1
|
Dong Y, Violet C, Sun C, Li X, Sun Y, Zheng Q, Tang C, Elimelech M. Ceramic-carbon Janus membrane for robust solar-thermal desalination. Nat Commun 2025; 16:2659. [PMID: 40102428 PMCID: PMC11920389 DOI: 10.1038/s41467-025-57888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
The desalination performance of conventional distillation membranes is limited by insufficient stability and energy efficiency, impeding their application in sustainable water production. Herein, we report a ceramic-carbon Janus membrane with solar-thermal functionality for enhanced desalination performance, energy efficiency, and stability for hypersaline water treatment. The feed and permeate sides of this Janus membrane are designed with different properties such as wettability, conductivity, and solar-thermal conversion to enhance performance. We demonstrate that this membrane exhibits higher solar-thermal efficiency (66.8-68.8%) and water flux (3.3-5.1 L m-2 h-1) than most existing polymeric solar-thermal distillation membranes. Simulation results ascribe enhanced performance to an increased membrane surface temperature, which mitigates temperature polarization and attenuation, thus enhancing the desalination driving force. The nano-carbon membrane surface accelerates water evaporation by inducing a transition from free water to intermediate water with decreased hydrogen bonding and a lower evaporation energy barrier. Water vapor molecules transport through the membrane pores by a combined mechanism of Knudsen diffusion and viscous flow. Even for seawater and hypersaline water, the membrane exhibits stable water flux and salt rejection due to its scaling-resistant surface and stable interfacial temperature. This work provides a strategy for rationally designing next-generation Janus membranes for sustainable water purification.
Collapse
Affiliation(s)
- Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Chunyi Sun
- School of Water Conservancy and Environment, Jinan University, Jinan, China
| | - Xianhui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
3
|
Yuan S, Zhang J, Yu X, Zhu X, Zhang N, Yuan S, Wang Z. Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:978-988. [PMID: 39807585 DOI: 10.1021/acs.est.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated. The interaction mechanism between typical components of HA and active silica was evaluated by molecular dynamics simulations. We find that the addition of HA alleviated the significant decrease in water flux, with recoveries surpassing 60% and 80% at 10 and 20 ppm of HA, respectively. Quantum chemical calculations indicate that the presence of HA greatly raised the free-energy barriers of silica polymerization compared to the system without HA (489.7 vs 45.1 kJ mol-1). Moreover, the interaction between HA molecules and silica significantly weakened the diffusion capacity of silica scale in water (diffusion coefficient from 1.04 × 10-5 to 0.08 × 10-5 cm2 s-1), consequently decreasing the likelihood of contact between silica scale and the hydrophobic membrane. Finally, a neural network analysis model for the HA and silica interaction was developed to design effective inhibitors for silica polymerization. Overall, this study develops nanoscale modeling and simulations to understand how HA inhibits silica scaling in membrane processes, guiding the formation of new approaches to enhance MD performance.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xinmeng Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
5
|
Zheng L, Wu Q, Ulbricht M, Zhong H, Duan N, Van der Bruggen B, Wei Y. Contrasting mixed scaling patterns and mechanisms of nanofiltration and membrane distillation. WATER RESEARCH 2024; 258:121671. [PMID: 38749186 DOI: 10.1016/j.watres.2024.121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024]
Abstract
Oriented towards the pressing needs for hypersaline wastewater desalination and zero liquid discharge (ZLD), the contrasting mixed scaling of thermal-driven vacuum membrane distillation (VMD) and pressure-driven nanofiltration (NF) were investigated in this work. Bulk crystallization was the main mechanism in VMD due to the high salinity and temperature, but the time-independent resistance by the adsorption of silicate and organic matter dominated the initial scaling process. Surface crystallization and the consequent pore-blocking were the main scaling mechanisms in NF, with the high permeate drag force, hydraulic pressure, and cross-flow rate resulting in the dense scaling layer mainly composed of magnesium-silica hydrate (MSH). Silicate enhanced NF scaling with a 75% higher initial flux decline rate attributed to the MSH formation and compression, but delayed bulk crystallization in VMD. Organic matter presented an anti-scaling effect by delaying bulk crystallization in both VMD and NF, but specifically promoted CaCO3 scaling in NF. Furthermore, the incipient scaling was intensified as silicate and organic matter coexisted. The scaling mechanism shifted from surface to bulk crystallization due to the membrane concentration in both VMD and NF. This work fills the research gaps on mixed scaling mechanisms in different membrane processes, which offers insights for scaling mitigation and thereby supports the application of ZLD.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Qiyang Wu
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningxin Duan
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Liu Y, Meng Z, Zou R, Zhu L, Wang X, Zhu M. Crosslinking and fluorination reinforced PTFE nanofibrous membrane with excellent amphiphobic performance for low-scaling membrane distillations. WATER RESEARCH 2024; 256:121594. [PMID: 38615603 DOI: 10.1016/j.watres.2024.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Membrane distillation (MD) has emerged as a promising technology for desalination and concentration of hypersaline brine. However, the efficient preparation of a structurally stable and salinity-resistant membrane remains a significant challenge. In this study, an amphiphobic polytetrafluoroethylene nanofibrous membrane (PTFE NFM) with exceptional resistance to scaling has been developed, using an energy-efficient method. This innovative approach avoids the high-temperature sintering treatment, only involving electrospinning with PTFE/PVA emulsion and subsequent low-temperature crosslinking and fluorination. The impact of the PVA and PTFE contents, as well as the crosslinking and subsequent fluorination on the morphology and MD performance of the NFM, were systematically investigated. The optimized PTFE NFM displayed robust amphiphobicity, boasting a water contact angle of 155.2º and an oil contact angle of 132.7º. Moreover, the PTFE NFM exhibited stable steam flux of 52.1 L·m-2·h-1 and 26.7 L·m-2·h-1 when fed with 3.5 wt % and 25.0 wt % NaCl solutions, respectively, and an excellent salt rejection performance (99.99 %, ΔT = 60 °C) in a continuous operation for 24 h, showing exceptional anti-scaling performance. It also exhibited stable anti-wetting and anti-fouling properties against surfactants (sodium dodecyl sulfate) and hydrophobic contaminants (diesel oil). These results underscore the significant potential of the PTFE nanofibrous membrane for practical applications in desalination, especially in hypersaline or polluted aqueous environments.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Hsieh IM, Malmali M. Scaling behavior in membrane distillation: Effect of Biopolymers and Antiscalants. WATER RESEARCH 2024; 255:121456. [PMID: 38547789 DOI: 10.1016/j.watres.2024.121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/24/2024]
Abstract
Fouling and scaling are inherent characteristics of membrane-based separation. They lead to a reduced membrane throughput. In the case of membrane distillation (MD), they can possibly result in pore wetting and irreversible failure to sustain the mass transfer interface. Most prior research on understanding fouling and scaling uses indirect measurements (flux) or ex-situ analyses methods (such as SEM and EDX), which limit the outcomes to indirect qualitative conclusions. Particularly, studying scaling tends to be more challenging due to the complexity of the experiments and the method of investigation; it is imperative to distinguish the contributions from the bulk phase and heterogeneous nucleation. In this work, we established a non-invasive, in-situ, real-time imaging experimental apparatus to study the scaling mechanism. Our experimental setup assisted us in distinguishing distinct phases of scaling during the filtration tests. We studied the scaling mechanism of various single-component systems (sodium chloride, strontium sulfate, calcium sulfate, and calcium carbonate) in vacuum MD filtration. The effect of natural organic matter and antiscalants on gypsum scaling were systematically investigated. Overall, organic fouling on the membrane surface expedited heterogeneous crystallization while decelerating crystal growth in the bulk phase. For instance, deposited humic acid (HA) on the membrane surface promoted gypsum heterogeneous nucleation on the membrane surface due to the interactions between HA carboxylic functional groups and calcium ions. The adsorption of HA on the salt crystal also decelerated crystal growth in the bulk phase. Antiscalants delayed and decelerated both crystal nucleation and crystal growth. PAA, a polycarboxylate antiscalant at 5 ppm, was found to effectively delay the onset of nucleation and crystal growth in the bulk phase, while phosphorous antiscalants at 5 ppm only delayed the onset of nucleation in the bulk phase with a negligible influence on crystal growth. Real-time, in-situ, and non-invasive monitoring shed light on the scaling mechanism and can further be used to identify mitigation strategies.
Collapse
Affiliation(s)
- I-Min Hsieh
- Department of Chemical Engineering, 807 Canton Ave., Texas Tech University, Lubbock, TX 79409, USA
| | - Mahdi Malmali
- Department of Chemical Engineering, 807 Canton Ave., Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Liu H, Li K, Wang K, Wang Z, Liu Z, Zhu S, Qu D, Zhang Y, Wang J. A novel electro-Fenton hybrid system for enhancing the interception of volatile organic compounds in membrane distillation desalination. J Environ Sci (China) 2024; 138:189-199. [PMID: 38135387 DOI: 10.1016/j.jes.2023.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 12/24/2023]
Abstract
Membrane distillation (MD) is a promising alternative desalination technology, but the hydrophobic membrane cannot intercept volatile organic compounds (VOCs), resulting in aggravation in the quality of permeate. In term of this, electro-Fenton (EF) was coupled with sweeping gas membrane distillation (SGMD) in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface, so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate. During the so-called EF-MD process, an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface. It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L. Effective interceptions can be achieved in a wide temperature range, even though the permeate flux of phenol was also intensified. The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions, which endowed the long-term stability of the system. This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kunpeng Wang
- State Key Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University, Beijing 100084, China
| | - Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimou Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichao Zhu
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, China
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Chang H, Zhu Y, Huang L, Yan Z, Qu F, Liang H. Mineral scaling induced membrane wetting in membrane distillation for water treatment: Fundamental mechanism and mitigation strategies. WATER RESEARCH 2023; 247:120807. [PMID: 37924685 DOI: 10.1016/j.watres.2023.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The scaling-induced wetting phenomenon seriously affects the application of membrane distillation (MD) technology in hypersaline wastewater treatment. Unlike the large amount of researches on membrane scaling and membrane wetting, scaling-induced wetting is not sufficiently studied. In this work, the current research evolvement of scaling-induced wetting in MD was systematically summarized. Firstly, the theories involving scaling-induced wetting were discussed, including evaluation of scaling potential of specific solutions, classical and non-classical crystal nucleation and growth theories, observation and evolution of scaling-induced processes. Secondly, the primary pretreatment methods for alleviating scaling-induced wetting were discussed in detail, focusing on adding agents composed of coagulation, precipitation, oxidation, adsorption and scale inhibitors, filtration including granular filtration, membrane filtration and mesh filtration and application of external fields including sound, light, heat, electromagnetism, magnetism and aeration. Then, the roles of operation conditions and cleaning conditions in alleviating scaling-induced wetting were evaluated. The main operation parameters included temperature, flow rate, pressure, ultrasound, vibration and aeration, while different types of cleaning reagents, cleaning frequency and a series of assisted cleaning measures were summarized. Finally, the challenges and future needs in the application of nucleation theory to scaling-induced wetting, the speculation, monitoring and mitigation of scaling-induced wetting were proposed.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lin Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Yang X, Zhang N, Zhang J, Liu W, Zhao M, Lin S, Wang Z. Nanocomposite Hydrogel Engineered Janus Membrane for Membrane Distillation with Robust Fouling, Wetting, and Scaling Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15725-15735. [PMID: 37787747 DOI: 10.1021/acs.est.3c04540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.
Collapse
Affiliation(s)
- Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Weifan Liu
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Mingwei Zhao
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, School of Petroleum Engineering, China University of Petro1eum (East China), Qingdao 266580, People's Republic of China
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
11
|
Zhao Z, Zhang Y, Yu L, Hou D, Wu X, Li K, Wang J. Fenton pretreatment to mitigate membrane distillation fouling during treatment of landfill leachate membrane concentrate: Performance and mechanism. WATER RESEARCH 2023; 244:120517. [PMID: 37666152 DOI: 10.1016/j.watres.2023.120517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Membrane distillation (MD) is regarded as a promising technology for treatment of landfill leachate membrane concentrate (LLMC) due to its merits of low cost and high rejection of non-volatile components. However, the high concentration of pollutants in the wastewater will cause severe membrane fouling, resulting in costly cleaning and maintenance. In this study, Fenton pretreatment was applied to alleviate membrane fouling during MD treatment of LLMC. Compared to rapid flux decline of 88.2% at concentration factor (CF) of 3 for raw LLMC, MD flux only decreased by 17.4% at CF = 6 for treating acidic Fenton effluent without subsequent pH adjustment (Fe2+ and H2O2 concentration were 600 mg/L and 1457 mg/L, respectively). The pH neutralization of Fenton effluent or merely acidification of LLMC could not achieve such excellent fouling mitigation. It was concluded that both oxidation and acidification were critical and the collaboration mechanism was revealed to explain low membrane fouling. Firstly, Fenton oxidation removed organic contaminants, reduced the hydrophobicity of organic substances and increased the percentage of carboxylic group within LLMC. Thus, hydrophobic (HP) attraction was weakened but multivalent cation bridging became dominant fouling mechanism for neutral Fenton effluent. Then, acidification weakened multivalent cation bridging by inhibiting the deprotonation of carboxylic group, further mitigating membrane fouling. However, acidification of LLMC caused more severe organic fouling due to decrease in electrostatic (EL) repulsion. In addition to low membrane fouling, satisfactory total organic carbon (TOC) rejection rate of 96.23% was achieved during combined Fenton-MD process. This study demonstrated that Fenton pretreatment without pH neutralization could effectively alleviate MD fouling and elucidated the synergistic mechanism between oxidation and acidification for fouling mitigation.
Collapse
Affiliation(s)
- Zhichao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ling Yu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Deyin Hou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Sun C, Lin B, Zheng X, Dong Y, Zhao M, Tang CY. Robust ceramic-based graphene membrane for challenging water treatment with enhanced fouling and scaling resistance. WATER RESEARCH 2023; 243:120348. [PMID: 37516075 DOI: 10.1016/j.watres.2023.120348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Membrane fouling and scaling are two challenges for efficient treatment of hypersaline wastewater, greatly hindering separation performance and operation stability of desalination membranes. In this work, we report a smooth ceramic-based graphene desalination membrane, exhibiting enhanced anti-fouling and anti-scaling ability and operational performance for efficient treatment of both synthetic and real industrial wastewaters, outperforming polypropylene (PP) membrane. For treatment of hypersaline waters containing organic or inorganic substance, we demonstrate that the graphene membrane exhibits more stable water flux and almost complete salt rejection (>99.9%) during constant operation. Enhanced anti-fouling and desalination performance of graphene membrane could be attributed to the lower attractive interaction force with foulant (-4.65 mJ m-2), lower surface roughness (Ra = 2.2 ± 0.1 nm) and higher affinity with water than PP membrane. Furthermore, an anti-scaling mechanism enabled by graphene membrane is evidenced, with a highlight on the roles of smooth graphene surface with lower roughness, less nucleation sites and lower binding force with scaling crystals. Importantly, even for industrial petrochemical wastewater, such a graphene membrane also exhibits relatively more stable water flux and promising oil and ions rejection during long-term operation, outperforming PP membrane. This study further confirms a promising practical application potential of robust ceramic-based graphene membrane for efficient treatment of more challenging hypersaline wastewater with complicated compositions, which is not feasible by conventional desalination membranes.
Collapse
Affiliation(s)
- Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
13
|
Liu D, Yusufu K, Yu F, Wu C, Zhong L, Xu Y, Liu J, Ma J, Wang W. Quasi-critical condition to balance the scaling and membrane lifespan tradeoff in hypersaline water concentration. WATER RESEARCH 2023; 242:120265. [PMID: 37390652 DOI: 10.1016/j.watres.2023.120265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Mineral scaling is an inconvenient obstacle for membrane distillation in hypersaline wastewater concentration applications, compromising membrane lifespan to maintain high water recovery. Although various measures are devoted to alleviating mineral scaling, the uncertainty and complexity of scale characteristics make it difficult to accurately identify and effectively prevent. Herein, we systematically elucidate a practically applicable principle to balance the trade-off between mineral scaling and membrane lifespan. Through experimental demonstration and mechanism analysis, we find a consistent concentration phenomenon of hypersaline concentration in different situations. Based on the characteristics of the binding force between the primary scale crystal and the membrane, the quasi-critical concentration condition is sought to prevent the accumulation and intrusion of mineral scale. The quasi-critical condition achieves the maximum water flux on the premise of guaranteeing the membrane tolerance, and the membrane performance can be restored by undamaged physical cleaning. This report opens up an informative horizon for circumventing the inexplicable scaling explorations and develops a universal evaluation strategy to provide technical support for membrane desalination.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Kudereti Yusufu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Fuyun Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Chuandong Wu
- National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, P R China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, P R China
| | - Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401331, P R China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China.
| |
Collapse
|
14
|
Wang C, Ma Z, Qiu Y, Wang C, Ren LF, Shen J, Shao J. Patterned dense Janus membranes with simultaneously robust fouling, wetting and scaling resistance for membrane distillation. WATER RESEARCH 2023; 242:120308. [PMID: 37451192 DOI: 10.1016/j.watres.2023.120308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Membrane fouling, wetting and scaling are three prominent challenges that severely hinder the practical applications of membrane distillation (MD). Herein, polyamide/polyvinylidene fluoride (PA/PVDF) Janus membrane comprising a hydrophobic PVDF substrate and a patterned dense PA layer by reverse interfacial polymerization (R-IP) was developed. Direct contact MD experiments demonstrated that PA/PVDF Janus membrane could exhibit simultaneously superior resistance towards surfactant-induced wetting, oil-induced fouling and gypsum-induced scaling without compromising flux. Importantly, the size-sieving effect, rather than the breakthrough pressure of the membrane, was revealed as the critical factor that probably endowed its resistance to wetting. Furthermore, a unique possible anti-scaling mechanism was unveiled. The superhydrophilic patterned dense PA layer with strong salt rejection capability not only prevented scale-precursor ions from intruding the substrate but also resulted in the high surface interfacial energy that inhibited the adhesion and growth of gypsum on the membrane surface, while its relatively low surface -COOH density benefited from R-IP process further ensured the membrane with a low scaling propensity. This study shall provide new insights and novel strategies in designing high-performance MD membranes and enable robust applications of MD facing the challenges of membrane fouling, wetting and scaling.
Collapse
Affiliation(s)
- Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongbao Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Zhang W, Yu S, Ning R, Li P, Ji X, Xu Y. Treatment of high-salinity brine containing dissolved organic matters by vacuum membrane distillation: A fouling mitigation approach via microbubble aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118142. [PMID: 37182485 DOI: 10.1016/j.jenvman.2023.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a laboratory-scale vacuum membrane distillation (VMD) system coupled with microbubble aeration (MBA) was developed for the treatment of high-salinity brine containing organic matters. Herein, at the beginning, feedwater only containing model organics such as humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) was utilized to investigate the organic-fouling behavior, results indicated that the permeate flux was not affected by a thin and loose contaminated layer deposited on the membrane surface. Furthermore, dissolved organics in the feed brine inhibited the occurrence of membrane wetting due to the existence of a compact and protective crystals/organic-fouling layer, which can prevent the intrusion of scaling ions into membrane substrates. Besides, organics in the feedwater have a high tendency to adsorb on the membrane surface based on molecular dynamics simulations, thus, forming an organic-fouling layer prior to inorganic scaling. Finally, the effect of MBA on fouling alleviation was evaluated in VMD system, nearly 50% of salt precipitation from fouled membrane was effectively removed with the introduction of MBA, which can be ascribed to a combination of mechanisms, including surface shear forces and electrostatic attractions induced by microbubbles, meanwhile, about 2.2% of the total energy was only consumed, when using MBA. Together, these results demonstrated that MBA was a promising approach to alleviate membrane fouling in VMD.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Rongsheng Ning
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xingli Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
16
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
17
|
Yang C. Neural networks for predicting air gap membrane distillation performance. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wang S, Wei X, Li Z, Liu Y, Wang H, Zou L, Lu D, Hassan Akhtar F, Wang X, Wu C, Luo S. Recent advances in developing mixed matrix membranes based on covalent organic frameworks. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Cao T, Rolf J, Wang Z, Violet C, Elimelech M. Distinct impacts of natural organic matter and colloidal particles on gypsum crystallization. WATER RESEARCH 2022; 218:118500. [PMID: 35512535 DOI: 10.1016/j.watres.2022.118500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gypsum scaling via crystallization is a major obstacle limiting the applications of membrane-based technologies and heat exchangers in engineered systems. Herein, we perform the first comparative investigation on the impacts of natural organic matter (Suwannee River humic acid, SRHA) and colloidal particles on the gypsum crystallization process in terms of induction time and crystal morphology. Results show that the presence of SRHA significantly increases the induction time of gypsum crystallization. Specifically, at a solution saturation index of 4.92, the induction time increases 6.5-fold in the presence of 6 mg/L SRHA, compared to the case without SRHA. SRHA also alters the morphology of the formed calcium sulfate crystals, resulting in a polygon-like shape, differing from the characteristic needle-like shape of gypsum in the absence of additives. These changes in crystal morphology are attributed to the adsorption of SRHA on the gypsum crystal surface, blocking the active sites for gypsum growth. In contrast, in the presence of colloidal particles, the observed induction time of gypsum crystallization either decreases or increases, depending on the competitive interplay between the enhancement effect in the nucleation step and the inhibition effect in the subsequent crystal growth step. Furthermore, the formed gypsum crystals in the presence of colloidal particles exhibit a needle-like morphology similar to the crystals formed in the absence of any additives. Our study provides fundamental understanding of gypsum crystallization in feedwaters containing natural organic matter and colloidal particles, highlighting the importance of feedwater composition in gypsum scaling.
Collapse
Affiliation(s)
- Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Julianne Rolf
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Zhangxin Wang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.
| |
Collapse
|
21
|
Tomczak W, Gryta M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. MEMBRANES 2022; 12:membranes12040351. [PMID: 35448321 PMCID: PMC9027506 DOI: 10.3390/membranes12040351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
In the present study, membrane distillation (MD) was applied for the treatment of oily saline wastewaters produced on ships sailing the Baltic Sea. For comparison purposes, experiments were also carried out with model NaCl solutions, the Baltic Seawater and oil in water emulsions. The commercial Accurel PP V8/2 membranes (Membrana GmbH, Germany) were used. In order to investigate the impact of the operational parameters on the process performance, the experiments were conducted under various values of the feed flow velocity (from 0.03 to 0.12 m/s) and the feed temperature (from 323 to 343 K). The obtained results highlight the potential of PP membranes application for a stable and reliable long-term treatment of oily wastewater. It was demonstrated that the permeate flux increased significantly with increasing feed temperature. However, the lower temperature ensured the limited scaling phenomenon during the treatment of oily wastewaters. Likewise, increasing the feed flow velocity was beneficial to the increase in the flux. Moreover, it was found that performing a cyclic rinsing of the module with a 3% HCl solution is an effective method to maintain a satisfactory module performance. The present study sheds light on improving the MD for the treatment of oily wastewaters.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence: (W.T.); (M.G.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
- Correspondence: (W.T.); (M.G.)
| |
Collapse
|