provided by existing studies.
Collapse
Affiliation(s)
- Hong-Shan Ai
- School of Economics and Trade, Hunan University, Changsha, 410081, Hunan, China
| | - Bo Fan
- School of Economics and Trade, Hunan University, Changsha, 410081, Hunan, China.
| | - Zheng-Qing Zhou
- School of International Economics and Trade, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, China
| | - Jianhui Liu
- Food and Resource Economics Department, University of Florida, Gainesville, FL, 32603, United States
| |
Collapse
|
10
|
Jiang Y, Xia M, Xue L, Wang X, Zhong X, Liu Y, Kulmala M, Ma T, Wang J, Wang Y, Gao J, Wang T. Quantifying HONO Production from Nitrate Photolysis in a Polluted Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088841 DOI: 10.1021/acs.est.4c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The photolysis of particulate nitrate (pNO3-) has been suggested to be an important source of nitrous acid (HONO) in the troposphere. However, determining the photolysis rate constant of pNO3- (jpNO3-) suffers from high uncertainty. Prior laboratory measurements of jpNO3- using aerosol filters have been complicated by the "shadow effect"─a phenomenon of light extinction within aerosol layers that potentially skews these measurements. We developed a method to correct the shadow effect on the photolysis rate constant of pNO3- for HONO production (jpNO3- → HONO) using aerosol filters with identical chemical compositions but different aerosol loadings. We applied the method to quantify jpNO3- → HONO over the North China Plain (NCP) during the winter haze period. After correcting for the shadow effect, the normalized average jpNO3- → HONO at 5 °C increased from 5.89 × 10-6 s-1 to 1.72 × 10-5 s-1. The jpNO3- → HONO decreased with increasing pH and nitrate proportions in PM2.5 and had no correlation with nitrate concentrations. A parametrization for jpNO3- → HONO was developed for model simulation of HONO production in NCP and similar environments.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xuelian Zhong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tong Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yurun Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
11
|
Li X, Ye C, Lu K, Xue C, Li X, Zhang Y. Accurately Predicting Spatiotemporal Variations of Near-Surface Nitrous Acid (HONO) Based on a Deep Learning Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13035-13046. [PMID: 38982681 DOI: 10.1021/acs.est.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Gaseous nitrous acid (HONO) is identified as a critical precursor of hydroxyl radicals (OH), influencing atmospheric oxidation capacity and the formation of secondary pollutants. However, large uncertainties persist regarding its formation and elimination mechanisms, impeding accurate simulation of HONO levels using chemical models. In this study, a deep neural network (DNN) model was established based on routine air quality data (O3, NO2, CO, and PM2.5) and meteorological parameters (temperature, relative humidity, solar zenith angle, and season) collected from four typical megacity clusters in China. The model exhibited robust performance on both the train sets [slope = 1.0, r2 = 0.94, root mean squared error (RMSE) = 0.29 ppbv] and two independent test sets (slope = 1.0, r2 = 0.79, and RMSE = 0.39 ppbv), demonstrated excellent capability in reproducing the spatiotemporal variations of HONO, and outperformed an observation-constrained box model incorporated with newly proposed HONO formation mechanisms. Nitrogen dioxide (NO2) was identified as the most impactful features for HONO prediction using the SHapely Additive exPlanation (SHAP) approach, highlighting the importance of NO2 conversion in HONO formation. The DNN model was further employed to predict the future change of HONO levels in different NOx abatement scenarios, which is expected to decrease 27-44% in summer as the result of 30-50% NOx reduction. These results suggest a dual effect brought by abatement of NOx emissions, leading to not only reduction of O3 and nitrate precursors but also decrease in HONO levels and hence primary radical production rates (PROx). In summary, this study demonstrates the feasibility of using deep learning approach to predict HONO concentrations, offering a promising supplement to traditional chemical models. Additionally, stringent NOx abatement would be beneficial for collaborative alleviation of O3 and secondary PM2.5.
Collapse
Affiliation(s)
- Xuan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Can Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Keding Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chaoyang Xue
- Max Planck Institute for Chemistry, Mainz 55128, Germany
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Ran H, An J, Zhang J, Huang J, Qu Y, Chen Y, Xue C, Mu Y, Liu X. Impact of soil-atmosphere HONO exchange on concentrations of HONO and O 3 in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172336. [PMID: 38614350 DOI: 10.1016/j.scitotenv.2024.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and ∼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.
Collapse
Affiliation(s)
- Haiyan Ran
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingwei Zhang
- Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China
| | - Junjie Huang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Xue C, Ye C, Lu K, Liu P, Zhang C, Su H, Bao F, Cheng Y, Wang W, Liu Y, Catoire V, Ma Z, Zhao X, Song Y, Ma X, McGillen MR, Mellouki A, Mu Y, Zhang Y. Reducing Soil-Emitted Nitrous Acid as a Feasible Strategy for Tackling Ozone Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9227-9235. [PMID: 38751196 PMCID: PMC11137860 DOI: 10.1021/acs.est.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Severe ozone (O3) pollution has been a major air quality issue and affects environmental sustainability in China. Conventional mitigation strategies focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain complex and challenging. Here, through field flux measurements and laboratory simulations, we observe substantial nitrous acid (HONO) emissions (FHONO) enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO significantly improves model performance in predicting atmospheric HONO and leads to regional O3 increases by 37%. We also demonstrate the significant potential of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to 60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing soil HONO emissions. Hence, this study has important implications for policy decisions related to the control of O3 pollution and climate change.
Collapse
Affiliation(s)
- Chaoyang Xue
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
- Laboratoire
de Physique et Chimie de l’Environnement et de l’Espace
(LPC2E), CNRS—Université Orléans−CNES, Cedex 2 Orléans 45071, France
| | - Can Ye
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Pengfei Liu
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Chenglong Zhang
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Hang Su
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Fengxia Bao
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Wenjie Wang
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yuhan Liu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Valéry Catoire
- Laboratoire
de Physique et Chimie de l’Environnement et de l’Espace
(LPC2E), CNRS—Université Orléans−CNES, Cedex 2 Orléans 45071, France
| | - Zhuobiao Ma
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Zhao
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yifei Song
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Xuefei Ma
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Max R. McGillen
- Institut
de Combustion Aérothermique, Réactivité et Environnement,
Centre National de la Recherche Scientifique (ICARE-CNRS), Cedex 2 Orléans 45071, France
| | - Abdelwahid Mellouki
- Institut
de Combustion Aérothermique, Réactivité et Environnement,
Centre National de la Recherche Scientifique (ICARE-CNRS), Cedex 2 Orléans 45071, France
| | - Yujing Mu
- Research
Centre for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yuanhang Zhang
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Zeng J, Xu W, Kuang Y, Xu W, Liu C, Zhang G, Zhao H, Ren S, Zhou G, Xu X. The Impact of Agroecosystems on Nitrous Acid (HONO) Emissions during Spring and Autumn in the North China Plain. TOXICS 2024; 12:331. [PMID: 38787110 PMCID: PMC11126139 DOI: 10.3390/toxics12050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Solar radiation triggers atmospheric nitrous acid (HONO) photolysis, producing OH radicals, thereby accelerating photochemical reactions, leading to severe secondary pollution formation. Missing daytime sources were detected in the extensive HONO budget studies carried out in the past. In the rural North China Plain, some studies attributed those to soil emissions and more recent studies to dew evaporation. To investigate the contributions of these two processes to HONO temporal variations and unknown production rates in rural areas, HONO and related field observations obtained at the Gucheng Agricultural and Ecological Meteorological Station during spring and autumn were thoroughly analyzed. Morning peaks in HONO frequently occurred simultaneously with those of ammonia (NH3) and water vapor both during spring and autumn, which were mostly caused by dew and guttation water evaporation. In spring, the unknown HONO production rate revealed pronounced afternoon peaks exceeding those in the morning. In autumn, however, the afternoon peak was barely detectable compared to the morning peak. The unknown afternoon HONO production rates were attributed to soil emissions due to their good relationship to soil temperatures, while NH3 soil emissions were not as distinctive as dew emissions. Overall, the relative daytime contribution of dew emissions was higher during autumn, while soil emissions dominated during spring. Nevertheless, dew emission remained the most dominant contributor to morning time HONO emissions in both seasons, thus being responsible for the initiation of daytime OH radical formation and activation of photochemical reactions, while soil emissions further maintained HONO and associated OH radial formation rates at a high level, especially during spring. Future studies need to thoroughly investigate the influencing factors of dew and soil emissions and establish their relationship to HONO emission rates, form reasonable parameterizations for regional and global models, and improve current underestimations in modeled atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Jianhui Zeng
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Wanyun Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
| | - Chang Liu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Gen Zhang
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Huarong Zhao
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Sanxue Ren
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Guangsheng Zhou
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| |
Collapse
|
15
|
Hao J, Li B, Tan J, Zhang Y, Gu X, Wang S, Deng Y, Zhang X, Li J. Double Advantages of Nutrients and Biostimulants Derived from Sewage Sludge by Alkaline Thermal Hydrolysis Process for Agricultural Use: Quality Promotion of Soil and Crop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307793. [PMID: 38240362 PMCID: PMC10987130 DOI: 10.1002/advs.202307793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Indexed: 04/04/2024]
Abstract
Low-carbon alkaline thermal hydrolysis of sewage sludge for the production of high-quality plant-growth-promoting nutrients and biostimulants is a growing concern for sludge resource utilization in agriculture. Thus, this study aims to investigate functional characteristics and soil biochemical effects of sewage sludge-derived nutrients and biostimulants (SS-NB). The content of heavy metals in SS-NB decreased by 47.39-100%, and an increase in soil protease, invertase, and soil nutrient utilization rates are observed in SS-NB groups. SS-NB substituted for chemical fertilizer increased the diversity and evenness of microbial community and reduced the abundance of the soil-borne bacterial genus Arthrobacter. The dominant community of SS-NB100 group is mainly enriched in Microvirga, Ensifer, Novosphingobium, Bosea and Ellin6055, which are principally beneficial symbiotic bacteria of plants and participated in C and N cycles. Moreover, SS-NB reduced the accumulation of Ktedonobacteria and Nitrosospira, which are involved in the production of CO2 and N2O, and also enhanced the coordination of soil microorganisms with enzyme activities and nutrient utilization rate. In conclusion, the results suggest that SS-NB exerts a positive effect on reducing greenhouse gas emissions and preventing soil-borne diseases, and can further enhance collaboration with soil enzyme activity and soil nutrient utilization by stimulating soil microorganisms.
Collapse
Affiliation(s)
- Jiahou Hao
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| | - Bingbing Li
- College of Life SciencesAnhui Agricultural UniversityHefei230036China
| | - Jiayi Tan
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| | - Yue Zhang
- China Civil Engineering Society Water Industry AssociationBeijing100082China
| | - Xuejia Gu
- Heilongjiang Academy of Black Soil Conservation and UtilizationHarbin150086China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| | - Yun Deng
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| | - Xiaokai Zhang
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment & EcologyJiangnan UniversityWuxi214122China
| |
Collapse
|
16
|
Xing C, Liu C, Li Q, Wang S, Tan W, Zou T, Wang Z, Lu C. Observations of HONO and its precursors between urban and its surrounding agricultural fields: The vertical transports, sources and contribution to OH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169159. [PMID: 38232854 DOI: 10.1016/j.scitotenv.2023.169159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
The insufficient study on vertical observations of main atmospheric reactive nitrogen oxides (NO2 and HONO) posed a great challenge to evaluate their intertransport between urban and agricultural areas, and to further learn the atmospheric nitrogen chemistry and the atmospheric oxidation capacity at high altitudes. A stereoscopic measurement campaign (satellite remote sensing, hyperspectral unmanned aerial vehicle (UAV) remote sensing and MAX-DOAS observation) was performed in a typical inland city Hefei and its surrounding agricultural fields from June to October 2022. Average aerosol vertical profiles exhibited a Gaussian shape above 100 m with maximum values of 0.67 km-1 and 0.55 km-1 at 300-400 m layer at Anhui University (AHU) and Changfeng (CF), respectively. The distinct layered structure was mainly attributed to regional transport. Average H2O and NO2 vertical profiles all showed a Gaussian shape and an exponential shape at AHU and CF, respectively. Moreover, the diurnal evolution of H2O profiles performed one peak and bi-peak patterns at AHU and CF, respectively, whereas the diurnal evolution of NO2 at two stations all exhibited bi-peak patterns attributed to vehicle emissions. Average HONO vertical profiles showed an exponential shape and a Gaussian shape at AHU and CF, respectively. Higher HONO (> 0.05 ppb) above 1.0 km at 14:00-16:00 was observed at CF. The transport flux analysis showed that the northern transport flux always larger than southern transport flux for aerosol and H2O. The maximum northern transport fluxes appeared at 300 m and surface for aerosol and H2O, respectively. It indicated that surrounding agricultural fields was an important source of atmospheric H2O of city. The southern transport flux was larger than northern transport flux for NO2, with a maximum net transport flux of 9.20 ppb m s-1 at 100 m. It demonstrated that NO2 transported from urban areas was an important source of NO2 in agricultural fields. For HONO, the southern transport flux was larger than northern transport flux under 100 m, whereas it was opposite above 100 m. It indicated that the HONO distributed at high altitudes at agricultural fields had potential to enhance the atmospheric oxidation capacity of urban area. The net horizontal transport fluxes of HONO of our defined cropland were 5.25 μg m-2 s-1 and -3.65 μg m-2 s-1 during non-fertilization and fertilization periods, respectively. It indicated that the cropland could obviously export HONO to surrounding atmosphere during the fertilization period. Deducing the contribution of direct emission, heterogeneous process was a major source of HONO at urban and agricultural areas. The average surface conversion rate of NO2-to-HONO (CHONO) was 0.01467 h-1, and this value decreased with the increase of height at urban station. While average surface CHONO was 0.0322 h-1 at agricultural fields, which was ~1.2-2.8 times higher than that at urban area. The CHONO at agricultural fields significantly increased with the increase of height. The average CHONO at 1.0 km was ~2.0-3.6 times higher than that at surface. That suggested that the heterogeneous process was the main HONO source at high altitudes at CF, and this process obviously correlated with aerosol and H2O. The higher OH production from HONO (P(OH)HONO) occurred at 0-200 m and 100-400 m with averaged values of 0.31 ppb h-1 and 0.39 ppb h-1 at AHU and CF, respectively. The high P(OH)HONO above 1.0 km at CF from September to October was strongly correlated with high O3 (> 80 ppb). This study emphasized the importance of the stereoscopic of HONO on the analysis of its distribution, evolution, source and atmospheric oxidizing contribution.
Collapse
Affiliation(s)
- Chengzhi Xing
- Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cheng Liu
- Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China.
| | - Qihua Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No.3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Wei Tan
- Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Tiliang Zou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang Wang
- Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Anhui Institute of Meteorological Sciences, Hefei 230031, China; Shouxian National Climatology Observatory, Shouxian 232200, China; Huaihe River Basin Typical Farmland Ecological Meteorological Field Science Experiment Base of CMA, Shouxian 232200, China.
| | - Chuan Lu
- Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
17
|
Gan C, Li B, Dong J, Li Y, Zhao Y, Wang T, Yang Y, Liao H. Atmospheric HONO emissions in China: Unraveling the spatiotemporal patterns and their key influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123228. [PMID: 38147951 DOI: 10.1016/j.envpol.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Nitrous acid (HONO) can be photolyzed to produce hydroxyl radicals (OH) in the atmosphere. OH plays a critical role in the formation of secondary pollutants like ozone (O3) and secondary organic aerosols (SOA) via various oxidation reactions. Despite the abundance of recent HONO studies, research on national HONO emissions in China remains relatively limited. Therefore, this study employed a "wetting-drying" model and bottom-up approach to develop a high-resolution gridded inventory of HONO emissions for mainland China using multiple data. We used the Monte Carlo method to estimate the uncertainty in HONO emissions. In addition, the primary sources of HONO emissions were identified and their spatiotemporal distribution and main influencing factors were studied. The results indicated that the total HONO emissions in mainland China in 2016 were 0.77 Tg N (R50: 0.28-1.42 Tg N), with soil (0.42 Tg N) and fertilization (0.26 Tg N) as the primary sources, jointly contributing to over 87% of the total. Notably, the North China Plain (NCP) had the highest HONO emission density (3.51 kg N/ha/yr). Seasonal HONO emissions followed the order: summer (0.38 kg N/ha) > spring (0.19 kg N/ha) > autumn (0.17 kg N/ha) > winter (0.06 kg N/ha). Moreover, HONO emissions were strongly correlated with fertilization, cropland, temperature, and precipitation. This study provides vital scientific groundwork for the atmospheric nitrogen cycle and the formation of secondary pollutants.
Collapse
Affiliation(s)
- Cong Gan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Baojie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jinyan Dong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yongqi Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
18
|
Song Y, Wu D, Ju X, Dörsch P, Wang M, Wang R, Song X, Deng L, Wang R, Gao Z, Haider H, Hou L, Liu M, Yu Y. Nitrite stimulates HONO and NO x but not N 2O emissions in Chinese agricultural soils during nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166451. [PMID: 37611720 DOI: 10.1016/j.scitotenv.2023.166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.
Collapse
Affiliation(s)
- Yaqi Song
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaotong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yuanchun Yu
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
19
|
Zong Z, Wang T, Chai J, Tan Y, Liu P, Tian C, Li J, Fang Y, Zhang G. Quantifying the Nitrogen Sources and Secondary Formation of Ambient HONO with a Stable Isotopic Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16456-16464. [PMID: 37862702 DOI: 10.1021/acs.est.3c04886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrous acid (HONO) is a reactive gas that plays an important role in atmospheric chemistry. However, accurately quantifying its direct emissions and secondary formation in the atmosphere as well as attributing it to specific nitrogen sources remains a significant challenge. In this study, we developed a novel method using stable nitrogen and oxygen isotopes (δ15N; δ18O) for apportioning ambient HONO in an urban area in North China. The results show that secondary formation was the dominant HONO formation processes during both day and night, with the NO2 heterogeneous reaction contributing 59.0 ± 14.6% in daytime and 64.4 ± 10.8% at nighttime. A Bayesian simulation demonstrated that the average contributions of coal combustion, biomass burning, vehicle exhaust, and soil emissions to HONO were 22.2 ± 13.1, 26.0 ± 5.7, 28.6 ± 6.7, and 23.2 ± 8.1%, respectively. We propose that the isotopic method presents a promising approach for identifying nitrogen sources and the secondary formation of HONO, which could contribute to mitigating HONO and its adverse effects on air quality.
Collapse
Affiliation(s)
- Zheng Zong
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jiajue Chai
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Yue Tan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110164, P. R. China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Tan W, Wang H, Su J, Sun R, He C, Lu X, Lin J, Xue C, Wang H, Liu Y, Liu L, Zhang L, Wu D, Mu Y, Fan S. Soil Emissions of Reactive Nitrogen Accelerate Summertime Surface Ozone Increases in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12782-12793. [PMID: 37596963 DOI: 10.1021/acs.est.3c01823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Summertime surface ozone in China has been increasing since 2013 despite the policy-driven reduction in fuel combustion emissions of nitrogen oxides (NOx). Here we examine the role of soil reactive nitrogen (Nr, including NOx and nitrous acid (HONO)) emissions in the 2013-2019 ozone increase over the North China Plain (NCP), using GEOS-Chem chemical transport model simulations. We update soil NOx emissions and add soil HONO emissions in GEOS-Chem based on observation-constrained parametrization schemes. The model estimates significant daily maximum 8 h average (MDA8) ozone enhancement from soil Nr emissions of 8.0 ppbv over the NCP and 5.5 ppbv over China in June-July 2019. We identify a strong competing effect between combustion and soil Nr sources on ozone production in the NCP region. We find that soil Nr emissions accelerate the 2013-2019 June-July ozone increase over the NCP by 3.0 ppbv. The increase in soil Nr ozone contribution, however, is not primarily driven by weather-induced increases in soil Nr emissions, but by the concurrent decreases in fuel combustion NOx emissions, which enhance ozone production efficiency from soil by pushing ozone production toward a more NOx-sensitive regime. Our results reveal an important indirect effect from fuel combustion NOx emission reduction on ozone trends by increasing ozone production from soil Nr emissions, highlighting the necessity to consider the interaction between anthropogenic and biogenic sources in ozone mitigation in the North China Plain.
Collapse
Affiliation(s)
- Wanshan Tan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Haolin Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Jiayin Su
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Ruize Sun
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Cheng He
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2 Orléans 45071, France
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Yiming Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, People's Republic of China
- Institute of Eco-Chongming (IEC), Shanghai 202162, People's Republic of China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| |
Collapse
|
21
|
Liu Y, Geng G, Cheng J, Liu Y, Xiao Q, Liu L, Shi Q, Tong D, He K, Zhang Q. Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276527 DOI: 10.1021/acs.est.3c00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In response to the severe air pollution issue, the Chinese government implemented two phases (Phase I, 2013-2017; Phase II, 2018-2020) of clean air actions since 2013, resulting in a significant decline in fine particles (PM2.5) during 2013-2020, while the warm-season (April-September) mean maximum daily 8 h average ozone (MDA8 O3) increased by 2.6 μg m-3 yr-1 in China during the same period. Here, we derived the drivers behind the rising O3 concentrations during the two phases of clean air actions by using a bottom-up emission inventory, a regional chemical transport model, and a multiple linear regression model. We found that both meteorological variations (3.6 μg m-3) and anthropogenic emissions (6.7 μg m-3) contributed to the growth of MDA8 O3 from 2013 to 2020, with the changes in anthropogenic emissions playing a more important role. The anthropogenic contributions to the O3 rise during 2017-2020 (1.2 μg m-3) were much lower than that in 2013-2017 (5.2 μg m-3). The lack of volatile organic compound (VOC) control and the decline in nitrogen oxides (NOx) emissions were responsible for the O3 increase in 2013-2017 due to VOC-limited regimes in most urban areas, while the synergistic control of VOC and NOx in Phase II initially worked to mitigate O3 pollution during 2018-2020, although its effectiveness was offset by the penalty of PM2.5 decline. Future mitigation efforts should pay more attention to the simultaneous control of VOC and NOx to improve O3 air quality.
Collapse
Affiliation(s)
- Yuxi Liu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Guannan Geng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Cheng
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Qingyang Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liangke Liu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Qinren Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dan Tong
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Wang Y, Fu X, Wang T, Ma J, Gao H, Wang X, Pu W. Large Contribution of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3516-3526. [PMID: 36802547 DOI: 10.1021/acs.est.2c07793] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soil emissions have long been recognized as an important source of nitric oxide (NO), which regulates atmospheric oxidative capacity and the production of air pollutants. Recent research has also indicated that nitrous acid (HONO) can be emitted in significant quantities from soil microbial activities. However, only a few studies have quantified emissions of HONO along with NO from a wide range of soil types. In this study, we measured emissions of HONO and NO from soil samples collected from 48 sites across China and found much higher emissions of HONO than of NO, especially for samples from northern China. We performed a meta-analysis of 52 field studies in China, which revealed that long-term fertilization increased the abundance of nitrite-producing genes much more than the abundance of NO-producing genes. This promotion effect was greater in northern China than in southern China. In simulations using a chemistry transport model with laboratory-derived parametrization, we found that HONO emissions had a greater effect than NO emissions on air quality. Moreover, we determined that with projected continuous reductions in anthropogenic emissions, the contribution from soils to maximum 1 h concentrations of hydroxyl radicals and ozone and daily average concentrations of particulate nitrate in the Northeast Plain will increase to 17%, 4.6%, and 14%, respectively. Our findings highlight the need to consider HONO in the assessment of the loss of reactive oxidized nitrogen from soils to the atmosphere and its effect on air quality.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 730000 Lanzhou, China
| | - Xin Wang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Pu
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Xuan H, Zhao Y, Ma Q, Chen T, Liu J, Wang Y, Liu C, Wang Y, Liu Y, Mu Y, He H. Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM 2.5 and O 3 pollution periods in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159538. [PMID: 36270355 DOI: 10.1016/j.scitotenv.2022.159538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrous acid (HONO) is a key precursor of the hydroxyl radicals (OH) and has a significant impact on air quality. Nowadays, the source of HONO is still controversial due to its complex formation mechanisms, which is widely explored in extensive field and laboratory studies. In this study, the pollution characteristics and source contribution of HONO under different air quality conditions in summer in Beijing were analyzed. The observation periods were classified as three typical periods: clean, ozone pollution, and double high pollution (co-occurrence of high PM2.5 and O3 concentrations). The average concentrations of observed HONO were 0.38 ± 0.35 ppb, 0.21 ± 0.18 ppb, 0.26 ± 0.20 ppb and 0.54 ± 0.45 ppb during the whole, clean, ozone and double high periods, respectively. The elevated HONO levels at night were attributed to vehicle emissions and the RH-dependent heterogeneous conversion of NO2 to HONO. The average emission ratio (HONO/NOx) was 0.85 % ± 0.38 %, and the mean value of calculated nocturnal NO2 to HONO conversion frequency was 0.0076 ± 0.0031 h-1. Based on daytime HONO budget analysis, the largest potential source of HONO was the homogeneous reaction of NO and OH (0.33 and 0.34 ppb h-1), followed by the unknown source (0.11 and 0.21 ppb h-1) during clean and ozone periods, while the unknown source (0.49 ppb h-1) played the predominant role during double high period. The unknown sources of HONO could be attributed to the photo-enhanced heterogeneous conversion of NO2 and the photolysis of particulate nitrate. Furthermore, the photolysis of ozone (0.17, 0.34 and 0.44 ppb h-1) was the major contributor to primary OH during three typical periods. HONO photolysis contributed considerable amounts of primary OH (0.32 ppb h-1) during double high period. These results are helpful to further understand the linkage between HONO and air quality variation.
Collapse
Affiliation(s)
- Huiying Xuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Yafei Wang
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
24
|
Xu Z, Jiang X, Li Y, Ma X, Tang Y, Li H, Yi K, Li J, Liu Z. Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. Int J Biol Macromol 2022; 217:282-290. [PMID: 35835303 DOI: 10.1016/j.ijbiomac.2022.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Chemical agents are effective treatment methods for anthracnose induced by pathogenic Colletotrichum gloeosporioides on Stylosanthes. However, excess consumption of chemical agents destroys the environment, synthetic biology was capable of conquering the issue. The antifungal agent is developed by enclosing a bio-synthesized peptide aptamer with layered montmorillonite via electrostatic interaction. Compared with free peptide aptamer, the nanocomposite exhibits higher antifungal activity against Colletotrichum gloeosporioides, further improving the utilization of peptide aptamer. The nanocomposite killed Colletotrichum gloeosporioides by releasing peptide aptamer after they entered the spore. Moreover, montmorillonite enhances the adhesion ability of peptide aptamer via hydrophobic interactions between nanomaterials and leaves, prolonging the extension time of nanocomposite on leaves. Consequently, 0.1 mg of nanocomposite demonstrates a comparable effect to commercial carbendazim (1 %) to prevent anthracnose on leaves of Stylosanthes induced by HK-04 at room temperature. This work demonstrates an alternative to commercial antifungal agents and proposes a versatile approach to preparing environmental-friendly antifungal agents to inhibit fungal infections on crops.
Collapse
Affiliation(s)
- Zhenfei Xu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Xiaoli Jiang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Wang X, Li J, Duan Y, Li J, Wang H, Yang X, Gong M. Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem 2022. [DOI: 10.1002/cctc.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Wang
- East China University of Science and Technology School of Mechanical and Power Engineering CHINA
| | - Jianping Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Yanghua Duan
- University of California Berkeley Civil and Environmental Engineering UNITED STATES
| | - Jianan Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Hualin Wang
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Xuejing Yang
- East China University of Science and Technology National Engineering Laboratory for Industrial Wastewater Treatment 130 Meilong Road 200237 Shanghai CHINA
| | - Ming Gong
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
26
|
Bao F, Cheng Y, Kuhn U, Li G, Wang W, Kratz AM, Weber J, Weber B, Pöschl U, Su H. Key Role of Equilibrium HONO Concentration over Soil in Quantifying Soil-Atmosphere HONO Fluxes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2204-2212. [PMID: 35104400 PMCID: PMC8851686 DOI: 10.1021/acs.est.1c06716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO. However, [HONO]* has not yet been well-validated and quantified. Here, we present a method to retrieve [HONO]* by conducting controlled dynamic chamber experiments with soil samples applied with different HONO concentrations at the chamber inlet. We show a bi-directional soil-atmosphere exchange of HONO and confirm the existence of [HONO]* over soil: when [HONO]* is higher than the atmospheric HONO concentration, HONO will be released from soil; otherwise, HONO will be deposited. We demonstrate that [HONO]* is a soil characteristic, which is independent of HONO concentrations in the chamber but varies with different soil water contents. We illustrate the robustness of using [HONO]* for quantifying soil fluxes of HONO, whereas the laboratory-determined chamber HONO fluxes can largely deviate from those in the real world for the same soil sample. This work advances the understanding of the soil-atmosphere exchange of HONO and the evaluation of its impact on the atmospheric oxidizing capacity.
Collapse
Affiliation(s)
- Fengxia Bao
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Guo Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Wenjie Wang
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Alexandra Maria Kratz
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Jens Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| |
Collapse
|