1
|
Qian L, Xing T, Yu X, Wu J, Li T, Xu S, Du T, Wu L. Insights into the effects of aging on the combined toxicity of polystyrene nanoplastics and chlordane against Caenorhabditis elegans. J Environ Sci (China) 2025; 156:794-805. [PMID: 40412977 DOI: 10.1016/j.jes.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 05/27/2025]
Abstract
Nanoplastics are emerging contaminants that may co-exist with organochlorine pesticides and adversely affect invertebrates in the environment. However, the impact of environmental aging on the combined toxicity of nanoplastics and organochlorine pesticides remains unclear. This study investigated the effects of aging on the combined toxicity of polystyrene nanoplastics (PS NPs) and chlordane against Caenorhabditis elegans. The results showed that photo-aging altered the physicochemical properties of PS NPs and promoted the combined toxicity of PS NPs and chlordane to nematodes by reducing survival rate, body length and enhancing germline apoptosis. Additionally, combined exposure of nematodes to aged PS NPs and chlordane significantly increased reactive oxygen species production and intestinal permeability, suggesting that aging enhances combined toxicity through oxidative stress and intestinal damage. Moreover, aging increased chlordane contents in nematodes without promoting PS NPs accumulation, potentially leading to increased combined toxicity of PS NPs and chlordane. Notably, aging significantly increased the accumulation of PS NPs in the posterior intestine of the nematode during co-exposure, which may be responsible for the most sensitive and highest degree of change in germline apoptosis. These observations emphasize the significance of accounting for environmental aging as well as the accumulation and distribution of nanoplastics in organisms when assessing the combined effects of nanoplastics and coexisting pollutants.
Collapse
Affiliation(s)
- Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianran Xing
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiajia Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Lin P, Li J, Gao Y, Zhao Y, Li Y, Zhang H, Ma G. Label-Free Quantification of Nanoplastic-Cell Membrane Interaction by Single Cell Deformation Plasmonic Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9610-9619. [PMID: 40349329 DOI: 10.1021/acs.est.5c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Nanoplastics are a growing environmental concern due to their potential to disrupt cellular functions. Understanding how these particles interact with cell membranes is crucial for assessing their biological effects. In this study, we present a label-free, quantitative method─Single Cell Deformation Plasmonic Imaging (SCDPI)─to measure real-time membrane interaction dynamics at the single-cell level. By examining both fixed and live cells, we characterized the binding behaviors of nanoplastics with varying sizes, surface chemistries, and materials. Our findings show that nanoplastic binding induces cell membrane deformation ranging from a few to tens of nanometers, depending on nanoplastic type and concentration (0-250 μg/mL), influencing membrane-surface interactions. This work provides new mechanistic insights into nanoplastic-cell interactions, demonstrating the potential of SCDPI as a powerful tool for evaluating the cellular impacts of environmental pollutants.
Collapse
Affiliation(s)
- Peng Lin
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yushi Gao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yachong Zhao
- Jinan Chengquan Biotechnology Co., Ltd., Jinan 250100, China
| | - Yuhang Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Huachun Zhang
- Jinan Chengquan Biotechnology Co., Ltd., Jinan 250100, China
| | - Guangzhong Ma
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Duan X, Helal M, Wang X, Huang Y, Ebbesen MF, Brewer J, Wang S, Wu C, Holbech H, Xu EG. Swim in Plastics: Clean Nanoplastics Cause Minimal Mortality but Alter Neurobehavioral and Molecular Rhythms in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9387-9398. [PMID: 40183397 DOI: 10.1021/acs.est.4c10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Nanoplastics (NPs) pose potential ecological and health impacts. While previous studies have highlighted inconsistent toxicity levels of NPs, knowledge remains limited about the specific effects of different NPs on embryonic development, early life-stage behaviors, and bodily uptake. This study examines the effects of polystyrene NPs (PS-NPs) with different surface charges, plain polystyrene (PS), amino-modified (PS-NH2), and carboxyl-modified (PS-COOH) on zebrafish early life stages. High-resolution 3D bioimaging confirmed differential internalization: PS-COOH accumulated in the yolk and intestine, while PS-NH2 localized mainly in the intestine. PS-NPs up to 10 ppm did not significantly affect mortality or hatching rates, likely due to effective dialysis, minimizing toxic chemical leaching. PS-NP exposure led to noninflated swim bladders and affected swimming. RNA sequencing identified impacted neurological molecular pathways like circadian rhythm and visual function; weighted gene coexpression network analysis indicated strong correlations between key gene modules and phenotypic traits like eye development and dopamine level. We highlight the low acute toxicity of clean dialyzed NPs despite bodily uptake and surface-charge-dependent sublethal neurotoxicity. Overall, plain PS-NPs induced significant individual-level effects, while charged PS-NPs caused stronger molecular-level alterations; toxicity profiles varied across biological levels, complicating hazard assessment and underscoring the need for population-level studies on ecological impacts.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Mohamed Helal
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Xin Wang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Morten Frendø Ebbesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
4
|
Li R, Huang S, Hu Y, Sun X, Zhang Z, Yang Z, Liu Q, Chen X. Cell Response to Nanoplastics and Their Carrier Effects Tracked Real-Timely with Machine Learning-Driven Smart Surface-Enhanced Raman Spectroscopy Slides. Anal Chem 2025; 97:8030-8038. [PMID: 40181709 DOI: 10.1021/acs.analchem.5c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Research on nanoplastic (NP) toxicity and their "carrier effects" on human health remains nascent, especially for real-time, in situ monitoring of metabolic reactions in live cells. Herein, we developed smart surface-enhanced Raman spectroscopy (SERS) slides using a cyclic centrifugation-enhanced electrostatic loading (CCEL) method to facilitatively track live-cell metabolic signals. The designed core-shell polystyrene NPs (mPS) with embedded Raman probes successfully identified intracellular accumulation via a distinct Raman-silent peak. The smart SERS slide effectively monitored the metabolic changes induced by mPS at the molecular level, distinguishing different stages of membrane interaction, the endocytosis process, endosomal aggregation, and cell apoptosis. Besides, this platform was employed to perform a real-time, in situ comparison of cell cycle alterations induced by bare NPs and their "carrier effects", revealing that NPs extended both the S and G2 phases in BEAS-2B cells, while the "carrier effects" further prolonged G2 and disrupted S-phase progression. Additionally, we integrated machine learning algorithms to accurately predict the cell cycle impacts associated with mPS and their "carrier effects". This study provides a label-free, in situ, real-time method for monitoring NP-induced metabolic changes in live cells, laying the groundwork for further investigation into cytotoxic behaviors and strategies to mitigate NP toxicity.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuting Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zaixuan Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
5
|
Zhang H, Duan Q, Yan P, Lee J, Wu W, Zhou C, Zhai B, Yang X. Advancements and challenges in microplastic detection and risk assessment: Integrating AI and standardized methods. MARINE POLLUTION BULLETIN 2025; 212:117529. [PMID: 39756151 DOI: 10.1016/j.marpolbul.2025.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Microplastics (MPs) pose significant threats to ecosystems and human health due to their persistence and widespread distribution. This paper provides a comprehensive review of sampling methods for MPs in aquatic environments, soils, and biological samples, assessing pre-treatment procedures like digestion and separation. It examines the application and limitations of identification techniques, including microscopic observation, spectroscopic analysis, and thermal analysis. The review highlights the potential of AI technology to enhance detection efficiency and precision. It underscores the necessity of standardized protocols for consistent sampling and detection, and the importance of systematic risk assessment methodologies for managing environmental and health risks associated with MPs. The paper concludes with recommendations for future research, emphasizing the standardization of methods, advancement of detection technologies, integration of AI, and comprehensive health risk assessments. This review will be helpful for researchers to comprehensively understand the current main detection technologies and risk assessment methods of the MP, and to accelerate the establishment of an artificial intelligence regulatory framework for MPs.
Collapse
Affiliation(s)
- Hailong Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China.
| | - Pengwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Jianchao Lee
- Department of Environment Science, Shaanxi Normal University, Xi'an 710119, PR China
| | - Weidong Wu
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an 710005, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an 710005, PR China
| | - Baoxin Zhai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Xiangyi Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| |
Collapse
|
6
|
Geng Z, Deng T, Gu B, Qian X, Li R, Duan L, Li J, Han W, Qu L, Wei K. Visible-light-sensitive microrobots using H 2O as fuel for highly efficient capture and precise detection of nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135731. [PMID: 39255664 DOI: 10.1016/j.jhazmat.2024.135731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Nanoplastics, which are small plastic particles resulting from the decomposition of plastic waste, can accumulate and adsorb toxic chemicals in aquatic environments, leading to detrimental effects on the environment and human health. Consequently, there is an urgent demand for the development of an efficient method to accurately quantify and effectively remove nanoplastics. Here, we prepared a novel "cage-like" microrobot for effective dynamic capture and highly sensitive surface-enhanced Raman scattering detection of nanoplastics in situ. The microrobot utilizes water as fuel under visible light and achieves efficient capture of nanoplastics within 2 min on the basis of the stacking structure between layers and electrostatic action. The microrobot could be recovered by an external magnetic field, and the SERS activity was greatly enhanced through the coupling of multilayer hot spots, with a detection limit of 1.27 μg/mL. We built a simple device to demonstrate the feasibility of the microrobot strategy of capturing plastic in real wastewater and further extended this technology to single-use plastic cups in everyday life. Moreover, many different types of plastic spectra can also be quickly distinguished when combined with machine learning. This work provides new ideas for improving the dynamic capture and effective monitoring of nanoplastics.
Collapse
Affiliation(s)
- Zhiqin Geng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China; School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tangtang Deng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bohan Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinting Qian
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Rui Li
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Linfen Duan
- Shphotonics Technology Co., Ltd. G1-802, Suzhou 21500, China
| | - Junyang Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weiqing Han
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Kajia Wei
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
7
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
8
|
Tong YJ, Gong X, Tian Y, Liu Q, Wang D, Gong Z. Convenient Size Analysis of Polystyrene Nanoplastics via Regulating the Radiative Transition Efficiency. Anal Chem 2024; 96:14598-14603. [PMID: 39195842 DOI: 10.1021/acs.analchem.4c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Developing a convenient method to efficiently determine the size of nanoplastics in the environment is urgent in terms of ecological or human health protection. In this work, a novel strategy for discriminating the size of polystyrene (PS)-based nanoplastics was reported via regulating the radiative transition efficiency of NH2-UIO-66 (NU) with benzoic acid (BA) as the auxiliary ligand. The elaborately doped BA capped the defect sites and triggered nonradiative transition efficiency of NU. As a result, the formed composite (denoted as BA-NU) was more sensitive to interaction among neighboring NU and nanoplastics. The interaction between particles limited the rotation and vibration of the benzene ring within the BA-NU molecule, thus increasing the BA-NU fluorescence. The sensitivity of BA-NU on nanoplastics was well controlled by manipulating the doping contents of BA, leading to precisely tunable physicochemical properties for this structure. Deriving from the exquisitely designed nanostructures, the composite of BA-NU was successfully used to discriminate different size PS as an ultrasensitive turn-on probe. This work highlights the possibility of boosting the detection performance by regulating the main structure with guest molecules at the molecular level.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Yulu Tian
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Qian Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
9
|
Villacorta A, Cazorla-Ares C, Fuentes-Cebrian V, Valido IH, Vela L, Carrillo-Navarrete F, Morataya-Reyes M, Mejia-Carmona K, Pastor S, Velázquez A, Arribas Arranz J, Marcos R, López-Mesas M, Hernández A. Fluorescent labeling of micro/nanoplastics for biological applications with a focus on "true-to-life" tracking. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135134. [PMID: 38986413 DOI: 10.1016/j.jhazmat.2024.135134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.
Collapse
Affiliation(s)
- Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Camila Cazorla-Ares
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Victor Fuentes-Cebrian
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Iris H Valido
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Fernando Carrillo-Navarrete
- Institut d'Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER) and Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa 08222, Barcelona, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Karen Mejia-Carmona
- Institut Català de Nanociència i Nanotecnologia (ICN2-UAB-CSIC-BIST), Cerdanyola del Vallès, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Montserrat López-Mesas
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
10
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
11
|
Çiçek S, Yilmaz MT, Hadnađev TD, Tadesse EE, Kulawik P, Ozogul F. Definition, detection, and tracking of nanowaste in foods: Challenges and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13393. [PMID: 39031842 DOI: 10.1111/1541-4337.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Commercial applications of nanotechnology in the food industry are rapidly increasing. Accordingly, there is a simultaneous increase in the amount and diversity of nanowaste, which arise as byproducts in the production, use, disposal, or recycling processes of nanomaterials utilized in the food industry. The potential risks of this nanowaste to human health and the environment are alarming. It is of crucial significance to establish analytical methods and monitoring systems for nanowaste to ensure food safety. This review provides comprehensive information on nanowaste in foods as well as comparative material on existing and new analytical methods for the detection of nanowaste. The article is specifically focused on nanowaste in food systems. Moreover, the current techniques, challenges as well as potential use of new and progressive methods are underlined, further highlighting advances in technology, collaborative efforts, as well as future perspectives for effective nanowaste detection and tracking. Such detection and tracking of nanowaste are required in order to effectively manage this type ofwasted in foods. Although there are devices that utilize spectroscopy, spectrometry, microscopy/imaging, chromatography, separation/fractionation, light scattering, diffraction, optical, adsorption, diffusion, and centrifugation methods for this purpose, there are challenges to be overcome in relation to nanowaste as well as food matrix and method characteristics. New technologies such as radio-frequency identification, Internet of things, blockchain, data analytics, and machine learning are promising. However, the cooperation of international organizations, food sector, research, and political organizations is needed for effectively managing nanowaste. Future research efforts should be focused on addressing knowledge gaps and potential strategies for optimizing nanowaste detection and tracking processes.
Collapse
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkiye
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Eskindir Endalew Tadesse
- Department of Animal Products Technology, University of Agriculture in Kraków, Kraków, Poland
- Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Piotr Kulawik
- Department of Animal Products Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
12
|
Li H, Lee LM, Yu D, Chan SH, Li A. An optimized multi-technique based analytical platform for identification, characterization and quantification of nanoplastics in water. Talanta 2024; 272:125800. [PMID: 38394751 DOI: 10.1016/j.talanta.2024.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics (NPs) have been identified as an emerging concern for the environment and our food chains in recent years. Monitoring the concentration and size of nanoplastics is essential to assess the potential risks that nanoplastic particles may pose. In this study, we presented a multi-technique based analytical platform to identify, characterize and quantify nanoplastics in water samples through a combination of sample pre-concentration, asymmetric flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) and pyrolysis-GC/MS (Py-GC/MS). Models for predicting NPs concentration and particle number in unknown samples were established and validated using NPs standards of known size and AF4-MALS response. Py-GC/MS was applied for further identification of polymer type and quantification of mass concentration. Filtration conditions for pre-concentration were optimized to ensure a high recovery rate with minimal effect on original particle size. The addition of 0.05% SDS prior to filtration, using controlled filtration procedures, effectively improved the recovery. Furthermore, this study demonstrates the application of the analytical platform for the characterization and quantification of different nanoparticles (e.g. spiked PMMA and PS NPs) in the size range 60 nm-350 nm with detection limits down to 0.01 ppm in water samples. The established analytical platform can fill an analytical gap by offering a solution for quantifying size-resolved mass concentrations of nanoplastics and providing comprehensive data on size distribution, particle number and mass quantification with high sensitivity for detection.
Collapse
Affiliation(s)
- Haiyan Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Lin Min Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore.
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| |
Collapse
|
13
|
Tavakolpournegari A, Villacorta A, Morataya-Reyes M, Arribas Arranz J, Banaei G, Pastor S, Velázquez A, Marcos R, Hernández A, Annangi B. Harmful effects of true-to-life nanoplastics derived from PET water bottles in human alveolar macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123823. [PMID: 38513942 DOI: 10.1016/j.envpol.2024.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The increasing presence of secondary micro/nanoplastics (MNPLs) in the environment requires knowing if they represent a real health concern. To such end, an important point is to test representative MNPLs such as the denominated true-to-life MNPLs, resulting from the degradation of plastic goods in lab conditions. In this study, we have used polyethylene terephthalate (PET) NPLs resulting from the degradation of PET water bottles. Since inhalation is an important exposure route to environmental MNPLS, we have used mouse alveolar macrophages (MH-S) as a target cell, and the study focused only on the cells that have internalized them. This type of approach is novel as it may capture the realistic adverse effects of PETNPLs only in the internalized cells, thereby mitigating any biases while assessing the risk of these MNPLs. Furthermore, the study utilized a set of biomarkers including intracellular reactive oxygen species (ROS) levels, variations on the mitochondrial membrane potential values, and the macrophage polarization to M1 (pro-inflammatory response) and M2 (anti-proinflammatory response) as possible cellular effects due to PETNPLs in only the cells that internalized PETNPLs. After exposures lasting for 3 and 24 h to a range of concentrations (0, 25, 50, and 100 μg/mL) the results indicate that no toxicity was induced despite the 100% internalization observed at the highest concentration. Significant intracellular levels of ROS were observed, mainly at exposures lasting for 24 h, in an indirect concentration-effect relationship. Interestingly, a reduction in the mitochondrial membrane potential was observed, but only at exposures lasting for 24 h, but without a clear concentration-effect relationship. Finally, PETNPL exposure shows a significant polarization from M0 to M1 and M2 subtypes. Polarization to M1 (pro-inflammatory stage) was more marked and occurred at both exposure times. Polarization to M2 (anti-inflammatory stage) was only observed after exposures lasting for 24 h. Due to the relevance of the described biomarkers, our results underscore the need for further research, to better understand the health implications associated with MNPL exposure.
Collapse
Affiliation(s)
- Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Balasubramanyam Annangi
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
14
|
Hashemihedeshi M, Haywood E, Gatch DC, Jantunen L, Helm PA, Diamond ML, Dorman FL, Cahill LS, Jobst KJ. Size-Resolved Identification and Quantification of Micro/Nanoplastics in Indoor Air Using Pyrolysis Gas Chromatography-Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:275-284. [PMID: 38239096 DOI: 10.1021/jasms.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Humans are exposed to differing levels of micro/nanoplastics (MNPs) through inhalation, but few studies have attempted to measure <1 μm MNPs in air, in part due to a paucity of analytical methods. We developed an approach to identify and quantify MNPs in indoor air using a novel pyrolysis gas chromatographic cyclic ion mobility mass spectrometer (pyr-GCxcIMS). Four common plastic types were targeted for identification, namely, (polystyrene (PS), polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA). The method was applied to size-resolved particulate (56 nm to 18 μm) collected from two different indoor environments using a Micro-Orifice Uniform Deposit Impactors (MOUDI) model 110 cascade impactor. Comprehensive two-dimensional separation by GCxcIMS also enabled the retrospective analysis of other polymers and plastic additives. The mean concentrations of MNP particles with diameters of <10 μm and <2.5 μm in the laboratory were estimated to be 47 ± 5 and 27 ± 4 μg/m3, respectively. In the private residence, the estimated concentrations were 24 ± 3 and 16 ± 2 μg/m3. PS was the most abundant MNP type in both locations. Nontargeted screening revealed the presence of plastic additives, such as TDCPP (tris(1,3-dichloro-2-propyl)phosphate) whose abundance correlated with that of polyurethane (PU). This is consistent with their use as flame retardants in PU-based upholstered furniture and building insulation. This study provides evidence of indoor exposure to MNPs and underlines the need for further study of this route of exposure to MNPs and the plastic additives carried with them.
Collapse
Affiliation(s)
- Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Ethan Haywood
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Daniel C Gatch
- Gerstel, 701 Digital Drive, Linthicum Heights, Maryland 21090, United States
| | - Liisa Jantunen
- Environment & Climate Change Canada, 6248 8th Line, Egbert, ON L0L 1N0, Canada
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, ON M9P 3V6, Canada
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Frank L Dorman
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
15
|
Wang YX, Fu SF, Xu MX, Tang P, Liang JG, Jiang YF, Qiang T. Integrated Passive Sensing Chip for Highly Sensitive and Reusable Detection of Differential-Charged Nanoplastics Concentration. ACS Sens 2023; 8:3862-3872. [PMID: 37752695 DOI: 10.1021/acssensors.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this work, a new type, highly sensitive, and reusable nanoplastics (NPs) microwave detection method is proposed, which can be used to rapidly analyze NPs with different surface charges and sizes. The effective dielectric constant of NPs varies according to the different concentrations, particle sizes, and surface charges of NPs in aqueous solution. The feasibility of the microwave method for differential-charged NPs detection is verified using a complementary split ring resonator sensor manufactured on a cost-effective printed circuit board, which shows a high sensitivity only for positively charged NPs (PS-NH2) detection. To achieve microwave detection of both positively and negatively charged NPs (PS-SO3H), a microscale spiral-coupled resonator sensing chip is manufactured through integrated passive technology, which demonstrates extremely low detection limits and high sensitivity for both PS-NH2 and PS-SO3H, with different concentrations, particle sizes, and charges. In addition, for NPs solution doped with methyl orange, the device can still perform stable measurements, overcoming the inability of traditional NPs molecular element determination and optical detection methods to detect NPs aqueous solution with organic matter doping and color presence. The proposed microwave detection method could also be extended to sensing detection for detecting other hazardous environmental substances.
Collapse
Affiliation(s)
- Yan-Xiong Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Shan-Fei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng-Xin Xu
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Pan Tang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Jun-Ge Liang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Yan-Feng Jiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Tian Qiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu Province 215123, PR China
| |
Collapse
|
16
|
Xing GW, Gao J, Wang H, Liu YC. New Fluorophore and Its Applications in Visualizing Polystyrene Nanoplastics in Bean Sprouts and HeLa Cells. Molecules 2023; 28:7102. [PMID: 37894580 PMCID: PMC10609485 DOI: 10.3390/molecules28207102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the domain of environmental science, pollutants of nanoscale plastic dimensions are acknowledged as subjects of intricate significance. Such entities, though minuscule, present formidable challenges to ecological systems and human health. The diminutive dimensions of these contaminants render their detection arduous, thus demanding the inception of avant-garde methodologies. The present manuscript postulates the employment of the tetraphenylethylene functional group with a fused xanthene (TPEF), a distinguished fluorophore, as an exemplary system for the discernment of nanoplastic particulates. The synthesis and characterization of TPEF have been exhaustively elucidated, revealing its paramount fluorescence attributes and inherent affinity for interaction with nanoplastics. When subjected to comparison with TPEF, nanoplastics are observed to manifest a more pronounced fluorescent luminescence than when associated with the conventional Nile Red (NR). Particularly, the TPEF has shown exceptional affinity for polystyrene (PS) nanoplastics. Further, the resilience of nanoplastics within the hypocotyl epidermis of soybeans, as well as their persistence in mung bean sprouts subsequent to rigorous rinsing protocols, has been meticulously examined. Additionally, this investigation furnishes empirical data signifying the existence of nano-dimensional plastic contaminants within HeLa cellular structures. The urgency of addressing the environmental ramifications engendered by these diminutive yet potent plastic constituents is emphatically highlighted in this manuscript. TPEF paves the way for prospective explorations, with the aspiration of devising efficacious mitigation strategies. Such strategies might encompass delineating the trajectories undertaken by nanoplastics within trophic networks or their ingress into human cellular architectures.
Collapse
Affiliation(s)
- Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| | - Jerry Gao
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Heng Wang
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
17
|
Merdy P, Delpy F, Bonneau A, Villain S, Iordachescu L, Vollertsen J, Lucas Y. Nanoplastic production procedure for scientific purposes: PP, PVC, PE-LD, PE-HD, and PS. Heliyon 2023; 9:e18387. [PMID: 37520997 PMCID: PMC10382295 DOI: 10.1016/j.heliyon.2023.e18387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Studies on the environmental impact of nanoplastics face challenges in plastic analysis and a scarcity of nanoplastic materials necessary for the development of analytical techniques and experiments on biota impact. Here we provide detailed procedures for obtaining nanoparticles suspended in water for the most commonly used polymers: Polypropylene (PP), Polyvinylchloride (PVC), Low- and High-Density Polyethylene (PE-LD, PE-HD), and Polystyrene (PS). We dissolved larger size material to reprecipitate nanoparticles. For all plastic types, we obtained nanoparticles with a size between 50 and 300 nm, and a mainly spherical morphology. We verified that no irreversible agglomeration or coalescence of the particles occurred after 5 days of storage. The concentrations obtained in the final carrier solution were of the order of 109 particles mL-1. To prevent the persistence of reagents in the final carrier solution, a filtration step was implemented at the end of the process. The method proved unsuitable for Polyethylene Terephthalate (PET).
Collapse
Affiliation(s)
- Patricia Merdy
- Université de Toulon, Aix Marseille University, CNRS, IM2NP, 83041, Toulon, France
| | - Floriane Delpy
- Université de Toulon, Aix Marseille University, CNRS, IM2NP, 83041, Toulon, France
| | - Adrien Bonneau
- Université de Toulon, Aix Marseille University, CNRS, IM2NP, 83041, Toulon, France
| | - Sylvie Villain
- Université de Toulon, Aix Marseille University, CNRS, IM2NP, 83041, Toulon, France
| | - Lucian Iordachescu
- Aalborg University, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg, Denmark
| | - Jes Vollertsen
- Aalborg University, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg, Denmark
| | - Yves Lucas
- Université de Toulon, Aix Marseille University, CNRS, IM2NP, 83041, Toulon, France
| |
Collapse
|
18
|
Kadac-Czapska K, Trzebiatowska PJ, Knez E, Zaleska-Medynska A, Grembecka M. Microplastics in food - a critical approach to definition, sample preparation, and characterisation. Food Chem 2023; 418:135985. [PMID: 36989641 DOI: 10.1016/j.foodchem.2023.135985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The ubiquity of microplastics (MPs) is a more and more frequently brought up topic. The fact that such particles are present in food raises particular concern. Information regarding the described contamination is incoherent and difficult to interpret. Problems appear already at the level of the definition of MPs. This paper will discuss ways of explaining the concept of MPs and methods used for its analysis. Isolation of characterised particles is usually performed using filtration, etching and/or density separation. Spectroscopic techniques are commonly applied for analysis, whereas visual evaluation of the particles is possible thanks to microscopic analysis. Basic information about the sample can be obtained by the combination of Fourier Transform Infrared spectroscopy or Raman spectroscopy and microscopy or using the thermal method combined with spectroscopy or chromatography. The unification of the research methodology will allow a credible assessment of the influence of this pollution coming from food on health.
Collapse
|
19
|
Villacorta A, Vela L, Morataya-Reyes M, Llorens-Chiralt R, Rubio L, Alaraby M, Marcos R, Hernández A. Titanium-doped PET nanoplastics of environmental origin as a true-to-life model of nanoplastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163151. [PMID: 37011676 DOI: 10.1016/j.scitotenv.2023.163151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
The increased presence of secondary micro/nanoplastics (MNPLs) in the environment requires urgent studies on their potentially hazardous effects on exposed organisms, including humans. In this context, it is essential to obtain representative MNPL samples for such purposes. In our study, we have obtained true-to-life NPLs resulting from the degradation, via sanding, of opaque PET bottles. Since these bottles contain titanium (TiO2NPs), the resulting MNPLs also contain embedded metal. The obtained PET(Ti)NPLs were extensively characterized from a physicochemical point of view, confirming their nanosized range and their hybrid composition. This is the first time these types of NPLs are obtained and characterized. The preliminary hazard studies show their easy internalization in different cell lines, without apparent general toxicity. The demonstration by confocal microscopy that the obtained NPLs contain Ti samples offers this material multiple advantages. Thus, they can be used in in vivo approaches to determine the fate of NPLs after exposure, escaping from the existing difficulties to follow up MNPLs in biological samples.
Collapse
Affiliation(s)
- Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Llorens-Chiralt
- AIMPLAS, Plastics Technological Centre, Gustave Eiffel, 4, 46980 Paterna, Valencia, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
20
|
Tavakolpournegari A, Annangi B, Villacorta A, Banaei G, Martin J, Pastor S, Marcos R, Hernández A. Hazard assessment of different-sized polystyrene nanoplastics in hematopoietic human cell lines. CHEMOSPHERE 2023; 325:138360. [PMID: 36905991 DOI: 10.1016/j.chemosphere.2023.138360] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The environmental presence of micro/nanoplastics (MNPLs) is an environmental and human health concern. Such MNPLs can result from the physicochemical/biological degradation of plastic goods (secondary MNPLs) or can result from industrial production at that size, for different commercial purposes (primary MNPLs). Independently of their origin, the toxicological profile of MNPLs can be modulated by their size, as well as by the ability of cells/organisms to internalize them. To get more information on these topics we have determined the ability of three different sizes of polystyrene MNPLs (50, 200, and 500 nm) to produce different biological effects in three different human hematopoietic cell lines (Raji-B, THP-1, and TK6). Results show that none of the three sizes was able to induce toxicity (growth ability) in any of the tested cell types. Although transmission electron microscopy and confocal images showed cell internalization in all the cases, their quantification by flow cytometry demonstrated an important uptake by Raji-B and THP-1 cells, in comparison with TK6 cells. For the first ones, the uptake was negatively associated with the size. Interestingly, when the loss of mitochondrial membrane potential was determined, dose-related effects were observed for Raji-B and THP-1 cells, but not for TK6 cells. These effects were observed for the three different sizes. Finally, when oxidative stress induction was evaluated, no clear effects were observed for the different tested combinations. Our conclusion is that size, biological endpoint, and cell type are aspects modulating the toxicological profile of MNPLs.
Collapse
Affiliation(s)
- Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Balasubramanyam Annangi
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Joan Martin
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain.
| |
Collapse
|
21
|
Annangi B, Villacorta A, Vela L, Tavakolpournegari A, Marcos R, Hernández A. Effects of true-to-life PET nanoplastics using primary human nasal epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104140. [PMID: 37137422 DOI: 10.1016/j.etap.2023.104140] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Since inhalation is a relevant exposure route, studies using appropriate micro/nanoplastic (MNPLs) models, representative targeted cells, and relevant biomarkers of effect are required. We have used lab-made polyethylene terephthalate (PET)NPLs obtained from PET plastic water bottles. Human primary nasal epithelial cells (HNEpCs) were used as a model of the first barrier of the respiratory system. Cell internalization and intracellular reactive oxygen species (iROS) induction, as well as the effects on mitochondria functionality and in the modulation of the autophagy pathway, were evaluated. The data indicated significant cellular uptake and increased levels of iROS. Furthermore, a loss of mitochondrial membrane potential was observed in the exposed cells. Regarding the effects on the autophagy pathway, PETNPLs exposure significantly increases LC3-II protein expression levels. PETNPLs exposure also induced significant increases in the expression of p62. This is the first study showing that true-to-life PETNPLs can alter the autophagy pathway in HNEpCs.
Collapse
Affiliation(s)
- Balasubramanyam Annangi
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
22
|
Annangi B, Villacorta A, López-Mesas M, Fuentes-Cebrian V, Marcos R, Hernández A. Hazard Assessment of Polystyrene Nanoplastics in Primary Human Nasal Epithelial Cells, Focusing on the Autophagic Effects. Biomolecules 2023; 13:biom13020220. [PMID: 36830590 PMCID: PMC9953511 DOI: 10.3390/biom13020220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The human health risks posed by micro/nanoplastics (MNPLs), as emerging pollutants of environmental/health concern, need to be urgently addressed as part of a needed hazard assessment. The routes of MNPL exposure in humans could mainly come from oral, inhalation, or dermal means. Among them, inhalation exposure to MNPLs is the least studied area, even though their widespread presence in the air is dramatically increasing. In this context, this study focused on the potential hazard of polystyrene nanoplastics (PSNPLs with sizes 50 and 500 nm) in human primary nasal epithelial cells (HNEpCs), with the first line of cells acting as a physical and immune barrier in the respiratory system. Primarily, cellular internalization was evaluated by utilizing laboratory-labeled fluorescence PSNPLs with iDye, a commercial, pink-colored dye, using confocal microscopy, and found PSNPLs to be significantly internalized by HNEpCs. After, various cellular effects, such as the induction of intracellular reactive oxygen species (iROS), the loss of mitochondrial membrane potential (MMP), and the modulation of the autophagy pathway in the form of the accumulation of autophagosomes (LC3-II) and p62 markers (a ubiquitin involved in the clearance of cell debris), were evaluated after cell exposure. The data demonstrated significant increases in iROS, a decrease in MMP, as well as a greater accumulation of LC3-II and p62 in the presence of PSNPLs. Notably, the autophagic effects did indicate the implications of PSNPLs in defective or insufficient autophagy. This is the first study showing the autophagy pathway as a possible target for PSNPL-induced adverse effects in HNEpCs. When taken together, this study proved the cellular effects of PSNPLs in HNEpCs and adds value to the existing studies as a part of the respiratory risk assessment of MNPLs.
Collapse
Affiliation(s)
- Balasubramanyam Annangi
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique 1111100, Chile
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Victor Fuentes-Cebrian
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (R.M.); (A.H.)
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (R.M.); (A.H.)
| |
Collapse
|
23
|
Xie L, Gong K, Liu Y, Zhang L. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:25-43. [PMID: 36576086 DOI: 10.1021/acs.est.2c07416] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics (<1000 nm) have been evidenced to be universal in a variety of environmental media. They pose a potential cytotoxicity and health risk due to their tiny size, which allows them to easily penetrate biological barriers and enter cells. Here, we briefly review the various prevalent analytical techniques or tools for identifying nanoplastics, and further move to focus on their advantages and disadvantages. Surface-enhanced Raman spectroscopy (SERS) has been implemented for the identification of individual nanoparticles because of its high sensitivity to molecules and ease of rapid characterization. Therefore, we introduce the SERS technique in the following aspects, (1) principles of SERS; (2) strategies and advances in SERS detection of nanoplastics; and (3) applying SERS to real environmental samples. We put our effort into the summarization of efficient SERS substrates that essentially enable the better detection of nanoplastics, and extend to discuss how the reported nanoplastics pretreatment methodologies can bring SERS analysis to practical applications. A further step moving forward is to investigate the problems and challenges of currently applied SERS detection methods and to look at future research needs in nanoplastics detection employing SERS analysis.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Kedong Gong
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| |
Collapse
|
24
|
Mandemaker LDB, Meirer F. Spectro-Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. Angew Chem Int Ed Engl 2023; 62:e202210494. [PMID: 36278811 PMCID: PMC10100025 DOI: 10.1002/anie.202210494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Nanoplastics (NPs), small (<1 μm) polymer particles formed from bulk plastics, are a potential threat to human health and the environment. Orders of magnitude smaller than microplastics (MPs), they might behave differently due to their larger surface area and small size, which allows them to diffuse through organic barriers. However, detecting NPs in the environment and organic matrices has proven to be difficult, as their chemical nature is similar to these matrices. Furthermore, as their size is smaller than the (spatial) detection limit of common analytical tools, they are hard to find and quantify. We highlight different micro-spectroscopic techniques utilized for NP detection and argue that an analysis procedure should involve both particle imaging and correlative or direct chemical characterization of the same particles or samples. Finally, we highlight methods that can do both simultaneously, but with the downside that large particle numbers and statistics cannot be obtained.
Collapse
Affiliation(s)
- Laurens D. B. Mandemaker
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterial ScienceUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterial ScienceUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
25
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|