1
|
Fang B, Liu YF, Wei HX, Zhou L, Yang SZ, Gu JD, Mu BZ. Enhancing methanogenesis from long-chain fatty acids (LCFA) and enrichment of novel bacteria with resuscitation-promoting factors. BIORESOURCE TECHNOLOGY 2025; 432:132663. [PMID: 40360028 DOI: 10.1016/j.biortech.2025.132663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/15/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Long-chain fatty acids (LCFA) are important intermediate metabolites in lipid hydrolysis during anaerobic digestion for biogas production. High LCFA loads inhibit microbial activity by toxicity, impairing the coupling of β-oxidation and methanogenesis, thus reducing LCFA degradation efficiency. This study employed and tested seven stimulants, including the resuscitation-promoting factors (Rpf and YeaZ), the quorum-sensing molecules (cAMP, and AHLs), the chemical stimulants (pyruvate), the growth promoter (fumarate), and yeast extract + peptone (YP) for enhancement of methanogenic degradation of LCFA. The results indicate that the chemical stimulants and resuscitation-promoting factors enhanced maximum methane-production rate 1.58 to 2.20 fold versus the NS, reducing the lag phase by 1.46-9.76 days. Analysis of the microbial community composition revealed that the quorum sensing factors only increased species richness, while Rpf, YeaZ fumarate, and YP stimulated the growth of core members of the communities. Metagenomic analysis detected three previously unreported LCFA-degrading bacterial taxa, Marinisomatota, Thermoanaerobaculaceae and Pelomonas. Particularly, Rpf and YeaZ significantly enriched LCFA-degrading bacteria such as Syntrophomonadaceae, Leptospiraceae, and Marine Group B within the core species, while YeaZ also stimulated methanogenic bacteria, possibly due to resuscitating dormant microbes from unfavorable conditions. Syntrophic interactions between LCFA degraders and non-degraders, rather than methanogen abundance, govern methanogenic LCFA degradation. These results demonstrate that the use of stimulants is an effective approach to enhance LCFA degradation and provide a new pathway for energy recovery.
Collapse
Affiliation(s)
- Bo Fang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Hao-Xun Wei
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
2
|
Zhou S, Qiao L, Jia Y, Khanal SK, Sun L, Lu H. Micro-nano bubble ozonation for effective treatment of ibuprofen-laden wastewater and enhanced anaerobic digestion performance. WATER RESEARCH 2025; 273:123006. [PMID: 39721508 DOI: 10.1016/j.watres.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.3 mg/L) and mitigating its inhibitory effects on the anaerobic digestion (AD) of intralipid (IL)-laden wastewater. Our findings demonstrated that MNB ozonation achieved a 99.0 % removal efficiency of IBU within 70 min, significantly surpassing the 69.8 % efficiency observed with conventional ozonation under optimal conditions. Both conventional and MNB ozonation primarily transformed IBU through oxidation processes, including hydroxylation and the conversion of CH bonds to C = O groups, along with carbon cleavage. However, MNB ozonation markedly reduced the toxicity of IBU-laden wastewater by further transforming toxic by-products, particularly under mildly alkaline conditions (pH 7.2 and 9.0). This reduction in toxicity led to a significant improvement in subsequent AD performance; specifically, a 70-min MNB ozonation pretreatment enhanced methane production by 48.1 %, increased chemical oxygen demand removal by 35.6 %, and reduced fatty acid accumulation compared to the control without pretreatment. Additionally, the effluent from MNB ozonation positively impacted the microbial community, particularly by enriching syntrophic bacteria and methanogens. Overall, these findings offered new insights into the behavior and toxicity of IBU oxidation by-products in both conventional and MNB ozonation processes. Furthermore, this study proposed a novel strategy for the combined treatment of IBU- and IL-laden wastewaters, establishing a robust foundation for advancing MNB ozonation technology in engineered pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lei Qiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Ma̅noa, Honolulu, HI, United States; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511 Sejong 2511, Korea
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
3
|
Faisal S, Almutairi AW, Saif I, Ting L, Wang Q, Mustafa A, Ebaid R. Seaweed valorization as anaerobic co-substrate with fat, oil, and grease: Biomethane potential and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 421:132155. [PMID: 39921007 DOI: 10.1016/j.biortech.2025.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The present study explored the anaerobic co-digestion (AcD) of seaweed Gracilaria vermiculophylla with fat, oil, and grease (FOG) at 75, 50, and 25 % w/w of volatile solids (VS). Mono-digestion of FOG and SW led to a methane production of 133 and 109 mL/(g.d) with 40 days lag-phase, lower than 235 mL/(g.d) of AcD at FOG-50:SW-50 with reduced lag-phase of 20 days. The palmitic and oleic acid reduction was 95 % in the reactors FOG-50:SW-50, followed by FOG-25:SW-75, which was 84 %, as compared to FOG mono-digestion (47 %). Relative abundance of Firmicutes, Chloroflexi, and Bacteroidetes were enriched during AcD. The relative abundance of Methanosaeta was enhanced (40-90 %) in FOG-50:SW-50 compared with FOG-100:SW-0 as the reduction in Methanosaeta was replaced by Methanoculleus (30 %) and RuMen-M2 (10 %). The present study offers essential perspectives for the AcD of FOG with SW, showcasing the benefits of SW as a co-substrate for improved methane recovery from FOG.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China.
| | - Adel W Almutairi
- Biological Sciences Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Irfan Saif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000 Gansu Province, PR China
| | - Li Ting
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ebaid
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg 22609 Hamburg, Germany; Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| |
Collapse
|
4
|
Duan X, Duan H, Zhao C, Feng L, Zhao G, Chen Y. Genome-Centric Metagenomics and Metaproteomics Profiled the Shared and Unique Taxa in Isomeric Fatty Acid-Differentiated Anaerobic Co-Digestion of Food Waste and Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3077-3087. [PMID: 39927429 DOI: 10.1021/acs.est.4c09839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Fatty acids (FAs)-involving structures, widely occurring in production and life, have been increasingly considered as major feedstocks and potential platforms for renewable energy generation. However, the role of isomeric FAs (particularly trans-FAs) in high-concerned energy-reserving technology represented by anaerobic digestion (AD) remains unclear. This study displayed that trans-oleic acid (TOA, 10 mg/L) significantly increased methane production by 56% during the codigestion of food waste and sludge, whereas the same concentration of cis-oleic acid (COA) led to a slight 20% increase. Genome-centric meta-omics and biochemical tests indicated that acidogenic taxa that harbor and express distinct functions in the cell envelopes were primarily responsible for TOA/COA-differentiated AD. Four shared taxa, including three monodermal acidogens and one hydrogenotrophic methanogen, were common drivers of both TOA- and COA-enhanced AD, resulting in stronger acidification and hydrogenotrophic methanogenesis than in the control bioreactor without oleic acid. In addition to four shared species, two unique didermal acidogens were specific drivers of TOA-enhanced AD, demonstrating more robust acidification compared to that of COA-enhanced AD. This study profiled the geometry-dependent effects of isomeric FAs on AD, providing new insights into targeted regulation for energy conservation and decarbonization of FAs-involving feedstocks.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haowen Duan
- Shanghai Municipal Investment Corporation, 18 Yongjia Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Alibardi L, Strazzabosco A, Cossu R. Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124193. [PMID: 39862814 DOI: 10.1016/j.jenvman.2025.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production. This research determined the chemical and physical characteristics of FOG waste collected at four different wastewater treatment plants and defined the potential for energy recovery via dark fermentation and anaerobic digestion as treatment options for final disposal. The FOG samples featured markedly distinct physical aspects in connection with the oil separation technologies: solid agglomerate with a high content of lipids from vortex-type separation and semi-solid agglomerate with a low content of oils and fats from horizontal-flow chambers. All FOG waste presented high potential for methane production with values ranging from 460 to 865 Nm3CH4/tVS but low yields of biological hydrogen via dark fermentation. This study addresses a knowledge gap in the scientific literature on the characteristics of FOG waste from treatment plants and defines possible routes for sustainable management via bio-energy recovery.
Collapse
Affiliation(s)
- Luca Alibardi
- Cranfield Water Science Institute, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.
| | | | - Raffaello Cossu
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| |
Collapse
|
6
|
Huang L, Lv Q, Ren F, Wang L, Song Y, Wang L, Xu H, Zhang G. Unlocking new electron transport routes: Insights into enhanced long-chain fatty acid conversion in valorization of lipid-rich waste. BIORESOURCE TECHNOLOGY 2025; 418:131979. [PMID: 39674354 DOI: 10.1016/j.biortech.2024.131979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
In this study, the alkaline fermentation of combined lipid-rich waste (LRW) was explored to produce volatile fatty acids (VFAs). By introducing sulfate as an external electron acceptor, the long-chain fatty acid (LCFA) metabolic pathway was enhanced, achieving a VFA yield of 671.1 ± 21.9 mg COD/g VSS-an increase of 4.7 times compared to the control-under conditions of high lipid content (10 g/L). Significant conversion of LCFAs, such as oleic and linolenic acids, was achieved via the β-oxidation pathway, which also led to a synergistic enhancement of the fermentation of non-lipidic organic matter. Key functional genes from five LCFA metabolic modules were identified, revealing diverse electron transport routes, including non-syntrophic and syntrophic LCFA oxidation mediated by differentiated microbial function groups. Genome-centric metagenomics analysis further identified microbial functional groups responsible for the reconstructed pathways, offering new insights into optimizing LRW recycling and VFA production in anaerobic fermentation systems.
Collapse
Affiliation(s)
- Long Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Qingyan Lv
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fuli Ren
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lele Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yali Song
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Li Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Magalhães CP, Duarte MS, Pereira MA, Stams AJM, Cavaleiro AJ. Facultative anaerobic bacteria enable syntrophic fatty acids degradation under micro-aerobic conditions. BIORESOURCE TECHNOLOGY 2025; 417:131829. [PMID: 39547298 DOI: 10.1016/j.biortech.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Trace amounts of oxygen stimulate facultative anaerobic bacteria (FAB) within anaerobic bioreactors, which was shown to correlate with enhanced methane production from long-chain fatty acids. The relationship between FAB and fatty acid-degrading syntrophic communities under micro-aerobic conditions is still unclear. In this work, two syntrophic co-cultures, Syntrophomonas wolfei + Methanospirillum hungatei and Syntrophomonas zehnderi + Methanobacterium formicicum, were assembled and incubated with short, medium and long-chain fatty acids, with 0-10 % O2, in the presence and absence of FAB, here represented by Pseudomonas spp. Without Pseudomonas, the syntrophic activity was inhibited by 79 % at 0.5 % O2, but with Pseudomonas, the syntrophic co-cultures successfully converted the fatty acids to methane with up to 2 % O2. These findings underscore the pivotal role of FAB in the protection of syntrophic fatty acid-degrading communities under micro-aerobic conditions and emphasizes its significance in real-scale anaerobic digesters where strictly anaerobic conditions may not consistently be maintained.
Collapse
Affiliation(s)
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alfons J M Stams
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Donatelli JA, Chang S. Biological methane potentials of food waste of different components: Methane yields, production kinetics, and element balance. BIORESOURCE TECHNOLOGY 2024; 413:131435. [PMID: 39244104 DOI: 10.1016/j.biortech.2024.131435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study assessed the methane production from food waste (FW) with dominant components of Meat (MFW), Fruit &Veg (VFW), Grain (GFW), Dairy (DFW), and the mixed feed of these components (MixFW). The high protein and lipid content FW (HPLFW) of MFW, DFW, and MixFW showed the methane yields of 337.0 ± 3.0, 307.4 ± 0.8, and 297.1 ± 1.2 ml-CH4/gCOD, respectively, while those for the high carbohydrate content FW (HCFW) of VFW and GFW were 238.3 ± 1.2 and 171.2 ± 0.3 ml-CH4/gCOD, respectively. A modified two-component kinetic (MTK) model was demonstrated to be the best to describe the methane production kinetics of both HPLFW and HCFW types of feeds. The element balance analysis revealed the element formula of the FW feeds and the methane-conversion organic content. The results obtained from this study showed that the high lipid and animal protein content increased the methane yield and biogas methane composition.
Collapse
Affiliation(s)
- Justin A Donatelli
- School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Sheng Chang
- School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
9
|
Liu YC, Ramiro-Garcia J, O'Connor S, Paulo LM, Maria Braguglia C, Cristina Gagliano M, O'Flaherty V. Microbial community response to temperature reduction during anaerobic treatment of long chain fatty acids-containing wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131529. [PMID: 39321934 DOI: 10.1016/j.biortech.2024.131529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Acclimating mesophilic biomass to low temperatures have been used to start-up psychrophilic anaerobic reactors, but limited microbial information is available during the acclimation. To investigate microbial responses to temperature reductions, duplicate lab-scale anaerobic digestion (AD) reactors were operated for 166 days, with the temperature being reduced from 37°C to 15°C, using synthetic long chain fatty acid (LCFA)-containing wastewater as the feedstock. The acclimated biomass at 15°C exhibited efficient removal of organic matter (total COD>75%, soluble COD>88%, and LCFA>99%). Temperature reductions lead to significant reductions in microbiome diversity. Fermentative bacteria were highly dynamic and functional redundant during temperature reductions. Smithella was the dominant syntrophic bacteria involved in LCFA degradation coupled with Methanothrix and Methanocorpusculum at 15°C. Membrane modifications and compatible cellular solutes production were triggered by temperature reductions as microbial response to cold stress. This study provided molecular insights in microbial acclimation to low temperatures for psychrophilic AD.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland.
| | - Javier Ramiro-Garcia
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas, Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Sandra O'Connor
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Camilla Maria Braguglia
- Water Research Institute, CNR, Area di Ricera RM1-Montelibretti, Via Salaria km 29.300, 00015 Monterotondo (Roma), Italy
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, MA 8911 Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
10
|
Young Kim J, Park WK, Park G, Choi Y, Kwon EE. Feed-shifting strategy for increasing biodiesel production from black soldier fly larvae. BIORESOURCE TECHNOLOGY 2024; 414:131633. [PMID: 39406310 DOI: 10.1016/j.biortech.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The aim of this study was to increase the bioconversion efficiency (lipid accumulation) of black soldier fly larvae while simultaneously increasing biodiesel production through a feed-shifting strategy. Feeding with low-lipid feed promoted an increase in larval weight, while high-lipid feed resulted in greater lipid accumulation. Based on this result, a feed-shifting strategy was introduced, which consisted of two stages: first, increasing larval body weight using low-lipid feed, followed by lipid induction for biodiesel production using high-lipid feed. The use of this strategy resulted in an increase in the dry weight of larvae by ≥16 % compared to single feeding systems. This led to a 20 % increase in biodiesel productivity. The waste reduction ratio was enhanced due to the higher bioconversion rate in the feed-shifting strategy compared to that in the single feeding systems. The feed-shifting strategy would contribute to the enhancement of waste-to-energy efficiency.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Won-Kun Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeongnam Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
11
|
Zheng Y, Wu Z, Wang P, Wei Y, Jia K, Zhang M, Shi X, Zhang L, Li J. Long-chain fatty acids facilitate acidogenic fermentation of food waste: Attention to the microbial response and the change of core metabolic pathway under saturated and unsaturated fatty acids loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175565. [PMID: 39151620 DOI: 10.1016/j.scitotenv.2024.175565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Long-chain fatty acids (LCFAs) are recognized as a significant inhibitory factor in anaerobic digestion of food waste (FW), yet they are inevitably present in FW due to lipid hydrolysis. Given their distinct synthesis mechanism from traditional anaerobic digestion, little is known about the effect of LCFAs on FW acidogenic fermentation. This study reveals that total volatile fatty acids (VFAs) production increased by 9.98 % and 4.03 % under stearic acid and oleic acid loading, respectively. Acetic acid production increased by 20.66 % under stearic acid loading compared to the control group (CK). However, the LCFA stress restricted the degradation of solid organic matter, particularly under oleic acid stress. Analysis of microbial community structure and quorum sensing (QS) indicates that LCFA stress enhanced the relative abundance of Lactobacillus and Klebsiella. In QS system, the relative abundance of luxS declined from 0.157 % to 0.116 % and 0.125 % under oleic acid and stearic acid stress, respectively. LCFA stress limited the Autoinducer-2 (AI-2) biosynthesis, suggesting that microorganisms cannot use QS to resist the LCFA stress. Metagenomic sequencing showed that LCFA stress promoted acetic acid production via the conversion of pyruvate and acetyl-CoA to acetate. Direct conversion of pyruvate to acetic acid increased by 47.23 % compared to the CK group, accounting for the enhanced acetic acid production under stearic acid loading. The abundance of β-oxidation pathway under stearic acid loading was lower than under oleic acid loading. Overall, the stimulating direct conversion of pyruvate plays a pivotal role in enhancing acetic acid biosynthesis under stearic acid loading, providing insights into the effect of LCFA on mechanism of FW acidogenic fermentation.
Collapse
Affiliation(s)
- Yi Zheng
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Kaixue Jia
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Mingzhu Zhang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Longli Zhang
- Beijing VOTO Biotech Co., Ltd, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
12
|
Sobhi M, Elsamahy T, Zhang Y, Zakaria E, Ren S, Gaballah MS, Zhu F, Hu X, Cui Y, Huo S. Adaptation of Chlorella vulgaris immobilization on rice straw with liquid manure to create a sustainable feedstock for biogas production and potential feed applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123050. [PMID: 39447360 DOI: 10.1016/j.jenvman.2024.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Rice straw (RS) is a widely available agricultural residue with significant potential for biogas production and feed applications; however, its poor digestibility and nutritional value limit its utilization. This study explores an innovative approach to enhance the digestibility and nutritional value of RS by cultivating Chlorella vulgaris through immobilization technology on RS, using liquid manure (LM) as an alternative to the traditional BG11 medium. The results showed an increase in chlorophyll a (Chl a) after 12 days for both the BG11 medium and LM-based treatments, from 0.13 to 0.34 and 0.24 mg Chl a/g product (DM), respectively. Additionally, the immobilized microalgal biomass increased to 284.18 and 170.14 mg algal biomass/g product (DM), respectively. Soaking under microaerobic conditions during cultivation led to the partial degradation of RS. This, combined with the formed microalgal biofilm, contributed to an improved digestibility of the dry matter, reaching 69.1% and 65.9% for the final products based on the BG11 medium and LM mediums, respectively, compared to 52.1% for the raw RS. Furthermore, the crude protein and lipids contents were significantly improved with the potential for applications in feed, reaching 21.4% and 4.1% for the BG11 medium-based product, while they were observed to be 12.8% and 3.0%, respectively, for the LM-based product. Additionally, carbon-to-nitrogen ratio was significantly reduced compared to the raw RS. The higher digestibility and improved nutritional value contributed to increased biogas production, reaching 129.3 and 118.7 mL/g (TS) for the products based on the traditional medium and LM medium, respectively, compared to 86.7 mL/g (TS) for the raw RS. The immobilization mechanism and biofilm development could be attributed to the roughness of the RS and extracellular polymer substances. This study demonstrates that integrating C. vulgaris cultivation on RS with LM as a nutrient source not only enhances the digestibility and nutritional value of RS but also offers a sustainable waste management solution with potential applications in biogas production and animal feed.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Siyuan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed S Gaballah
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Peng W, Fan L, Zhang H, Xian HY, Lü F, He PJ. Hyperspectral Imaging Technique to Characterize Digestate and Visualize Physical Impurities in Anaerobically Digested Biowaste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16488-16496. [PMID: 39214532 DOI: 10.1021/acs.est.4c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Methods used to monitor anaerobic digestion (AD) indicators are commonly based on wet chemical analyses, which consume time and materials. In addition, physical disturbances, such as floating granules (FGs), must be monitored manually. In this study, we present an eco-friendly, high-throughput methodology that uses near-infrared hyperspectral imaging (NIR-HSI) to build a machine-learning model for characterizing the chemical composition of the digestate and a target detection algorithm for identifying FGs. A total of 732 digestate samples were used to develop and validate a model for calculating total nitrogen (TN), total organic carbon (TOC), total ammonia nitrogen (TAN), and chemical oxygen demand (COD), which are the chemical indicators of responses to disturbances in the AD process. Among these parameters, good model performance was obtained using the dried digestates data set, where the coefficient of determination (R2test) and the root-mean-square error (RMSEtest) were 0.82 and 1090 mg/L for TOC, and 0.86 and 690 mg/L for TN, respectively. Furthermore, the unique spectral features of the FGs in reactors with a lipid-rich substrate meant that they could also be identified by the HSI system. Based on these findings, developing NIR-HSI solutions to monitor the digestate properties in AD plants has great potential for industrial application.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lu Fan
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hao-Yang Xian
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
14
|
Wu LJ, Li XX, Yang F, Lyu YK. Thermophilic and mesophilic digestion of high-solid oily food waste: How to ensure long-term and stable continuous operation? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121973. [PMID: 39067336 DOI: 10.1016/j.jenvman.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Commonly high lipid in food waste confronts anaerobic digestion with improved energy production and also inhibition risk from the intermediate long chain fatty acids (LCFAs). Combined with operation challenges from anaerobic digestion of food waste itself, coping strategies are necessitated to ensure stable operation for oily food waste (OFW). A parallel thermophilic (TD) and mesophilic digestion (MD) of high-solid OFW was conducted and operated continuously for a long term. It was clarified that challenges were mainly from acidification, trace metal deficiency and LCFA inhibition. Acidification resulted in an abrupt pH decline to even below 6.00, and over 75% drop of biogas production rate. In addition to the requirements of saturated strong alkali to maintain an appropriate range, supplementation of trace metals were proven effective in counteracting the sharp decrease of biogas production rate. The TD was observed more competent in coping with the acidification than the MD, while the TD needed more supplementation of trace metals at approximately 0.10 mg Fe/g chemical oxygen demand (COD)added, 0.01 mg Co/g CODadded and 0.01 mg Ni/g CODadded. The TD was more adaptable in LCFA conversion due to the stronger ability of overcoming the palmitic acid (C16:0) accumulation. The MD experienced a prolonged recovery period owing to LCFA inhibition shortly after acidification. Similar operation performance was ultimately achieved for the TD and MD by the counteractions, with a methane yield and volatile solids (VS) removal efficiency at about 0.60 L/g VSadded and 75.0%, respectively. In summary, combined pH control and trace metal supplementation, and prevention and recovery of LCFA inhibition were necessary for the stability insurance of a long-term continuous digestion of oily food waste.
Collapse
Affiliation(s)
- Li-Jie Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
| | - Xiao-Xiao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Fan Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yong-Kang Lyu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
15
|
Yan W, Wang D, Wang Y, Wang C, Chen X, Liu L, Wang Y, Li YY, Kamagata Y, Nobu MK, Zhang T. Metatranscriptomics-guided genome-scale metabolic reconstruction reveals the carbon flux and trophic interaction in methanogenic communities. MICROBIOME 2024; 12:121. [PMID: 38970122 PMCID: PMC11225162 DOI: 10.1186/s40168-024-01830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry. RESULTS In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role. CONCLUSION Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xi Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Masaru K Nobu
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, China.
| |
Collapse
|
16
|
Rasit N, Wan Ab Karim Ghani WA, Che Harun MH, Hamzah S, Seswoya R, Siddique MNI. Feeding frequency efficacy on biogas yield of oily substrate anaerobic digestion in continuous stir tank reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2796-2811. [PMID: 38822615 DOI: 10.2166/wst.2024.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Anaerobic treatment of oily substrate, known as grease trap waste (GTW), was investigated for its practicability via continuous stirred tank reactor (CSTR) at different operating conditions and selected recovery strategies of feeding frequency efficacy. This study determine the performance of feeding frequency efficacy, namely feeding every 24 hours (R24H) and feeding every 12 hours (R12H). Under organic loading rate (OLR) of 2.2 gCOD/L.day, R12H exhibited methane composition of 57%, methane production rate of 0.27 LCH4/L.day, and methane yield of 0.14 LCH4/gCODremoved. At the same OLR, R24H recorded methane composition of 60%, methane production rate of 0.29 LCH4/L.day and similar methane yield as R12H. Findings indicated that R24H showed performance comparable to that of R12H. Given minor variation observed in performance, it is recommended that plant operators may consider scheduling two feedings per day for low loading conditions and switch to one feeding per day for higher loading conditions. This strategy is designed to balance the system and prevent shock loads, which could lead to plant shutdowns. This mechanism will induce their conversion to volatile fatty acids (VFAs); thus, reducing the risk of acid accumulation and pH drops, which could inhibit methanogens to produce methane, especially for oily substrate.
Collapse
Affiliation(s)
- Nazaitulshila Rasit
- Environmental Sustainable Material Research Interest Group, Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| | - Wan Azlina Wan Ab Karim Ghani
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohammad Hakim Che Harun
- Environmental Sustainable Material Research Interest Group, Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sofiah Hamzah
- Environmental Sustainable Material Research Interest Group, Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Roslinda Seswoya
- Advanced Waste Recovery and Air Studies, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Johor, Malaysia
| | - Md Nurul Islam Siddique
- Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
17
|
Zheng X, Xie J, Chen W, Liu M, Xie L. Boosting anaerobic digestion of long chain fatty acid with microbial electrolysis cell combining metal organic framework as cathode: Biofilm construction and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 395:130284. [PMID: 38219925 DOI: 10.1016/j.biortech.2023.130284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The role of metal organic framework (MOF) modified cathode in promoting long chain fatty acid (LCFA) methanation was identified in microbial electrolysis cell coupled anaerobic digestion (MEC-AD) system. The maximum methane production rate of MEC-AD-MOF achieved 49.8 ± 3.4 mL/d, which increased by 41 % compared to MEC-AD-C. The analysis of bio-cathode biofilm revealed that microbial activity, distribution, population, and protein secretion prompted by MOF cathode, which in turn led to an acceleration of electron transfer between the cathode and microbes. Specifically, the relative abundance of acetate-oxidizing bacterium (Mesotoga) in MEC-AD-MOF was 1.5-3.6 times higher than that in MEC-AD-C, with a co-metabolized enrichment of Methanobacterium. Moreover, MOF cathode reinforced LCFA methanation by raising the relative abundance of genes coded key enzymes involved in CO2-reducing pathway, and elevating the tolerance of microbes to LCFA inhibition. These results indicate that MOF can enhance biofilm construction in MEC-AD, thereby improving the treatment performance of lipid wastewater.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Šánek L, Husár J, Pecha J. Comprehensive lipid hydrolysis observation in anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 394:130279. [PMID: 38176593 DOI: 10.1016/j.biortech.2023.130279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Lipid hydrolysis monitoring, including especially glycerides, is necessary for comprehending the anaerobic digestion process in lipid-rich substrates processing. This reaction has not been investigated in such detail so far, despite its potential to be crucial in assuring a stable process. This study suggested and thoroughly validated an uncomplicated method of monitoring lipid hydrolysis during anaerobic digestion, achieving recovery values >95 % with an average relative standard deviation <5 %. Subsequently, the method was applied on the very first detailed observation of glyceride hydrolysis in the anaerobic sludge, tracking even changes in fatty acid profiles during anaerobic digestion. Results showed that lipid hydrolysis can take several days, thus likely affecting the whole anaerobic digestion of lipids. The method aims to provide answers to improve understanding of lipids' fate and their inhibition phenomena in anaerobic digestion.
Collapse
Affiliation(s)
- Lubomír Šánek
- Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin 760 05, Czech Republic.
| | - Jakub Husár
- Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin 760 05, Czech Republic.
| | - Jiří Pecha
- Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin 760 05, Czech Republic.
| |
Collapse
|
19
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
20
|
Deng Z, Muñoz Sierra J, Ferreira ALM, Cerqueda-Garcia D, Spanjers H, van Lier JB. Effect of operational parameters on the performance of an anaerobic sequencing batch reactor (AnSBR) treating protein-rich wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100296. [PMID: 37554625 PMCID: PMC10405192 DOI: 10.1016/j.ese.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Treating protein-rich wastewater using cost-effective and simple-structured single-stage reactors presents several challenges. In this study, we applied an anaerobic sequencing batch reactor (AnSBR) to treat protein-rich wastewater from a slaughterhouse. We focused on identifying the key factors influencing the removal of chemical oxygen demand (COD) and the settling performance of the sludge. The AnSBR achieved a maximum total COD removal of 90%, a protein degradation efficiency exceeding 80%, and a COD to methane conversion efficiency of over 70% at organic loading rates of up to 6.2 g COD L-1 d-1. We found that the variations in both the organic loading rate within the reactor and the hydraulic retention time in the buffer tank had a significant effect on COD removal. The hydraulic retention time in the buffer tank and the reactor, which determined the ammonification efficiencies and the residual carbohydrate concentrations in the reactor liquid, affected the sludge settleability. Furthermore, the genus Clostridium sensu stricto 1, known as protein- and lipids-degraders, was predominant in the reactor. Statistical analysis showed a significant correlation between the core microbiome and ammonification efficiency, highlighting the importance of protein degradation as the governing process in the treatment. Our results will provide valuable insights to optimise the design and operation of AnSBR for efficient treatment of protein-rich wastewater.
Collapse
Affiliation(s)
- Zhe Deng
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
- Veolia Water Technologies Techno Center Netherlands B.V. - Biothane, Tanthofdreef 21, 2623 EW, Delft, the Netherlands
| | - Julian Muñoz Sierra
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Ana Lucia Morgado Ferreira
- Veolia Water Technologies Techno Center Netherlands B.V. - Biothane, Tanthofdreef 21, 2623 EW, Delft, the Netherlands
| | - Daniel Cerqueda-Garcia
- Institute of Ecology. A.C, Cluster Cientifico y Tecnologico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Henri Spanjers
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - Jules B. van Lier
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
| |
Collapse
|
21
|
Ma J, Yao Z, Zhao L. Comprehensive study of the combined effects of biochar and iron-based conductive materials on alleviating long chain fatty acids inhibition in anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 239:117446. [PMID: 37858695 DOI: 10.1016/j.envres.2023.117446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the feasibility of alleviating the negative influence of long-chain fatty acids (LCFAs) on anaerobic digestion by biochar, micron zero-valent iron, micron-magnetite (mFe3O4) and their combination. The results demonstrate that co-addition of biochar and 6 g/L mFe3O4 (BC+6 g/L mFe3O4) increased cumulative methane production by 50% as suffered from LCFAs inhibition exerted by 2 g/L glycerol trioleate. The BC+6 g/L mFe3O4 did best in accelerating total organic carbon degradation and volatile fatty acids conversion, through successively enriching Bacteroides, Corynebacterium, and DMER64 to dominant the bacterial community. The proportion of acetotrophic Methanothrix that could alternatively reduce CO2 to methane by accepting electrons via direct interspecies electron transfer (DIET) was 0.09% with BC+6 g/L mFe3O4, nine times more than the proportion in control. Prediction of functional genes revealed the enrichment of the bacterial secretion system, indicating that BC+6 g/L mFe3O4 promoted DIET by stimulating the secretion of extracellular polymeric substances. This study provided novel insights into combining biochar and iron-based conductive materials to enhance AD performance under LCFAs inhibition.
Collapse
Affiliation(s)
- Junyi Ma
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Li Y, Zhang S, Chen Z, Ye Z, Lyu R. Multi-omics analysis unravels effects of salt and oil on substance transformation, microbial community, and transcriptional activity in food waste anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129684. [PMID: 37586433 DOI: 10.1016/j.biortech.2023.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In this study, through quantitative detection of key substances and enzyme activities, an integrated analysis of 16S rRNA sequencing and metatranscriptomics revealed the mechanisms by which salt and oil influence the biotransformation process during anaerobic digestion (AD). The results demonstrated that a salt concentration of 6 g/L promoted lipid metabolism and hydrogenotrophic methanogenesis, while inhibiting the acetoclastic pathway. An oil concentration of 5 g/L facilitated the expression of key enzyme-encoding genes involved in β-oxidation of long-chain fatty acids, transcription, and acetoclastic methanogenesis. It also promoted the enrichment of syntrophic propionate/butyrate oxidation bacteria (Syntrophomonas and DMER64). Salt/oil co-addition enhanced the expression of genes related to glucose metabolism, amino acid metabolism, organic acid synthesis, and quorum sensing. Furthermore, salt/oil co-addition inhibited the secretion of key enzymes related to methanogens by impeding the transcription process. Collectively, these findings provide systematic insights into how salt and oil affect the biochemical metabolic mechanisms of AD.
Collapse
Affiliation(s)
- Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruoshui Lyu
- Shanghai Guanghua Qidi College, Shanghai 200433, China
| |
Collapse
|
23
|
Yan M, Hu Z, Duan Z, Sun Y, Dong T, Sun X, Zhen F, Li Y. Microbiome re-assembly boosts anaerobic digestion under volatile fatty acid inhibition: focusing on reactive oxygen species metabolism. WATER RESEARCH 2023; 246:120711. [PMID: 37844339 DOI: 10.1016/j.watres.2023.120711] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
The accumulation of volatile fatty acids (VFAs) in anaerobic digestion (AD) systems resulting from food waste overload poses a risk of system collapse. However, limited understanding exists regarding the inhibitory mechanisms and effective strategies to address VFAs-induced stress. This study found that accumulated VFAs exert reactive oxygen species (ROS) stress on indigenous microbiota, particularly impacting methanogens due to their lower antioxidant capability compared to bacteria, which is supposed to be the primary reason for methanogenesis failure. To enhance the VFAs-stressed AD process, microbiome re-assembly using customized propionate-degrading consortia and bioaugmentation with concentrated digestate were implemented. Microbiome re-assembly demonstrated superior efficiency, yielding an average methane yield of 563.6±159.8 mL/L·d and reducing VFAs to undetectable levels for a minimum of 80 days. This strategy improved the abundance of Syntrophomonas, Syntrophobacter and Methanothrix, alleviating ROS stress. Conversely, microbial community in reactor with other strategy experienced an escalating intracellular damage, as indicated by the increase of ROS generation-related genes. This study fills knowledge gaps in stress-related metabolic mechanisms of anaerobic microbiomes exposed to VFAs and microbiome re-assembly to boost methanogenesis process.
Collapse
Affiliation(s)
- Miao Yan
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Shandong Minhe Biotechnology Co., Ltd
| | - Zhiyuan Hu
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhenhan Duan
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangdong 510655 , PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | | | | | - Feng Zhen
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Ying Li
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
24
|
Basile A, Zampieri G, Kovalovszki A, Karkaria B, Treu L, Patil KR, Campanaro S. Modelling of microbial interactions in anaerobic digestion: from black to glass box. Curr Opin Microbiol 2023; 75:102363. [PMID: 37542746 DOI: 10.1016/j.mib.2023.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Anaerobic and microaerophilic environments are pervasive in nature, providing essential contributions to the maintenance of human health, biogeochemical cycles and the Earth's climate. These ecological niches are characterised by low free oxygen and oxidants, or lack thereof. Under these conditions, interactions between species are essential for supporting the growth of syntrophic species and maintaining thermodynamic feasibility of anaerobic fermentation. Kinetic models provide a simplified view of complex metabolic networks, while genome-scale metabolic models and flux-balance analysis (FBA) aim to unravel these systems as a whole. The target of this review is to outline the main similarities, differences and challenges associated with kinetic and metabolic modelling, and describe state-of-the-art modelling practices for studying syntrophies in the anaerobic digestion (AD) case study.
Collapse
Affiliation(s)
- Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Guido Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Adam Kovalovszki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Behzad Karkaria
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
25
|
Singh S, Keating C, Ijaz UZ, Hassard F. Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162420. [PMID: 36842571 DOI: 10.1016/j.scitotenv.2023.162420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1-41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10-20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1-41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10-20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.
Collapse
Affiliation(s)
- Suniti Singh
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK.
| | - Ciara Keating
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK; College of Science and Engineering, NUI Galway, Ireland.
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK; Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710 Roodepoort, Johannesburg, South Africa.
| |
Collapse
|
26
|
Liu YC, Ramiro-Garcia J, Paulo LM, Maria Braguglia C, Cristina Gagliano M, O'Flaherty V. Psychrophilic and mesophilic anaerobic treatment of synthetic dairy wastewater with long chain fatty acids: Process performances and microbial community dynamics. BIORESOURCE TECHNOLOGY 2023; 380:129124. [PMID: 37127168 DOI: 10.1016/j.biortech.2023.129124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Facilitating the anaerobic degradation of long chain fatty acids (LCFA) is the key to unlock the energy potential of lipids-rich wastewater. In this study, the feasibility of psychrophilic anaerobic treatment of LCFA-containing dairy wastewater was assessed and compared to mesophilic anaerobic treatment. The results showed that psychrophilic treatment at 15 ℃ was feasible for LCFA-containing dairy wastewater, with high removal rates of soluble COD (>90%) and LCFA (∼100%). However, efficient long-term treatment required prior acclimation of the biomass to psychrophilic temperatures. The microbial community analysis revealed that putative syntrophic fatty acid bacteria and Methanocorpusculum played a crucial role in LCFA degradation during both mesophilic and psychrophilic treatments. Additionally, a fungal-bacterial biofilm was found to be important during the psychrophilic treatment. Overall, these findings demonstrate the potential of psychrophilic anaerobic treatment for industrial wastewaters and highlight the importance of understanding the microbial communities involved in the process.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland.
| | - Javier Ramiro-Garcia
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas. Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Camilla Maria Braguglia
- Water Research institute, CNR, Area di Ricerca RM1-Montelibretti, Via Salaria km 29.300, 00015 Monterotondo (Roma), Italy
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, MA 8911 Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
27
|
Eliasson KA, Singh A, Isaksson S, Schnürer A. Co-substrate composition is critical for enrichment of functional key species and for process efficiency during biogas production from cattle manure. Microb Biotechnol 2022; 16:350-371. [PMID: 36507711 PMCID: PMC9871532 DOI: 10.1111/1751-7915.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon Isaksson
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|