1
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Jia R, Zhang Y, Wang Y, Wang Y, Sun G, Jiang Y. Toxic effects on ciliates under nano-/micro-plastics coexist with silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133058. [PMID: 38006860 DOI: 10.1016/j.jhazmat.2023.133058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Owing to the degradation of plastics, microplastics (MPs) and nanoplastics (NPs) have remained the focus of global attention. Silver nanoparticles (AgNPs) could adversely affect marine organisms due to their broad application. So far, the combined effects of MPs/NPs (strong adsorbents) with AgNPs on marine organisms are scant. Thus, four sizes polystyrene beads (80 nm, 220 nm, 1.07 µm, and 2.14 µm) combined with AgNPs (30 nm) were assessed using ciliated protozoa Uronema marinum. Results showed that MPs/NPs dramatically decrease the abundance, biovolume, and carbon biomass of U. marinum. And, exposure could cause changes of antioxidant enzyme activity and antioxidant content on U. marinum. The combined toxicity of MPs/NPs with AgNPs to ciliates showed an enhanced effect compared to exposure alone. Additionally, the negative effects under exposure of NPs plus AgNPs were more significant than those of MPs plus AgNPs. Transcriptome sequencing showed that co-exposure could affect the energy metabolism and lipid metabolism of ciliates, even cause DNA and protein damage. Our study provided a novel insight and first-hand basic data for the understanding of combined toxicity of MPs /NPs with AgNPs on the basic trophic level ciliated protozoa in marine ecosystems.
Collapse
Affiliation(s)
- Ruiqi Jia
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Gaojingwen Sun
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Chen J, Liu K, Liu Y. Synergistic molecular mechanism of degradation in dye wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube - Silver modified titanium dioxide photocatalytic composite with sodium alginate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119913. [PMID: 38154222 DOI: 10.1016/j.jenvman.2023.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.
Collapse
Affiliation(s)
- Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| | - Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| |
Collapse
|
4
|
Wan J, Ye J, Zhang Y, Li Z, Wu Z, Dang C, Fu J. Interaction of silver nanoparticles with marine/lake snow in early formation stage. WATER RESEARCH 2023; 241:120160. [PMID: 37270947 DOI: 10.1016/j.watres.2023.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Marine and lake snows play an important ecological role in aquatic systems, and recent researches have also revealed their interactions with various pollutants. In this paper, the interaction of silver nanoparticles (Ag-NPs), a typical nano-pollutant, with marine/lake snow in the early formation stage was investigated by roller table experiments. Results indicated Ag-NPs promoted the accumulation of larger marine snow flocs while inhibited the development of lake snow. The promotion effect of AgNPs might be attributed to their oxidative dissolution into low-toxic silver chloride complexes in seawater, and the subsequent incorporation into marine snow, which would enhance the rigidity and strength of larger flocs and favor the development of biomass. Conversely, Ag-NPs mainly existed in the form of colloidal nanoparticles in lake water and their strong antimicrobial effect suppressed the growths of biomass and lake snow. In addition, Ag-NPs could also affect the microbial community of marine/lake snow, including impact on microbial diversity, and elevation on abundances of extracellular polymeric substances (EPS) synthesis genes and silver resistance genes. This work has deepened our understanding of the fate and ecological effect of Ag-NPs via the interaction with marine/lake snow in aquatic environments.
Collapse
Affiliation(s)
- Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juefei Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenbing Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Liu K, Yang Y, Sun F, Liu Y, Tang M, Chen J. Rapid degradation of Congo red wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube - Silver modified titanium dioxide photocatalytic composite with sodium alginate. CHEMOSPHERE 2022; 299:134417. [PMID: 35351474 DOI: 10.1016/j.chemosphere.2022.134417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
With a large number of Congo red used in textiles, Congo red wastewater was not easily degraded, resulting in environmental and health-related problems. In order to improve the degradation efficiency of Congo red wastewater, A novel intimately coupled photocatalysis and biodegradation (ICPB) system was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA). Compared with immobilized CAT and R. palustris, the R. palustris/CAT@SA improved the degradation and removal rates of Congo red by 14.3% and 42.1%, and the COD removal rates by 76% and 44.6%, respectively. The mechanism of the degradation of Congo red by the new ICPB was that the Congo red on the surface of the support was degraded into long-chain alkanes by the superoxide and hydroxyl radicals of CAT product, and then the long-chain alkanes were completely mineralization by R. Palustris, which reduced the accumulation of intermediates in the photocatalysis. Most of the Congo red was adsorbed to the interior of the carrier was degraded into aromatic hydrocarbons by R. Palustris, and then oxidized and degraded by CAT, and a small part of the Congo red would be directly mineralized by R. Palustris. A novel technical solution of R. palustris/CAT@SA provided a potential application to the degradation of dye wastewater.
Collapse
Affiliation(s)
- Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|