1
|
Zhou H, Ramaraj SG, Sarker MS, Tang S, Yamahara H, Tabata H. Parts-per-Trillion-Level Acetone Gas Detection Using a Suspended Graphene/SiO 2 SAW Breath and Skin Gas Sensor: Simulation and Experimental Study. ACS Sens 2025; 10:804-813. [PMID: 39948744 DOI: 10.1021/acssensors.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Detection of parts-per-trillion (ppt)-level acetone gas molecules at room temperature using suspended graphene on SiO2 micropillars has rarely been achieved using solid-state devices or surface acoustic wave (SAW) sensors. This paper presents the effect of SiO2 micropillars and suspended graphene as a guiding and sensing layer to detect acetone gas. The integration of suspended graphene with SiO2 micropillars introduces a coupled resonance effect arising from the interaction between the mechanical vibrations of the graphene and the acoustic vibrations of the micropillars. This effect leads to the formation of hybrid resonance modes when the natural frequencies of the vibrations align. This coupling mechanism amplifies the displacement and energy of the Love wave propagating along the surface of the sensor, enhancing its overall performance. Additionally, the interaction of the Love waves with the SiO2 micropillars and the suspended graphene generates characteristic dips in the transmission spectra. These dips correspond to the excitation of specific flexural and torsional resonance modes within the structure. A custom-fabricated SAW device, featuring micropillars with a diameter of 4 μm and heights of 1.0 and 1.2 μm, demonstrated exceptionally high sensitivity toward acetone gas at a concentration of 500 ppt. Moreover, the suspended graphene exhibited rapid response and recovery times across a wide range of acetone concentrations.
Collapse
Affiliation(s)
- Haolong Zhou
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, Tamil Nadu 602105, India
| | - Md Shamim Sarker
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyasu Yamahara
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Hitoshi Tabata
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| |
Collapse
|
2
|
Goh A, Im SH, Bae JE, Choi Y, Jeon J, Im SH. Assessing residual fragrances on skin after body washing: Optimization of an analytical method using solid-phase microextraction coupled with gas chromatography-mass spectrometry. Int J Cosmet Sci 2024; 46:1004-1016. [PMID: 39054565 DOI: 10.1111/ics.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The aim of this study is to develop and optimize a method for evaluating the persistence of residual fragrance after body washing, addressing a significant requirement in the development of personal care products. The main objective is to establish a reliable, sensitive and reproducible analytical technique to assess fragrance longevity on skin post-use of body wash products. METHODS Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is used to analyse residual fragrances. We investigate the extraction efficiencies of various SPME fibres and compare different methods for sampling skin-emitted fragrances, including tape stripping and sealed glass funnels. A controlled body-washing procedure is implemented to standardize the cleansing process. RESULTS Our findings indicate that the relative standard deviation for measuring five distinct fragrances is within the range of 3%-14%, highlighting the precision of the method. A notable variance exists in the extraction efficiency of fragrances using different types of SPME fibres, with some exhibiting over a threefold difference. Furthermore, the glass funnel method for fragrance collection demonstrates an 11.7 times greater sensitivity to galaxolide than that of the tape-stripping method. Residual fragrances with base notes as the main components can be detected on the skin up to 24 h after body washing. CONCLUSION The optimized method for residual fragrance evaluation developed in this study offers a robust tool for analysing fragrance components persisting on the skin for up to 24 h post-wash. This advancement facilitates a deeper understanding of fragrance longevity in personal care products, enabling comparative analyses between different products.
Collapse
Affiliation(s)
- Areum Goh
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Song Hee Im
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Jung-Eun Bae
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Yunsik Choi
- LG Household & Health Care (LG H&H), Seoul, Korea
| | | | - Sung Hyun Im
- LG Household & Health Care (LG H&H), Seoul, Korea
| |
Collapse
|
3
|
Singh P, Bansal NK, Dey S, Singh R, Singh T. Recent Progress on Perovskite Materials for VOC Gas Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21931-21956. [PMID: 39378270 DOI: 10.1021/acs.langmuir.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Volatile organic compound (VOC) gases are highly hazardous to human health, and their presence in the human breath plays an indispensable role for the early diagnosis of various diseases (cancer, renal failure, etc.). In recent times, perovskite materials have shown notable performance in the detection of VOC gases with high accuracy, fast response, recovery time, selectivity, and sensitivity, owing to their unique crystallographic structures and excellent optoelectronic properties. In this Review, we look at recent reports on perovskite-based sensors and their sensing performance toward VOC gases. Here, we focus on the sensing mechanisms of two types of perovskite materials, metal halide and metal oxide perovskites, and explain the differences in their crystal structures. We also discuss the common preparation methods used by researchers for the synthesis of these perovskite materials. Further, we elucidate various important factors influencing the sensing performance of perovskite-based sensors, such as doping, defects, morphology, temperature, humidity, and light. We conclude with the future prospects and challenges related to these perovskite-based sensors toward the detection of VOC gases.
Collapse
Affiliation(s)
- Paulomi Singh
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Kumar Bansal
- Semiconductor Thin Films and Emerging Photovoltaic Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sutapa Dey
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Trilok Singh
- Semiconductor Thin Films and Emerging Photovoltaic Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Park S, Rim D. Human exposure to air contaminants under the far-UVC system operation in an office: effects of lamp position and ventilation condition. Sci Rep 2024; 14:24465. [PMID: 39424884 PMCID: PMC11489401 DOI: 10.1038/s41598-024-75245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The far-UVC (222 nm) system has emerged as a solution for controlling airborne transmission, yet its effect on indoor air quality, particularly concerning positioning, remains understudied. In this study, we examined the impact of far-UVC lamp position on the disinfection and secondary contaminant formation in a small office. We employed a three-dimensional computational fluid dynamics (CFD) model to integrate UV intensity fields formed by different lamp positions (ceiling-mounted, wall-mounted, and stand-alone types) along with the air quality model. Our findings reveal that the ceiling-mounted type reduces human exposure to airborne pathogens by up to 80% compared to scenarios without far-UVC. For all the lamp positions, O3 concentration in the breathing zone increases by 4-6 ppb after one hour of operation. However, it should be noted that a high concentration zone (> 25 ppb) forms near the lamp when it is turned on. Moreover, ventilation plays a crucial role in determining human exposure to airborne pathogens and secondary contaminants. Increasing the ventilation rate from 0.7 h-1 to 4 h-1 reduces airborne pathogen and secondary contaminant concentrations by up to 90%. However, caution is warranted as higher ventilation rates can lead to elevated O3 indoors, especially under conditions of high outdoor O3 concentrations.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 408 Engineering Collaborative Research and Education (ECoRE) Building, University Park, PA, USA.
| |
Collapse
|
5
|
Kuchikata H, Sano M, Fujiwara F, Murashima K, Kumaishi K, Narukawa M, Nose Y, Kobayashi M, Hamamoto S, Kobayashi NI, Sugiyama A, Nihei N, Ichihashi Y, Kusano M. Soil volatilomics uncovers tight linkage between soybean presence and soil omics profiles in agricultural fields. Sci Rep 2024; 14:20541. [PMID: 39232061 PMCID: PMC11375131 DOI: 10.1038/s41598-024-70873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Securing a stable food supply and achieving sustainable agricultural production are essential for mitigating future food insecurity. Soil metabolomics is a promising tool for capturing soil status, which is a critical issue for future sustainable food security. This study aims to provide deeper insights into the status of soybean-grown fields under varying soil conditions over three years by employing comprehensive soil volatile organic compound (VOC) profiling, also known as soil volatilomics. Profiling identified approximately 200 peaks in agricultural fields. The soil of soybean-presented plots exhibited markedly higher VOC levels than those of non-soybean plots during the flowering season. Pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutyl ester, a discriminative soil VOC, was identified through multivariate data analysis as a distinctively present VOC in fields with or without soybean plants during the flowering period. Soil VOC profiles exhibited strong correlations with soil-related omics datasets (soil ionome, microbiome, metabolome, and physics) and no significant correlations with root microbiome and rhizosphere chemicals. These findings indicate that soil VOC profiles could serve as a valuable indicator for assessing soil status, thereby supporting efforts to ensure future global food security.
Collapse
Affiliation(s)
- Hikari Kuchikata
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mizuki Sano
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fuki Fujiwara
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Kazuki Murashima
- Research Faculty of Agriculture, Fundamental AgriScience Research, Bioresource and Environmental Engineering, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Megumi Narukawa
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yui Nose
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Shoichiro Hamamoto
- Research Faculty of Agriculture, Fundamental AgriScience Research, Bioresource and Environmental Engineering, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Naoto Nihei
- Department of Agriculture, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan
- Education and Innovation (F-REI), The Fukushima Institute for Research, 6-1 Yazawa, Gongendo, Namie, Futaba, Fukushima, 979-1521, Japan
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
6
|
Park S, Won Y, Rim D. Formation and Transport of Secondary Contaminants Associated with Germicidal Ultraviolet Light Systems in an Occupied Classroom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12051-12061. [PMID: 38922431 DOI: 10.1021/acs.est.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 μg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 μg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 μW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 μW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youngbo Won
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Yuan MH, Kang S, Cho KS. A review of phyto- and microbial-remediation of indoor volatile organic compounds. CHEMOSPHERE 2024; 359:142120. [PMID: 38670503 DOI: 10.1016/j.chemosphere.2024.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Volatile organic compounds (VOCs) are crucial air pollutants in indoor environments, emitted from building materials, furniture, consumer products, cleaning products, smoking, fuel combustion, cooking, and other sources. VOCs are also emitted from human beings via breath and whole-body skin. Some VOCs cause dermal/ocular irritation as well as gastrointestinal, neurological, cardiovascular, and/or carcinogenic damage to human health. Because people spend most of their time indoors, active control of indoor VOCs has garnered attention. Phytoremediation and microbial remediation, based on plant and microorganism activities, are deemed sustainable, cost-effective, and public-friendly technologies for mitigating indoor VOCs. This study presents the major sources of VOCs in indoor environments and their compositions. Various herbaceous and woody plants used to mitigate indoor VOCs are summarized and their VOCs removal performance is compared. Moreover, this paper reviews the current state of active phytoremediation and microbial remediation for the control of indoor VOCs, and discusses future directions.
Collapse
Affiliation(s)
- Min-Hao Yuan
- Department of Occupational Safety and Health, China Medical University, Taichung, 406, Taiwan
| | - Sookyung Kang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Wang N, Müller T, Ernle L, Bekö G, Wargocki P, Williams J. How Does Personal Hygiene Influence Indoor Air Quality? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9750-9759. [PMID: 38780915 PMCID: PMC11155237 DOI: 10.1021/acs.est.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Tatjana Müller
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|
9
|
Molinier B, Arata C, Katz EF, Lunderberg DM, Ofodile J, Singer BC, Nazaroff WW, Goldstein AH. Bedroom Concentrations and Emissions of Volatile Organic Compounds during Sleep. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7958-7967. [PMID: 38656997 PMCID: PMC11080066 DOI: 10.1021/acs.est.3c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.
Collapse
Affiliation(s)
- Betty Molinier
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Caleb Arata
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Erin F. Katz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - David M. Lunderberg
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Jennifer Ofodile
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Brett C. Singer
- Indoor
Environment Group and Residential Building Systems Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William W Nazaroff
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Allen H. Goldstein
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Ma Y, Xiong H, Zhang J. Proposals for gas-detection improvement of the FeMPc monolayer towards ethylene and formaldehyde by using bimetallic synergy. Phys Chem Chem Phys 2024; 26:12070-12083. [PMID: 38586982 DOI: 10.1039/d3cp05325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Development and fabrication of a novel gas sensor with superb performance are crucial for enabling real-time monitoring of ethylene (C2H4) and formaldehyde (H2CO) emissions from industrial manufacture. Herein, first-principles calculations and AIMD simulations were carried out to investigate the effect of the Fe-M dimer on the adsorption of C2H4 and H2CO on metal dimer phthalocyanine (FeMPc, M = Ti-Zn) monolayers, and the electronic structures and sensing properties of the above adsorption systems were systematically discussed. The results show that the FeMPc (M = Ti, V, Cr, Mn) monolayers interact with C2H4 and H2CO by chemisorption except for the FeMnPc/H2CO system, while the other adsorption systems are all characterized by physisorption. Interestingly, the adsorption strength of C2H4 and H2CO can be effectively regulated by the bimetallic synergy of the Fe-M dimer. Moreover, the FeCrPc and FeMnPc monolayers exhibit excellent sensitivity towards C2H4 and H2CO, and have short recovery time (4.69 ms-2.31 s) for these gases at room temperature due to the effective surface diffusion at 300 K. Consequently, the FeCrPc and FeMnPc materials can be utilized as high-performance, reusable gas sensors for detecting C2H4 and H2CO, and have promising applications in monitoring the release of ethylene and formaldehyde from industrial processes.
Collapse
Affiliation(s)
- Yingying Ma
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China.
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| | - Huihui Xiong
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China.
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| | - Jianbo Zhang
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| |
Collapse
|
11
|
Langer S, Weschler CJ, Bekö G, Morrison G, Sjöblom A, Giovanoulis G, Wargocki P, Wang N, Zannoni N, Yang S, Williams J. Squalene Depletion in Skin Following Human Exposure to Ozone under Controlled Chamber Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6693-6703. [PMID: 38577981 DOI: 10.1021/acs.est.3c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.
Collapse
Affiliation(s)
- Sarka Langer
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Division Building Services Engineering, 412 96 Göteborg, Sweden
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
- Healthy and Sustainable Built Environment Research Centre, Ajman University, P.O. Box 346 Ajman, United Arab Emirates
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Ann Sjöblom
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Georgios Giovanoulis
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Nijing Wang
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Nora Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
12
|
Yang S, Müller T, Wang N, Bekö G, Zhang M, Merizak M, Wargocki P, Williams J, Licina D. Influence of Ventilation on Formation and Growth of 1-20 nm Particles via Ozone-Human Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4704-4715. [PMID: 38326946 PMCID: PMC10938884 DOI: 10.1021/acs.est.3c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tatjana Müller
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Nijing Wang
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Meixia Zhang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- School
of Mechanical Engineering, Beijing Institute
of Technology, 100081 Beijing, China
| | - Marouane Merizak
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy,
Environment and Water Research Center, The
Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Finnegan M, Fitzgerald S, Duroux R, Attia J, Markey E, O’Connor D, Morrin A. Predicting Chronological Age via the Skin Volatile Profile. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:421-432. [PMID: 38326105 PMCID: PMC10921460 DOI: 10.1021/jasms.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Skin volatile emissions offer a noninvasive insight into metabolic activity within the body as well as the skin microbiome and specific volatile compounds have been shown to correlate with age, albeit only in a few small studies. Building on this, here skin volatiles were collected and analyzed in a healthy participant study (n = 60) using a robust headspace-solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) workflow. Following processing, 18 identified compounds were deemed suitable for this study. These were classified according to gender influences and their correlations with age were investigated. Finally, 6 volatiles (of both endogenous and exogenous origin) were identified as significantly changing in abundance with participant age (p < 0.1). The potential origins of these dysregulations are discussed. Multiple linear regression (MLR) analysis was employed to model age based on these significant volatiles as independent variables, along with gender. Our analysis shows that skin volatiles show a strong predictive ability for age (explained variance of 68%), stronger than other biochemical measures collected in this study (skin surface pH, water content) which are understood to vary with chronological age. Overall, this work provides new insights into the impact of aging on the skin volatile profiles which comprises both endogenously and exogenously derived volatile compounds. It goes toward demonstrating the biological significance of skin volatiles and will help pave the way for more rigorous consideration of the healthy "baseline" skin volatile profile in volatilomics-based health diagnostics development going forward.
Collapse
Affiliation(s)
- Melissa Finnegan
- School
of Chemical Sciences, Insight SFI Research Centre for Data Analytics,
National Centre for Sensor Research, Dublin
City University, Dublin D09 V209, Ireland
| | - Shane Fitzgerald
- School
of Chemical Sciences, Insight SFI Research Centre for Data Analytics,
National Centre for Sensor Research, Dublin
City University, Dublin D09 V209, Ireland
| | - Romain Duroux
- IFF-Lucas
Meyer Cosmetics, Toulouse, Cedex 1, 31036, France
| | - Joan Attia
- IFF-Lucas
Meyer Cosmetics, Toulouse, Cedex 1, 31036, France
| | - Emma Markey
- School
of Chemical Sciences, Insight SFI Research Centre for Data Analytics,
National Centre for Sensor Research, Dublin
City University, Dublin D09 V209, Ireland
| | - David O’Connor
- School
of Chemical Sciences, Insight SFI Research Centre for Data Analytics,
National Centre for Sensor Research, Dublin
City University, Dublin D09 V209, Ireland
| | - Aoife Morrin
- School
of Chemical Sciences, Insight SFI Research Centre for Data Analytics,
National Centre for Sensor Research, Dublin
City University, Dublin D09 V209, Ireland
| |
Collapse
|
14
|
Saha S, Sajib DI, Alam MK. Interaction of the III-As monolayer with SARS-CoV-2 biomarkers: implications for biosensor development. Phys Chem Chem Phys 2024; 26:6242-6255. [PMID: 38305347 DOI: 10.1039/d3cp05215j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The emergence of SARS-CoV-2 in 2019 led to the global COVID-19 pandemic, highlighting the urgency for developing cost-effective and non-invasive methods to detect diseases at an early stage. Human breath, rich in volatile organic compounds (VOCs), is promising for cost-effective and rapid disease detection, with specific VOCs like methanol, ethanal, butanone, acetone, and ethyl butyrate linked to COVID-19. Recent advances in biomarker detection and gas sensing with 2D materials, particularly III-As monolayers like BAs, GaAs, and AlAs, offer high sensitivity at low concentrations, providing a novel avenue for exploring their potential in detecting COVID-19 biomarkers. This article aims to examine the effects of adsorption on different properties of III-Arsenide (BAs, GaAs and AlAs) monolayers, particularly in connection with SARS-CoV-2 biomarkers. In order to examine the interaction between the monolayers and biomarkers, first-principles computations within the framework of density functional theory (DFT) are utilized. The present study involves an investigation of the modifications in the band structure, density of states (DOS), work function, electron density difference, and optical properties (reflectance and absorbance) of III-As monolayers, with the aim of assessing their viability for the detection of SARS-CoV-2 biomarkers along with interfering gases such as CO2 and H2O. It is observed that VOCs induce a notable change in the work function of GaAs which serves as an indicator of the presence of these biomarkers. However, the changes in work function are not as substantial as those for AlAs and BAs. Additionally, the chemiresistive sensitivity, optical sensitivity and recovery time of III-As are investigated. The findings suggest that the pristine GaAs monolayer displays a significant level of sensitivity and selectivity towards the SARS-CoV-2 biomarkers, rendering it a material with potential for utilization in sensing applications. Furthermore, it has been observed that the recovery time of the GaAs monolayer subsequent to its exposure to the VOC biomarkers lies within an acceptable threshold. Upon exposure to UV light, the recovery time is further reduced. The outcomes of our study indicate that GaAs monolayers exhibit considerable potential as chemiresistive, work function-based and optical sensors for the precise and discerning identification of VOCs linked to the SARS-CoV-2 virus compared to the other two III-As monolayers.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh.
| | - Deb Indronil Sajib
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh.
| | - Md Kawsar Alam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh.
| |
Collapse
|
15
|
Li X, Yan Y, Fang X, Tu J. Numerical studies of indoor particulate and gaseous micropollutant transport and its impact on human health in densely-occupied spaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123031. [PMID: 38036091 DOI: 10.1016/j.envpol.2023.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Micropollutants (MPs) have increasingly become a matter of concern owing to potential health risks associated with human inhalation exposure, particularly in densely-occupied indoor environments. This study employed numerical simulations in a traditional built indoor workspace and a public transport cabin to elucidate the transport dynamics and health impacts of particulate and gaseous type of indoor MPs on varying groups of occupants. The risk of infection from pathogen-bearing MPs was evaluated in the workspace using the integrated Eulerian-Lagrangian and modified Wells-Riley model. In the cabin environment, the health impact of inhaled TVOC within the human nasal system was assessed via the integrated nasal-involved manikin model and cancer/non-cancer risk model. The results demonstrated that when ventilation layout was in favour of restricting particulate MPs spread, considerably high health risks (up to 17.22% infection possibility) were generally found in near-fields of emission source (< 2.25 m). Conversely, if the ventilated flow interacts robustly with emission source, every occupant has a minimum 5% infection risk. Incorporating the nasal cavity in the human model offers a nuanced understanding of gaseous MP distributions post-inhalation. Notably, the olfactory and sinus regions displayed heightened vulnerability to TVOC exposure, with a 62.5%-108% concentration increase compared to other nasal areas. Cancer risk assessment plausibly explained the rising occurrence of brain and central nervous system cancer for aircrew members. Non-cancer risk was found acceptable. This study was expected to advance the understanding of environmental pollution and the health risks tied to indoor MPs in densely-populated environments.
Collapse
Affiliation(s)
- Xueren Li
- School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Yihuan Yan
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Xiang Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jiyuan Tu
- School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
16
|
Yang S, Bekö G, Wargocki P, Zhang M, Merizak M, Nenes A, Williams J, Licina D. Physiology or Psychology: What Drives Human Emissions of Carbon Dioxide and Ammonia? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1986-1997. [PMID: 38237915 PMCID: PMC10832055 DOI: 10.1021/acs.est.3c07659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Meixia Zhang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marouane Merizak
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil & Environmental Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy,
Environment and Water Research Center, The
Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Qu Y, Xie D, Liu Y. Emissions of Volatile Organic Compounds from Human Occupants in a Student Office: Dependence on Ozone Concentration. ACS ENVIRONMENTAL AU 2024; 4:3-11. [PMID: 38250339 PMCID: PMC10797682 DOI: 10.1021/acsenvironau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
Human occupants themselves constitute an important source of volatile organic compounds (VOCs) in indoor environments through breath and dermal emissions. In order to quantify VOC emissions from occupants under real-world settings, previous indoor observational studies often determined emission factors (i.e., average emission rates per person). However, the values obtained across these studies exhibited large variability, and the causes of this variability still need to be understood. Herein we report 10-day real-time VOC measurements in a university student office, using a proton transfer reaction-quadrupole interface-time-of-flight mass spectrometer. A method was developed to identify VOCs of primary human origin and to quantify the corresponding emission factors, accounting for the dynamically changing occupancy level and ventilation rate in the assessed office. We found that the emission factors of many dermally emitted VOCs strongly increased as the ozone concentration increased from <3 to 10-15 ppb. These VOCs include geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), and C10-C12 saturated aldehydes, which align with characteristic first-generation ozonolysis products of skin oil. The strongest increase occurred for 6-MHO, from 113 to 337 μg/h/p. In comparison, acetone and isoprene, which are primarily emitted from human breath, varied little with the ozone level. In light of this finding, we conducted an integrated analysis of emission factors reported in the literature for two frequently reported species, namely, 6-MHO and decanal. Ozone concentration alone can explain 94-97% of the variation in their emission factors across previous studies, and the best-estimated ozone dependence obtained using the literature data is consistent with those obtained in the current study. These results suggest that the ozone concentration is a key factor regulating emission factors of many dermally emitted VOCs in real indoor environments, which has to be considered when reporting or using the emission factors.
Collapse
Affiliation(s)
- Yuekun Qu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Di Xie
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Yingjun Liu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
- Center
for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
18
|
Vilčeková S, Burdová EK, Kiseľák J, Sedláková A, Mečiarová ĽV, Moňoková A, Doroudiani S. Assessment of indoor environmental quality and seasonal well-being of students in a combined historic technical school building in Slovakia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1524. [PMID: 37994965 DOI: 10.1007/s10661-023-12147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
One of the major present challenges in the building sector is to construct sustainable and low-energy buildings with a healthy, safe, and comfortable environment. This study is designed to explore long-term impacts of indoor environmental quality (IEQ) parameters in a historic technical school building on the health and comfort of students. The main objective is to identify environmental problems in schools and to direct public policy towards the enhancement of in-service historic buildings. The collected data on five consecutive days in various seasons from five different classrooms indicate allergy in 45% and asthma in 10% of students. Environmental factors, such as temperature, draught, noise, or light, affected 51% of students' attention. Low temperature, unpleasant air, noise, and draught were found to be the most frequent concerns for students. The lowest temperature was measured during spring at 17.6 °C, the lowest humidity of 21.1% in winter, the largest CO2 amount in the air in autumn at 2041 ppm level, and the greatest total volatile organic compounds (TVOC) as 514 µg/m3. The experimental and statistical analysis results suggest the necessity of a comprehensive restoration of the building with a focus on enhancement of IEQ as well as replacement of old non-standard materials. An effective ventilation system is also necessary. The building requires major renovations to preserve its historic features while safeguarding the well-being and comfort of students and staff. Further research is needed on acoustics, lighting, and energy factors as well as the health effects of old building materials.
Collapse
Affiliation(s)
- Silvia Vilčeková
- Faculty of Civil Engineering, Institute of Sustainable and Circular Construction, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | - Eva Krídlová Burdová
- Faculty of Civil Engineering, Institute of Sustainable and Circular Construction, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | - Jozef Kiseľák
- Faculty of Science, Institute of Mathematics, Pavol Jozef Šafárik University, Jesenná 5, 04001, Košice, Slovak Republic
| | - Anna Sedláková
- Faculty of Civil Engineering, Institute of Architectural Engineering, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | | | | | | |
Collapse
|
19
|
Abu Bakar NH, Chiu HY, Urban PL. Mass Specthoscope: A Hand-held Extendable Probe for Localized Noninvasive Sampling of Skin Volatome for Online Analysis. Anal Chem 2023; 95:17143-17150. [PMID: 37935619 DOI: 10.1021/acs.analchem.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Human skin emits a unique set of volatile organic compounds (VOCs). These VOCs can be probed in order to obtain physiological information about the individuals. However, extracting the VOCs that emanate from human skin for analysis is troublesome and time-consuming. Therefore, we have developed "Mass Specthoscope"─a convenient tool for rapid sampling and detecting VOCs emitted by human skin. The hand-held probe with a pressurized tip and wireless button enables sampling VOCs from surfaces and their transfer to the atmospheric pressure chemical ionization source of quadrupole time-of-flight mass spectrometer. The system was characterized using chemical standards (acetone, benzaldehyde, sulcatone, α-pinene, and decanal). The limits of detection are in the range from 2.25 × 10-5 to 3.79 × 10-5 mol m-2. The system was initially tested by detecting VOCs emanating from porcine skin spiked with VOCs as well as unspiked fresh and spoiled ham. In the main test, the skin of nine healthy participants was probed with the Mass Specthoscope. The sampling regions included the armpit, forearm, and forehead. Numerous skin-related VOC signals were detected. In the final test, one participant ingested a fenugreek drink, and the participant's skin surface was probed using the Mass Specthoscope hourly during the 8 h period. The result revealed a gradual release of fenugreek-related VOCs from the skin. We believe that this analytical approach has the potential to be used in metabolomic studies and following further identification of disease biomarkers─also in noninvasive diagnostics.
Collapse
Affiliation(s)
- Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Hsien-Yi Chiu
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S. Road, Taipei 100, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Taipei 100, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
20
|
Song K, Yang X, Wang Y, Wan Z, Wang J, Wen Y, Jiang H, Li A, Zhang J, Lu S, Fan B, Guo S, Ding Y. Addressing new chemicals of emerging concern (CECs) in an indoor office. ENVIRONMENT INTERNATIONAL 2023; 181:108259. [PMID: 37839268 DOI: 10.1016/j.envint.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Indoor pollutants change over time and place. Exposure to hazardous organics is associated with adverse health effects. This work sampled gaseous organics by Tenax TA tubes in two indoor rooms, i.e., an office set as samples, and the room of chassis dynamometer (RCD) set as backgrounds. Compounds are analyzed by a thermal desorption comprehensive two-dimensional gas chromatography-quadrupole mass spectrometer (TD-GC × GC-qMS). Four new chemicals of emerging concern (CECs) are screened in 469 organics quantified. We proposed a three-step pipeline for CECs screening utilizing GC × GC including 1) non-target scanning of organics with convincing molecular structures and quantification results, 2) statistical analysis between samples and backgrounds to extract useful information, and 3) pixel-based property estimation to evaluate the contamination potential of addressed chemicals. New CECs spotted in this work are all intermediate volatility organic compounds (IVOCs), containing mintketone, isolongifolene, β-funebrene, and (5α)-androstane. Mintketone and sesquiterpenes may be derived from the use of volatile chemical products (VCPs), while (5α)-androstane is probably human-emitted. The occurrence and contamination potential of the addressed new CECs are reported for the first time. Non-target scanning and the measurement of IVOCs are of vital importance to get a full glimpse of indoor organics.
Collapse
Affiliation(s)
- Kai Song
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zichao Wan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Wen
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Han Jiang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | | | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
21
|
Schäfer L, Croy I. An integrative review: Human chemosensory communication in the parent-child relationship. Neurosci Biobehav Rev 2023; 153:105336. [PMID: 37527693 DOI: 10.1016/j.neubiorev.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Body odors serve as signals of kinship, with parents exhibiting a preference for the scent of their infants, and vice versa. The reciprocal perception of body odors can promote bonding through two mechanisms. Firstly, as an indirect pathway, through associative chemosensory learning, which leads to changes in proximity-seeking behaviors. Secondly, as a direct pathway, by eliciting the display of positive emotions, thereby reinforcing the mutual bond. Both mechanisms weaken as the child undergoes development due to changes in body odor expression and perception. This comprehensive review provides an overview of the current literature on chemosignals in the parent-child relationship, highlighting their significance in facilitating dyadic communication throughout the developmental span. Furthermore, future research perspectives are outlined to gain a better understanding of these benefits and, on the long run, derive potential interventions to strengthen parent child attachment.
Collapse
Affiliation(s)
- Laura Schäfer
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Ilona Croy
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| |
Collapse
|
22
|
Weschler CJ, Nazaroff WW. Ozone Loss: A Surrogate for the Indoor Concentration of Ozone-Derived Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13569-13578. [PMID: 37639667 DOI: 10.1021/acs.est.3c03968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ozone concentrations tend to be substantially lower indoors than outdoors, largely because of ozone reactions with indoor surfaces. When there are no indoor sources of ozone, a common condition, the net concentration of gaseous products derived from indoor ozone chemistry scales linearly with the difference between outdoor and indoor ozone concentrations, termed "ozone loss." As such, ozone loss is a metric that might be used by epidemiologists to disentangle the adverse health effects of ozone's oxidation products from those of exposure to ozone itself. The present paper examines the characteristics, potential utility, and limitations of the ozone loss concept. We show that for commonly occurring indoor conditions, the ozone loss concentration is directly proportional to the total rate constant for ozone removal on surfaces (ksum) and inversely proportional to the net removal of ozone by air exchange (λ) plus surface reactions (ksum). It follows that the ratio of indoor ozone to ozone loss is equal to the ratio of λ to ksum. Ozone loss is a promising metric for probing potential adverse health effects resulting from exposures to products of indoor ozone chemistry. Notwithstanding its virtues, practitioners using it should be mindful of the limitations discussed in this paper.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| |
Collapse
|
23
|
Qu Y, Zou Z, Weschler CJ, Liu Y, Yang X. Quantifying Ozone-Dependent Emissions of Volatile Organic Compounds from the Human Body. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13104-13113. [PMID: 37610659 DOI: 10.1021/acs.est.3c02340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ozone reactions on human body surfaces produce volatile organic compounds (VOCs) that influence indoor air quality. However, the dependence of VOC emissions on the ozone concentration has received limited attention. In this study, we conducted 36 sets of single-person chamber experiments with three volunteers exposed to ozone concentrations ranging from 0 to 32 ppb. Emission fluxes from human body surfaces were measured for 11 targeted skin-oil oxidation products. For the majority of these products, the emission fluxes linearly correlated with ozone concentration, indicating a constant surface yield (moles of VOC emitted per mole of ozone deposited). However, for the second-generation oxidation product 4-oxopentanal, a higher surface yield was observed at higher ozone concentrations. Furthermore, many VOCs have substantial emissions in the absence of ozone. Overall, these results suggest that the complex surface reactions and mass transfer processes involved in ozone-dependent VOC emissions from the human body can be represented using a simplified parametrization based on surface yield and baseline emission flux. Values of these two parameters were quantified for targeted products and estimated for other semiquantified VOC signals, facilitating the inclusion of ozone/skin oil chemistry in indoor air quality models and providing new insights on skin oil chemistry.
Collapse
Affiliation(s)
- Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ziwei Zou
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
- Center for Environment and Health, Peking University, Beijing 100871, People's Republic of China
| | - Xudong Yang
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
24
|
González Serrano V, Lin EZ, Godri Pollitt KJ, Licina D. Adequacy of stationary measurements as proxies for residential personal exposure to gaseous and particle air pollutants. ENVIRONMENTAL RESEARCH 2023; 231:116197. [PMID: 37224948 DOI: 10.1016/j.envres.2023.116197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
People are exposed to myriad of airborne pollutants in their homes. Owing to diverse potential sources of air pollution and human activity patterns, accurate assessment of residential exposures is complex. In this study, we explored the relationship between personal and stationary air pollutant measurements in residences of 37 participants working from home during the heating season. Stationary environmental monitors (SEMs) were located in the bedroom, living room or home office and personal exposure monitors (PEMs) were worn by the participants. SEMs and PEMs included both real-time sensors and passive samplers. During three consecutive weekdays, continuous data were obtained for particle number concentration (size range 0.3-10 μm), carbon dioxide (CO2), and total volatile organic compounds (TVOC), while passive samplers collected integrated measures of 36 volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs). The personal cloud effect was detected in >80% of the participants for CO2 and >50% participants for PM10. Multiple linear regression analysis showed that a single CO2 monitor placed in the bedroom efficiently represented personal exposure to CO2 (R2 = 0.90) and moderately so for PM10 (R2 = 0.55). Adding a second or third sensor in a residence did not lead to improved exposure estimates for CO2, with only 6-9% improvement for particles. Selecting data from SEMs when participants were in the same room improved personal exposure estimates by 33% for CO2 and 5% for particles. Out of 36 detected VOCs and SVOCs, 13 had at least 50% higher concentrations in personal versus stationary samples. Findings from this study aid improved understanding of the complex dynamics of gaseous and particle pollutants and their sources in residences, and could support the development of refined procedures for residential air quality monitoring and inhalation exposure assessment.
Collapse
Affiliation(s)
- Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Elizabeth Z Lin
- Environmental Health Sciences Department, School of Public Health, Yale University, New Haven, USA
| | - Krystal J Godri Pollitt
- Environmental Health Sciences Department, School of Public Health, Yale University, New Haven, USA
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
25
|
Parhizkar H, Fretz M, Laguerre A, Stenson J, Corsi RL, Van Den Wymelenberg KG, Gall ET. A novel VOC breath tracer method to evaluate indoor respiratory exposures in the near- and far-fields; implications for the spread of respiratory viruses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:339-346. [PMID: 36424424 PMCID: PMC9686220 DOI: 10.1038/s41370-022-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| | - Jason Stenson
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Richard L Corsi
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Kevin G Van Den Wymelenberg
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA.
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA.
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
26
|
Bhattacharyya N, Tang M, Blomdahl DC, Jahn LG, Abue P, Allen DT, Corsi RL, Novoselac A, Misztal PK, Hildebrandt Ruiz L. Bleach Emissions Interact Substantially with Surgical and KN95 Mask Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6589-6598. [PMID: 37061949 DOI: 10.1021/acs.est.2c07937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.
Collapse
Affiliation(s)
- Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mengjia Tang
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel C Blomdahl
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard L Corsi
- College of Engineering, University of California at Davis, Davis, California 95616, United States
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pawel K Misztal
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Crilley LR, Lao M, Salehpoor L, VandenBoer TC. Emerging investigator series: an instrument to measure and speciate the total reactive nitrogen budget indoors: description and field measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:389-404. [PMID: 36779821 DOI: 10.1039/d2em00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reactive nitrogen species (Nr), defined here as all N-containing compounds except N2 and N2O, have been shown to be important drivers for indoor air quality. Key Nr species include NOx (NO + NO2), HONO and NH3, which are known to have detrimental health effects. In addition, other Nr species that are not traditionally measured may be important chemical actors for indoor transformations (e.g. amines). Cooking and cleaning are significant sources of Nr, whose emission will vary depending on the type of activity and materials used. Here we present a novel instrument that measures the total gas-phase reactive nitrogen (tNr) budget and key species NOx, HONO, and NH3 to demonstrate its suitability for indoor air quality applications. The tNr levels were measured using a custom-built heated platinum (Pt) catalytic furnace to convert all Nr species to NOx, called the tNr oven. The measurement approach was validated through a series of control experiments, such that quantitative measurement and speciation of the total Nr budget are demonstrated. The optimum operating conditions of the tNr oven were found to be 800 °C with a sampling flow rate of 630 cubic centimetres per minute (ccm). Oxidized nitrogen species are known to be quantitatively converted under these conditions. Here, the efficiency of the tNr oven to convert reduced Nr species to NOx was found to reach a maximum at 800 °C, with 103 ± 13% conversion for NH3 and 79-106% for selected relevant amines. The observed variability in the conversion efficiency of reduced Nr species demonstrates the importance of catalyst temperature characterization for the tNr oven. The instrument was deployed successfully in a commercial kitchen, a complex indoor environment with periods of rapidly changing levels, and shown to be able to reliably measure the tNr budget during periods of longer-lived oscillations (>20 min), typical of indoor spaces. The measured NOx, HONO and basic Nr (NH3 and amines) were unable to account for all the measured tNr, pointing to a substantial missing fraction (on average 18%) in the kitchen. Overall, the tNr instrument will allow for detailed survey(s) of the key gaseous Nr species across multiple locations and may also identify missing Nr fractions, making this platform capable of stimulating more in-depth analysis in indoor atmospheres.
Collapse
Affiliation(s)
- Leigh R Crilley
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Melodie Lao
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Leyla Salehpoor
- Department of Chemistry, York University, Toronto, ON, Canada.
| | | |
Collapse
|
28
|
Xu X, Pang H, Liu C, Wang K, Loisel G, Li L, Gligorovski S, Li X. Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2237-2248. [PMID: 36472140 DOI: 10.1039/d2em00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath by real time analysis using a high-resolution quadrupole-orbitrap mass spectrometer (HRMS) coupled to a secondary electrospray ionization (SESI) source. Based on the product compounds identified we propose a reaction mechanism initiated by O3 oxidation of the most common breath constituents, isoprene, α-terpinene and ammonia (NH3). The reaction of O3 with isoprene and α-terpinene generates ketones and aldehydes such as 3,4-dihydroxy-2-butanone, methyl vinyl ketone, 3-carbonyl butyraldehyde, formaldehyde and toxic compounds such as 3-methyl furan. Formation of compounds with reduced nitrogen containing functional groups such as amines, imines and imides is highly plausible through NH3 initiated cleavage of the C-O bond. The detected gas-phase product compounds suggest that human breath can additionally affect indoor air quality through the formation of harmful secondary products and future epidemiological studies should evaluate the potential health effects of these compounds.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
29
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
31
|
Abstract
A human-occupied indoor space shares many similarities with Earth and its atmosphere.
Collapse
Affiliation(s)
- Coralie Schoemaecker
- Université de Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK
| |
Collapse
|
32
|
Zhou Z, Lakey PSJ, von Domaros M, Wise N, Tobias DJ, Shiraiwa M, Abbatt JPD. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7716-7728. [PMID: 35671499 DOI: 10.1021/acs.est.2c01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Natsuko Wise
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|