1
|
Yu Z, Fang Y, Pan C, Ma S, Zeng Y, Yang J, Wan S, Zhong Z. Construction of Electron-Enriched Pt δ+ with Reactive Oxygen Species for Enhanced Propane Catalytic Combustion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21246-21256. [PMID: 40133807 DOI: 10.1021/acsami.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The complete catalytic oxidation of propane (C3H8) at low temperatures remains challenging due to the competitive adsorption between the oxidation of the O2 and C3H8 molecules. In this study, we propose an innovative approach to enhance C3H8 oxidation by strategically designing active Ptδ+ sites with modulated electronic structures on F-doped TiO2-supported Pt catalyst (Pt/F-TiO2), which exhibits 50 and 90% of propane conversion at 200 and 320 °C. Our mechanistic study reveals that the electron coupling between Pt 5d and F 2p alters the d orbital electron property, which leads to generation of abundant efficient electron-enriched Ptδ+ species. These new Ptδ+ sites facilitate the adsorption of C3H8 and promote the activation of chemisorbed O2 into superoxide species, in the form of bridge Pt-(O-O)ad-Ti, which synergistically facilitates the methyl C-H cleavage in C3H8. This study presents the strategy for electronic structure engineering of active sites in Pt-based catalysts, paving the way for the development of high-performance catalysts for propane oxidation.
Collapse
Affiliation(s)
- Zhixin Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yarong Fang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Chuanqi Pan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shiqi Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yiqing Zeng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shipeng Wan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Zhaoxiang Zhong
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
2
|
Li YY, Ren Y, He J, Xiao H, Li JR. Recent Advances of the Effect of H 2O on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1034-1059. [PMID: 39762185 DOI: 10.1021/acs.est.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of H2O and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of H2O on VOC oxidation. To develop water-resistant catalysts, understanding the mechanistic role of H2O and implementing effective water-resistance strategies with influencing factors are imperative. This Perspective systematically summarizes related research on the impact of H2O on VOC oxidation, drawing from over 390 papers published between 2013 and 2024. Five main influencing factors are proposed to clarify their effects on the role of H2O. Five inhibition/promotion mechanisms of H2O are introduced, elucidating their role in the catalytic oxidation of various VOCs. Additionally, different kinds of water resistance strategies are discussed, including the fabrication of hydrophobic materials, the design of specific structures and morphologies, and the introduction of additional elements for catalyst modification. Finally, scientific challenges and opportunities for enhancing the design of efficient and water-resistant catalysts for practical applications in VOC purification are highlighted.
Collapse
Affiliation(s)
- Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yong Ren
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| |
Collapse
|
3
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Huang W, Li Q, Deng C, Zong Z, Du Y, Lu R, Dong L, Xia D. Unravelling High Water Vapor-Induced Inhibitory Effects on Pt/Co 3O 4 Catalysts toward Benzene Oxidation. Inorg Chem 2024; 63:15516-15526. [PMID: 39102647 DOI: 10.1021/acs.inorgchem.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Water vapor inevitably exists in the environment, which causes adverse impacts on many crucial chemical reactions. However, high water vapor of up to 10 vol %─relevant to a broad spectrum of industrial practices-for catalytic implications has been less investigated or neglected. As such, we explored an industry-relevant, humidity-highly sensitive benzene oxidation only in the presence of 10 vol % water vapor using the well-established Pt/Co3O4 catalysts, to bring such an important yet ignored topic to the forefront. Results revealed that Pt/Co3O4 catalysts possessing higher contents of Pt nanoparticles exhibited marked tolerance to water vapor interference. Under an incomplete benzene conversion condition, the input of 10 vol % water vapor indeed impaired the catalytic performance of Pt/Co3O4 catalyst significantly, which, in fact, was caused by the unfavorable formation of carboxylate species covering the catalyst's surface engendering irrecoverable activity loss, instead of the well-accepted water competitive adsorption. While such activity loss can be restored by elevating the reaction to a higher temperature. This study helps us to understand the compromised catalytic activity caused by high humidity, urging the systematic evaluation of well-established catalyst systems in high water vapor-contained conditions and pressing the development of water-tolerant catalysts for real-life application consideration.
Collapse
Affiliation(s)
- Wanting Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiyuan Zong
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Yushan Du
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruifang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dong Xia
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| |
Collapse
|
5
|
Wang A, Ding J, Li M, Song P, Zhao Z, Guo Y, Guo Y, Wang L, Dai Q, Zhan W. Robust Ru/Ce@Co Catalyst with an Optimized Support Structure for Propane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12742-12753. [PMID: 38959431 DOI: 10.1021/acs.est.4c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.
Collapse
Affiliation(s)
- Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajia Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mingqi Li
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peiyao Song
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyuan Zhao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Chen J, Li Z, Tan W, Xie Y, Cao J, Zhang Q, Ning P, Hao J. Facilely Fabricated Single-Site Pt δ+-O(OH) x- Species Associated with Alkali on Zirconia Exhibiting Superior Catalytic Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12685-12696. [PMID: 38959026 DOI: 10.1021/acs.est.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
Collapse
Affiliation(s)
- Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiyu Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Wu S, Ruan D, Huang Z, Xu H, Shen W. Weakening Mn-O Bond Strength in Mn-Based Perovskite Catalysts to Enhance Propane Catalytic Combustion. Inorg Chem 2024; 63:10264-10277. [PMID: 38761140 DOI: 10.1021/acs.inorgchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Exploring highly efficient and robust non-noble metal catalysts for VOC abatement is crucial but challenging. Mn-based perovskites are a class of redox catalysts with good thermal stability, but their activity in the catalytic combustion of light alkanes is insufficient. In this work, we modulated the Mn-O bond strength in a Mn-based perovskite via defect engineering, over which the catalytic activity of propane combustion was significantly enhanced. It demonstrates that the oxygen vacancy concentration and the Mn-O bond strength can be efficiently modulated by finely tuning the Ni content in SmNixMn1-xO3 perovskite catalysts (SNxM1-x), which in turn can enhance the redox ability and generate more active oxygen species. The SN0.10M0.90 catalyst with the lowest Mn-O bond strength exhibits the lowest apparent activation energy, over which the propane conversion rate increases by 3.6 times compared to that on the SmMnO3 perovskite catalyst (SM). In addition, a SN0.10M0.90/cordierite monolithic catalyst can also exhibit a remarkable catalytic performance and deliver excellent long-term durability (1000 h), indicating broad prospects in industrial applications. Moreover, the promotional effect of Ni substitution was further unveiled by density functional theory (DFT) calculations. This work brings a favorable guidance for the exploration of highly efficient perovskite catalysts for light alkane elimination.
Collapse
Affiliation(s)
- Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Dinghua Ruan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| |
Collapse
|
8
|
Yan J, Luo Y, Zhu M, Yang B, Shen X, Wang Z, Zhuang Z, Yu Y. General and Scalable Synthesis of Mesoporous 2D MZrO 2 (M = Co, Mn, Ni, Cu, Fe) Nanocatalysts by Amorphous-to-Crystalline Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308016. [PMID: 38308412 DOI: 10.1002/smll.202308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Indexed: 02/04/2024]
Abstract
In modern heterogeneous catalysis, it remains highly challenging to create stable, low-cost, mesoporous 2D photo-/electro-catalysts that carry atomically dispersed active sites. In this work, a general shape-preserving amorphous-to-crystalline transformation (ACT) strategy is developed to dope various transition metal (TM) heteroatoms in ZrO2, which enabled the scalable synthesis of TMs/oxide with a mesoporous 2D structure and rich defects. During the ACT process, the amorphous MZrO2 nanoparticles (M = Fe, Ni, Cu, Co, Mn) are deposited within a confined space created by the NaCl template, and they transform to crystalline 2D ACT-MZrO2 nanosheets in a shape-preserving manner. The interconnected crystalline ACT-MZrO2 nanoparticles thus inherit the same structure as the original MZrO2 precursor. Owing to its rich active sites on the surface and abundant oxygen vacancies (OVs), ACT-CoZrO2 gives superior performance in catalyzing the CO2-to-syngas conversion as demonstrated by experiments and theoretical calculations. The ACT chemistry opens a general route for the scalable synthesis of advanced catalysts with precise microstructure by reconciliating the control of crystalline morphologies and the dispersion of heteroatoms.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yifei Luo
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Mengyao Zhu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoxin Shen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zhiqi Wang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Niu B, Wang Y, Zhao T, Duan X, Xu W, Zhao Z, Yang Z, Li G, Li J, Cheng J, Hao Z. Modulating the Electronic States of Pt Nanoparticles on Reducible Metal-Organic Frameworks for Boosting the Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4428-4437. [PMID: 38400916 DOI: 10.1021/acs.est.3c09422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
The adsorption and activation of pollutant molecules and oxygen play a critical role in the oxidation reaction of volatile organic compounds (VOCs). In this study, superior adsorption and activation ability was achieved by modulating the interaction between Pt nanoparticles (NPs) and UiO-66 (U6) through the spatial position effect. Pt@U6 exhibits excellent activity in toluene, acetone, propane, and aldehyde oxidation reactions. Spectroscopic studies, 16O2/18O2 kinetic isotopic experiments, and density functional theory (DFT) results jointly reveal that the encapsulated Pt NPs of Pt@U6 possess higher electron density and d-band center, which is conducive for the adsorption and dissociation of oxygen. The toluene oxidation reaction and DFT results indicate that Pt@U6 is more favorable to activate the C-H of toluene and the C═C of maleic anhydride, while Pt/U6 with lower electron density and d-band center exhibits a higher oxygen dissociation temperature and higher reactant activation energy barriers. This study provides a deep insight into the architecture-performance relation of Pt-based catalysts for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Ben Niu
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Yang Wang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Ting Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ganggang Li
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Jie Cheng
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
10
|
Tan W, Cai Y, Yu H, Xie S, Wang M, Ye K, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Tuning the Interaction between Platinum Single Atoms and Ceria by Zirconia Doping for Efficient Catalytic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15747-15758. [PMID: 37788364 DOI: 10.1021/acs.est.3c06067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.
Collapse
Affiliation(s)
- Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Meiyu Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
11
|
Gu H, Lan J, Hu H, Jia F, Ai Z, Zhang L, Liu X. Surface oxygen vacancy-dependent molecular oxygen activation for propane combustion over α-MnO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132499. [PMID: 37683342 DOI: 10.1016/j.jhazmat.2023.132499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Oxygen vacancies (OV), as the sites of molecular oxygen adsorption and activation, play an important role in the catalytic combustion process of volatile organic compounds (VOCs). Revealing the relationship between OV concentration and molecular oxygen activation behavior is of significance to construct the efficient catalysts. Herein, α-MnO2 with different OV concentrations was prepared to investigate the molecular oxygen activation for C3H8 combustion. It is disclosed that the enhanced OV concentration in α-MnO2 induced the reconfiguration of surface metal atoms, resulting in the transformation of oxygen activation configuration from end-on mode to side-on mode. Oxygen molecules in side-on mode possessed more localized electron density and weaker coordination bond strength with surrounding Mn atoms, which were more favorable to adsorb C3H8 molecules and activate C-H bond for the improved combustion performance. This work provides a new understanding to reveal that the increased OV concentration contributes to more efficient VOCs combustion.
Collapse
Affiliation(s)
- Huayu Gu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jintong Lan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Haolu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
12
|
Zhang L, Zhong L, Yu P, Li H, Zhou Z, Tong Q, Wan H, Dong L. Size Effect of Platinum Nanoparticles over Platinum-Manganese Oxide on the Low-Temperature Oxidation of Toluene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13620-13629. [PMID: 37702778 DOI: 10.1021/acs.langmuir.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The effect of size of Pt nanoparticles has an important influence on the performance of supported Pt-based catalysts for the elimination of toluene. Herein, uniform Pt nanoparticles with average sizes of 1.5, 2.0, 2.5, 2.9, and 3.6 nm were obtained and supported on manganese oxide octahedral molecular sieves (OMS-2), and their catalytic performances for toluene oxidation were evaluated. Benefiting from the moderate interfacial interaction between nanoparticles and manganese oxide support, Pt/OMS-2-3 with the Pt particle size of 3.0 nm showed the best catalytic performance owing to the highest content of Pt2+ species. It also facilitates the formation of more abundant Mnδ+ (Mn2+ and Mn3+) and oxygen vacancies than that of the other sizes of the OMS-2-supported Pt nanoparticles, which can be filled by a large amount of adsorbed oxygen and converted into reactive oxygen species. We further showed that the resulting surface synergetic oxygen vacancies (Pt2+-Ov-Mnδ+) play a decisive part in catalyzing the complete oxidation of toluene. The result will provide new insights for designing efficient Pt-based catalysts for deep purification of toluene.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Linjun Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Pinhua Yu
- Research Institute of Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Haitao Li
- Department of Science and Technology Development, Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, P. R. China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Zhang W, Du M, Xi W, Zhang H, Liu SF, Yan J. Platinum Species on Oxygen Vacancy-Rich Titania for Efficient Basic Electrocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12715-12724. [PMID: 37646100 DOI: 10.1021/acs.langmuir.3c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Oxygen vacancy-rich titania is a promising support for enhancing the hydrogen evolution reaction (HER). This work innovatively loaded Pt nanoparticles on oxygen vacancy-rich TiO2 (Pt/Vo-TiO2) in situ by using a photocatalytic device. The synthesis conditions are mild, do not require high temperatures and strong reducing agents, and can avoid the accumulation of platinum species. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectrometry (XAS) verified the synergistic effect of Pt species and oxygen vacancies on the progress of the reaction kinetics, where the Pt particles exposed by the in situ synthesis functioned as reaction sites in the electrocatalytic hydrogen evolution. Based on this, Pt/Vo-TiO2 exhibits excellent electrocatalytic performance with an overpotential of only 56 mV at a current density of 10 mA cm-2 and a Tafel slope of only 73.5 mV dec-1. This work provides a new strategy for designing highly efficient HER catalysts.
Collapse
Affiliation(s)
- Weikai Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Mingxuan Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wenshan Xi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Huiping Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
14
|
Li Q, Zhou W, Deng C, Lu C, Huang P, Xia D, Tan L, Zhou C, Zhang YW, Dong L. Hydroxyl-Decorated Pt as a Robust Water-Resistant Catalyst for Catalytic Benzene Oxidation. Inorg Chem 2023; 62:13544-13553. [PMID: 37561968 DOI: 10.1021/acs.inorgchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Huang
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Dong Xia
- Manchester Fuel Cell Innovation Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester M15 6BH, U.K
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Li M, Li W, Yang Y, Yu D, Lin J, Wan R, Zhu H. Remarkably efficient Pt/CeO 2-Al 2O 3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al 2O 3 and CeO 2. CHEMOSPHERE 2023; 327:138515. [PMID: 36972872 DOI: 10.1016/j.chemosphere.2023.138515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Monoiodoacetic acid (MIAA) is one of the highly toxic halogenated disinfection by-products, which is formed during water disinfection processes. Catalytic hydrogenation with supported noble metal catalyst is a green and effective technique for the transformation of halogenated pollutant, but its activity still needs to be identified. In this study, Pt nanoparticles were supported on CeO2 modified γ-Al2O3 (Pt/CeO2-Al2O3) by chemical deposition method and the synergistic effect of Al2O3 and CeO2 on catalytic hydrodeiodination (HDI) of MIAA was systematically studied. Characterizations revealed that Pt dispersion could be improved by the introduced CeO2 through the formation of Ce-O-Pt bond and MIAA adsorption could be facilitated by high Zeta potential of Al2O3 component. Furthermore, optimal Ptn+/Pt0 could be obtained by adjusting CeO2 deposition amount on Al2O3, which could effectively facilitate the activation of C-I bond. Therefore, Pt/CeO2-Al2O3 exhibited remarkable catalytic activities and TOF values compared with those of Pt/CeO2 and Pt/Al2O3. Through detailed kinetic experiments and characterization, the extraordinary catalytic performance of Pt/CeO2-Al2O3 can be attributed to the abundant Pt sites as well as the synergistic effect between CeO2 and Al2O3.
Collapse
Affiliation(s)
- Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Wen Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Dailiang Yu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Jingling Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
16
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Sadeq A, Mohamed Hasan Y, Mohsen Najm Z, Kadhim MM, Al Mashhadani ZI. A Novel and Efficient Magnetically Recoverable Copper Catalyst for Synthesis of Symmetrical Diaryl Selenides and Sulfides. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2187849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
| | | | - Zainab Mohsen Najm
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
18
|
Sarentuya, Bai H, Amurishana. Synthesis of Bi2S3-TiO2 nanocomposite and its electrochemical and enhanced photocatalytic properties for phenol degradation. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
19
|
Baran T, Karaoğlu K, Nasrollahzadeh M. Nano-sized and microporous palladium catalyst supported on modified chitosan/cigarette butt composite for treatment of environmental contaminants. ENVIRONMENTAL RESEARCH 2023; 220:115153. [PMID: 36574802 DOI: 10.1016/j.envres.2022.115153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
This study reports a versatile process for the fabrication of a microporous heterogeneous palladium nanocatalyst on a novel spherical, biodegradable, and chemically/physically resistant catalyst support consisting of chitosan (CS) and cigarette waste-derived activated carbon (CAC). The physicochemical properties of the microporous Pd-CS-CAC nanocatalyst developed were successfully determined by FTIR, XRD, FE-SEM, TEM, BET, and EDS techniques. TEM studies showed that the average particle size of the synthesized Pd NPs was about 30 nm. The catalytic prowess of microporous Pd-CS-CAC was evaluated in the reduction/decolorization of various nitroarenes (2-nitroaniline (2-NA), 4-nitroaniline (4-NA), 4-nitrophenol (4-NP), and 4-nitro-o-phenylenediamine (4-NPD)) and organic dyes (methyl red (MR), methyl orange (MO), methylene blue (MB), congo red (CR), and rhodamine B (RhB)) in an aqueous medium in the presence of NaBH4 as the reducing agent at room temperature. The catalytic activities were studied by UV-Vis absorption spectroscopy of the supernatant at regular time intervals. The short reaction times, mild reaction conditions, high efficiency (100% conversion), easy separation, and excellent chemical stability of the catalyst due to its heterogeneity and reusability are the advantages of this method. The results of the tests showed that reduction/decolorization reactions were successfully carried out within 10-140 s due to the good catalytic ability of Pd-CS-CAC. Moreover, Pd-CS-CAC was reused for 5 consecutive times with no loss of the initial shape, size, and morphology, confirming that it was a sustainable and robust nanocatalyst.
Collapse
Affiliation(s)
- Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Kaan Karaoğlu
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran; Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
20
|
Synthesis of a magnetic polystyrene-supported Cu(II)-containing heterocyclic complex as a magnetically separable and reusable catalyst for the preparation of N-sulfonyl-N-aryl tetrazoles. Sci Rep 2023; 13:3214. [PMID: 36828906 PMCID: PMC9958043 DOI: 10.1038/s41598-023-30198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
In this work, a cost-effective, environmentally friendly, and convenient method for synthesizing a novel heterogeneous catalyst via modification of polystyrene using tetrazole-copper magnetic complex [Ps@Tet-Cu(II)@Fe3O4] has been successfully developed. The synthesized complex was analyzed using TEM (transmission electron microscopy), HRTEM (high resolution-transmission electron microscopy), STEM (scanning transmission electron microscopy), FFT (Fast Fourier transform), XRD (X-ray diffraction), FT-IR (Fourier transform-infrared spectroscopy), TG/DTG (Thermogravimetry and differential thermogravimetry), ICP-OES (Inductively coupled plasma-optical emission spectrometry), Vibrating sample magnetometer (VSM), EDS (energy dispersive X-ray spectroscopy), and elemental mapping. N-Sulfonyl-N-aryl tetrazoles were synthesized in high yields from N-sulfonyl-N-aryl cyanamides and sodium azide using Ps@Tet-Cu(II)@Fe3O4 nanocatalyst. The Ps@Tet-Cu(II)@Fe3O4 complex can be recycled and reused easily multiple times using an external magnet without significant loss of catalytic activity.
Collapse
|
21
|
Saadoon N, Chlib Alkaaby HH, Obaid NH, Lafta HA, Mohammed Kadim A, Adhab AH, Younes A. Construction and Characterization of Fe 3O 4-Bis[Imine-Pyridine]-Cu(OAc) 2 Nanocomposite: A Novel and Ecofriendly Reusable Nanocatalyst for Click Synthesis of 1-aryl-1,2,3-Triazole Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2179081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Nasier Saadoon
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Holya A. Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | | | | | - Ahmad Younes
- Institute of Chemical Science and Technology, Baghdad, Iraq
| |
Collapse
|
22
|
Khademi D, Zargazi M, Chahkandi M, Baghayeri M. A novel γ‒BMO@BMWO Z‒Scheme heterojunction for promotion photocatalytic performance: Nanofibers thin film by Co‒axial‒electrospun. ENVIRONMENTAL RESEARCH 2023; 219:115154. [PMID: 36574798 DOI: 10.1016/j.envres.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bismuth molybdate has three phases α-Bi2MoO6, β-Bi2Mo2O9, and γ- Bi2Mo3O12, each of which has unique properties that distinguish them from each other. Among them, Bi2MoO6 and Bi2Mo3O12 have the most stability. In this research, γ-Bi2MoO6@Bi2Mo2.66W0.34O12 core‒shell nanofibers were deposited on the stainless steel mesh as effective and low‒cost substrate. The co‒axial electrospinning as a simple method was applied to form nanofibers on the substrate. Both of the abovementioned bismuth molybdates contents include different crystal facets, controlling the Red‒Ox properties. α-Bi2MoO6 possesses the vast numbers of oxygen vacancies in Mo-O bonding makes the oxidant {100} crystal facet. Likewise, γ‒Bi2Mo2.66W0.34O12 contains brittle facet of {010} with high concentration of Oxygen vacancies resulted in oxidative capability of the core‒shell composite. The obtained data indicated the key role of OH radical through photocatalytic reactions and a new heterojunction having direct Z‒scheme standing.
Collapse
Affiliation(s)
- Davoud Khademi
- Department of Materials Science and Engineering, Faculty of Engineering Ferdowsi University of Mashhad, Iran; Central Laboratory of Ferdowsi University of Mashhad, Iran
| | - Mahboobeh Zargazi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775, Iran.
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| |
Collapse
|
23
|
Shen Y, Deng J, Hu X, Chen X, Yang H, Cheng D, Zhang D. Expediting Toluene Combustion by Harmonizing the Ce-O Strength over Co-Doped CeZr Oxide Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1797-1806. [PMID: 36637390 DOI: 10.1021/acs.est.2c07853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-temperature catalytic degradation of volatile organic compounds (VOCs) by enhancing the activity of non-precious metal catalysts has always been the focus of attention. The mineralization of aromatic VOCs requires the participation of a large number of oxygen atoms, so the activation of oxygen species is crucial in the degradation reaction. Herein, we originally adjust the Ce-O bond strength in CeZr oxide catalysts by cobalt doping to promote the activation of oxygen species, thus improving the toluene degradation performance while maintaining high stability. Subsequent characterizations and theoretical calculations demonstrate that the weakening of the Ce-O bond strength increases the oxygen vacancy content, promotes the activation of oxygen species, and enhances the redox ability of the catalysts. This strategy also promotes the activation of toluene and accelerates the depletion of intermediate species. This study will contribute a strategy to enhance the activation ability of oxygen species in non-noble metal oxide catalysts, thereby enhancing the degradation performance of VOCs.
Collapse
Affiliation(s)
- Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huiqian Yang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Abdalkareem Jasim S, B. Mohammed D, Turki Jalil A, F. Smaisim G, Shareef Mohsen K, Abed Hussein S, Shafik MS. An Efficient and Attractive Synthetic Protocol for Three-component Preparation of NH-1,2,3-Triazoles Using a Novel Magnetically Recoverable Copper Catalyst. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2167217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Doaa B. Mohammed
- Department of Laser and Optical Electronics Engineering, Kut University College, Iraq
| | | | | | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | | | | |
Collapse
|
25
|
Esmaeilzadeh A, Heshmatpour F. Design, Synthesis and Characterization of Strontium and Cerium-Co-Doped TiO 2-HAp as an Efficient Nanocomposite: Investigation of Its Photocatalytic and Catalytic Applications. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alireza Esmaeilzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| | - Felora Heshmatpour
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Apostolescu N, Tataru Farmus RE, Harja M, Vizitiu MA, Cernatescu C, Cobzaru C, Apostolescu GA. Photocatalytic Removal of Antibiotics from Wastewater Using the CeO 2/ZnO Heterojunction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:850. [PMID: 36676586 PMCID: PMC9866605 DOI: 10.3390/ma16020850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
CeO2/ZnO-based photocatalytic materials were synthesized by the sol-gel method in order to establish heterojunctions that increase the degradation efficiency of some types of antibiotics by preventing the recombination of electron-hole pairs. The synthesized materials were analysed by XRD, SEM, EDAX, FTIR, and UV-Vis. After several tests, the optimal concentration of the catalyst was determined to be 0.05 g‧L-1 and 0.025 g‧L-1 for chlortetracycline and 0.05 g‧L-1 for ceftriaxone. CeO2/ZnO assemblies showed much better degradation efficiency compared to ZnO or CeO2 tested individually. Sample S3 shows good photocatalytic properties for the elimination of ceftriaxone and tetracycline both from single solutions and from the binary solution. This work provides a different perspective to identify other powerful and inexpensive photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Maria Harja
- Correspondence: (M.H.); (G.A.A.); Tel.: +407-4790-9645 (M.H.); +407-542-4231 (G.A.A.)
| | | | | | | | | |
Collapse
|
27
|
Sheikhhosseini E, Yahyazadehfar M. Synthesis and characterization of an Fe-MOF@Fe 3O 4 nanocatalyst and its application as an organic nanocatalyst for one-pot synthesis of dihydropyrano[2,3-c]chromenes. Front Chem 2023; 10:984502. [PMID: 36688030 PMCID: PMC9845633 DOI: 10.3389/fchem.2022.984502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, the recyclable heterogeneous cluster bud Fe-MOF@Fe3O4 'nanoflower' composite (CB Fe-MOF@Fe3O4 NFC) was successfully synthesized using Fe(NO3)3·9H2O, 8-hydroxyquinoline sulfate monohydrate, and Fe3O4 nanoparticles by microwave irradiation. The as-prepared CB Fe-MOF@Fe3O4 NFC was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrational sampling magnetometry (VSM), and Fourier transform infrared spectroscopy (FTIR). The CB Fe-MOF@Fe3O4 NFC samples proved to have excellent catalytic activity. The activity of the CB Fe-MOF@Fe3O4 NFC nanocatalyst was explored in the synthesis of dihydropyrano[3, 2-c]chromene derivatives via a three-component reaction of 4-hydroxycoumarin, malononitrile, and a wide range of aromatic aldehyde compounds. Optimized reaction conditions had several advantages, including the use of water as a green solvent, environmental compatibility, simple work-up, reusability of the catalyst, low catalyst loading, faster reaction time, and higher yields.
Collapse
|
28
|
Superparamagnetic polymer nanocomposite as a catalyst for the synthesis of pyrano[3,2-c]chromene, pyrano[2,3-c]pyrazole, and benzylpyrazolyl coumarin. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Zhang L, Zhu Z, Tan W, Ji J, Cai Y, Tong Q, Xiong Y, Wan H, Dong L. Thermal-Driven Optimization of the Strong Metal-Support Interaction of a Platinum-Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt 2+-O v-Mn δ. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56790-56800. [PMID: 36524882 DOI: 10.1021/acsami.2c16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Strong metal-support interactions (SMSIs) have a significant effect on the performance of supported noble-metal catalysts for volatile organic compound (VOC) elimination. Herein, the strength of the SMSI of Pt/OMS-2 between Pt and the OMS-2 support is regulated by simply changing calcination temperatures, and the catalyst calcined at 300 °C (Pt/OMS-2-300) performs the best in the catalytic combustion of toluene. Through systematic structural characterizations, it is revealed that much more Pt2+-Ov-Mnδ+ species are formed in Pt/OMS-2-300, which can help facilitate the generation of more reactive oxygen species and promote lattice oxygen mobility. Moreover, the results of in situ DRIFTS experiments further confirm that abundant Pt2+-Ov-Mnδ+ species at the Pt-MnO2 interface on Pt/OMS-2-300 can better enhance the adsorption and activation of toluene, thus boosting the catalytic performance in toluene combustion. This newly developed strategy of thermal-driven regulation of the SMSI provides a novel perspective for constructing highly efficient catalysts for VOC emission control.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Zhengxuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Jiawei Ji
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Qing Tong
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
30
|
Huang Z, Ding J, Yang X, Liu H, Song P, Guo Y, Guo Y, Wang L, Zhan W. Highly Efficient Oxidation of Propane at Low Temperature over a Pt-Based Catalyst by Optimization Support. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17278-17287. [PMID: 36335508 DOI: 10.1021/acs.est.2c05599] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pt-based catalysts have attracted widespread attention in environmental protection applications, especially in the catalytic destruction of light alkane pollutants. However, developing a satisfying platinum catalyst with high activity, excellent water-resistance, and practical suitability for hydrocarbon combustion at low temperature is challenging. In this study, the Pt catalyst supported on the selected Nb2O5 oxide exhibited an efficient catalytic activity in propane oxidation and exceeded that of most catalysts reported in the literature. More importantly, the Pt/Nb2O5 catalyst maintained excellent activity and durability even after high-temperature aging at 700 °C and under harsh working conditions, such as a certain degree of moisture, high space velocity, and composite pollutants. The excellent performance of the Pt/Nb2O5 catalyst was attributed to the abundant metallic Pt species stabilized on the surface of Nb2O5, which prompted the C-H bond dissociation ability as the rate-determining step. Furthermore, propane was initially activated via oxidehydrogenation and followed the acrylate species path as a more efficient propane oxidation path on the Pt/Nb2O5 surface. Overall, Pt/Nb2O5 can be considered a promising catalyst for the catalytic oxidation of alkanes from industrial sources and could provide inspiration for designing superb catalysts for the oxidation of light alkanes.
Collapse
Affiliation(s)
- Zhenpeng Huang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jiajia Ding
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xinwei Yang
- Hudong Heavy Machinery Co., Ltd., Shanghai 200129, P.R. China
| | - Hao Liu
- Kailong High Technology Co., Ltd., Wuxi 214153, P.R. China
| | - Peiyao Song
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
31
|
Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO 2/TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17341-17351. [PMID: 36413583 DOI: 10.1021/acs.est.2c07146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.
Collapse
Affiliation(s)
- Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Peijie Ma
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yijie Shi
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaofan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
32
|
Chromate Ions Chemisorption over the Exterior Surface of Pristine Boron Nitride (B12N12) Nanocage: A Computational Study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Almojil SF, Almohana AI, Alali AF, Attia EA, Sharma K, Shamseldin MA, Mohammed AG, Cao Y. Oxygen vacancy and p–n heterojunction in a g-C 3N 4 nanosheet/CuFeO 2 nanocomposite for enhanced photocatalytic N 2 fixation to NH 3 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02850f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, the nitrogen fixation process over g-C3N4 nanosheets/CuFeO2 p–n heterojunction photocatalyst is presented.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - El-Awady Attia
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16273, Saudi Arabia
- Mechanical Engineering Department, faculty of engineering (Shoubra), Benha University, Cairo, Egypt
| | - Kamal Sharma
- Institute of Engineering and Technology, GLA University, Mathura, U.P., 281406, India
| | - Mohamed A. Shamseldin
- Department of Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, 11845 New Cairo, Egypt
| | - Azheen Ghafour Mohammed
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Yan Cao
- School of Mechatronic Engineering, Xi’an Technological University, Xi’an, 710021, China
| |
Collapse
|