1
|
Liu Y, Li M, Wan QL, Wang X, Mortimer M, Fang WD, Guo LH. Recent advances in bioassays for assessing the toxicity of environmental contaminants in effect-directed analysis. J Environ Sci (China) 2025; 155:343-358. [PMID: 40246470 DOI: 10.1016/j.jes.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 04/19/2025]
Abstract
Chemical cocktails in the environment can cause adverse impacts on ecosystems and human health even at low concentrations. Effect-directed analysis (EDA) has proven to be very valuable in identifying key toxic substances in environmental mixtures. For this, it is important to carefully select accurate bioassays from a wide range of tests for EDA when applying it to actual environmental samples. This article reviews studies published from 2014 to 2023 that have applied EDA and summarizes the bioassays and their corresponding biological effects. A total of 127 studies were selected from 591 publications evaluating the toxic effects of environmental samples, including wastewater, surface water, and sediments. Here, bioassays used in EDA are summarized, including the assays that measure specific receptor-mediated modes of action (MOA), induction of xenobiotic metabolism pathways, and induction of adaptive stress response pathways using either in vitro or in vivo bioassays. Also, the identified substances using EDA are discussed based on their MOA. The importance of EDA in establishing a comprehensive approach for the detection of environmental contaminants using bioanalytical methods is emphasized. The current limitations and benefits of using EDA in practical applications are outlined and strategies for moving forward are proposed.
Collapse
Affiliation(s)
- Yao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Qi-Lin Wan
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xun Wang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Wen-Di Fang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Li Y, Peng J, Chen H, Yue W, Liu Y, Luo X, Yang L. Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids. Talanta 2025; 287:127604. [PMID: 39827478 DOI: 10.1016/j.talanta.2025.127604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection. In-situ reduction of chloroauric acid leads to the formation of Au nanoparticles (NPs) on the PDA surface, where synergistic Au-N interactions enhance the SERS performance. The distinctive bowl-like structure generates abundant "hot spots" on both sides, resulting in exceptional sensitivity. The low relative standard deviation (RSD) values (<11.7 %) across different PDA@Au NPs, along with real sample analyses (1.9-4.0 %), confirm the high reproducibility and uniformity of the SERS substrates, all achieved without the use of additional reducing agents. This cost-effective and straightforward method eliminates the need for complex surface treatments, making it particularly suitable for real-time detection of anabolic steroids across various matrices. These findings underscore the potential of bowl-like PDA materials for broader applications in clinical diagnostics, environmental monitoring, and sports doping control.
Collapse
Affiliation(s)
- Yuanyuan Li
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China.
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Hong Chen
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China
| | - Weiling Yue
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yixuan Liu
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Lu Yang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
4
|
Fang X, Zhao J, Wu S, Liao P, Guan G. The intestinal toxicity mechanisms of triclosan and triclocarban and their possible clinical nutritional intervention mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126396. [PMID: 40345375 DOI: 10.1016/j.envpol.2025.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Triclosan (TCS) and triclocarban (TCC) are widely used as antimicrobial agents in personal care products. Their widespread use has become a potential environmental contaminant. This review reviews the mechanisms of intestinal toxicity of TCS and TCC and their potential nutritional intervention strategies. TCS and TCC can be metabolized to glucuronic acid conjugates in the host and subsequently uncoupled by microorganisms in the intestine to regenerate free forms of TCS and TCC. TCS and TCC are unique metabolic pathways that lead to accumulation in the gut, altering the structure of intestinal flora, increasing the relative abundance of pathogenic bacteria, while reducing the abundance of beneficial bacteria, thereby disrupting the balance of intestinal flora. In addition, they can interfere with the self-renewal and differentiation of ISCs, thereby weakening intestinal barrier function. TCS and TCC can also activate the TLR4-NFκB signaling pathway, inducing and exacerbating inflammatory responses. These mechanisms together lead to intestinal toxicity and have a significant negative impact on intestinal health. In order to cope with the intestinal toxicity caused by these mechanisms of action, this paper believes that prebiotics, probiotics, vitamins, minerals and herbal extracts can be used as potential nutritional interventions to reduce the intestinal toxicity of TCS and TCC by regulating intestinal microbiota, enhancing intestinal barrier function and inhibiting inflammatory response. Although preliminary studies have shown the potential benefits of these interventions, their specific efficacy and safety still need further study.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Simin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
5
|
Xu K, Li K, Shi Y, Ding R, Liu Y, Shi Y, Zhao H, Cheng Z, Zhu H. Melamine derivatives in indoor dust from China: Temporal trends and human exposure before and during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138442. [PMID: 40319858 DOI: 10.1016/j.jhazmat.2025.138442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Melamine-based compounds (MELs) are emerging indoor contaminants with potential health risks, yet their temporal variations and exposure implications remain poorly characterized. In this study, we analyzed MELs in 66 paired indoor dust samples from residential households in Tianjin, China, comparing pre- and during-COVID-19 periods. Four traditional MELs, i.e., MEL, ammeline, ammelide, and cyanuric acid (CYA), were detected in all samples, with total MEL concentrations (∑MELs) ranging from 61.2 to 5.83 × 104 ng/g (median: 6.73 ×103 ng/g). During the pandemic, ∑MEL concentrations increased 1.73-fold (8.25 ×103 vs. 4.76 ×103 ng/g, p < 0.01), with CYA emerging as the predominant compound (median: 2.82 ×103 ng/g), likely due to its extensive use in disinfectants (up to 0.4 % and 20 % in liquid and tablet formulations, respectively). Human exposure assessment revealed that infants had the highest estimated daily intakes (EDIs, 40.1-69.6 ng/kg bw/day), about an order of magnitude higher than adults (3.31-5.74 ng/kg bw/day), primarily through dust ingestion. Non-carcinogenic risks (HQs<1) and lifetime cancer risks (maximum median from teenagers: 7.98 ×10-8) remained within negligible limits. Monte Carlo simulations identified indoor dust concentration and body weight as key risk determinants. These findings underscore the environmental consequences of pandemic-driven disinfection practices and the urgent need for regulatory oversight of MEL-containing materials.
Collapse
Affiliation(s)
- Ke Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Keyi Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yixuan Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ran Ding
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Yin Y, Yu X, Tao Z, French CE, Lu Z. Computer-directed rational engineering of dioxygenase TcsAB for triclosan biodegradation under cold conditions. Appl Environ Microbiol 2025; 91:e0034625. [PMID: 40042274 PMCID: PMC12016537 DOI: 10.1128/aem.00346-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 04/24/2025] Open
Abstract
The dioxygenase TcsAB is a specific dioxygenase involved in the initial biodegradation of the broad-spectrum antibacterial agent triclosan (TCS). However, it exhibits significantly reduced activity under cold conditions. In this study, a computer-directed approach combining loop engineering and N-terminal truncation was utilized to decrease the thermostability of TcsAB, thereby enhancing its catalytic activity in cold environments. The iterative mutant TcsAB (TcsAY277P/F279P/S311W/A313WTcsBN-terminal truncation) exhibited a 2.54-fold greater catalytic efficiency than the wild type at 15°C. Molecular dynamics simulations showed that the mutations introduced in the substrate-binding pocket increased its flexibility, leading to enhanced catalytic activity through binding in a more advantageous conformation. This modified dioxygenase was employed as a biological component, and Pseudomonas knackmussii B13 was used as a chassis cell to construct an engineered strain for the efficient degradation of TCS at low temperatures. The objective was to enhance the capacity of TCS bioremediation in natural environments. Insights gained from this study may inform the rational redesign of enzymes related to the robustness of biodegradation of emerging contaminants.IMPORTANCEThe presence of TCS in surface water and wastewater poses a significant risk to aquatic organisms and human health due to its high resistance to degradation. The biodegradation of TCS pollution in the environment through the metabolic processes of microorganisms represents a significant and effective remediation strategy. The dioxygenase TcsAB is the only specific enzyme that has been identified as responsible for the initial biodegradation of TCS. Nevertheless, the enzyme activity responsible for the degradation of TCS was markedly diminished at low temperatures. The actual ambient temperature is frequently lower than the optimum temperature for enzyme reaction, and maintaining the 30°C reaction condition results in high costs and energy consumption for TCS removal. Accordingly, the rational engineering of dioxygenase TcsAB for low-temperature activity will facilitate more efficient and realistic removal of TCS in an aqueous environment.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinjie Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zongxin Tao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Christopher E. French
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, International Campus, Zhejiang University, Haining, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
7
|
Nair P, Barrett H, Tanoto K, Xie L, Sun J, Yang D, Yao H, Song D, Peng H. Structure and Toxicity Characterization of Alkyl Hydroxylated Metabolites of 6PPD-Q. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7474-7484. [PMID: 40197020 DOI: 10.1021/acs.est.4c11823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Distinct from other nontoxic phenyl-p-phenylenediamine (PPD) quinones, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was recently discovered to be regioselectively metabolized to alkyl hydroxylated metabolites (alkyl-OH-6PPD-Q) in rainbow trout. It remains unknown whether the unique alkyl-OH-6PPD-Q contributes to the toxicity of 6PPD-Q. To test this, we herein synthesized chemical standards of alkyl-OH-6PPD-Q isomers and investigated their metabolic formation mechanism and toxicity. The predominant alkyl-OH-6PPD-Q was confirmed to be hydroxylated on the C4 tertiary carbon (C4-OH-6PPD-Q). The formation of C4-OH-6PPD-Q was only observed in microsomal but not in cytosolic fractions of rainbow trout (O. mykiss) liver S9. A general cytochrome P450 (CYP450) inhibitor fluoxetine inhibited the formation of hydroxylated metabolites of 6PPD-Q, supporting that CYP450 catalyzed the hydroxylation. This well-explained the compound- and regio-selective formation of C4-OH-6PPD-Q, due to the weak C-H bond on the C4 tertiary carbon. Surprisingly, while cytotoxicity was observed for 6PPD-Q and C3-OH-6PPD-Q in a coho salmon (O. kisutch) embryo (CSE-119) cell line, no toxicity was observed for C4-OH-6PPD-Q. To further confirm this under physiologically relevant conditions, we fractionated 6PPD-Q metabolites formed in the liver microsome of rainbow trout. Cytotoxicity was observed for the fraction of 6PPD-Q, but not the fraction of C4-OH-6PPD-Q. In summary, this study highlighted the C4 tertiary carbon as the key moiety for both metabolism and toxicity of 6PPD-Q and confirmed that alkyl hydroxylation is a detoxification pathway for 6PPD-Q.
Collapse
Affiliation(s)
- Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Kaylin Tanoto
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Linna Xie
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Han Yao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3J1, Canada
- Structural Genomics Consortium (SGC), University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
8
|
Ni X, Wei Z, Peng Y, Zheng L, Shang J, Liu F, Li Y, Liu J. Triclosan exposure induces liver fibrosis in mice: The heterogeneous nuclear ribonucleoprotein A1/pyruvate kinase M2 axis drives hepatic stellate cell activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118113. [PMID: 40157328 DOI: 10.1016/j.ecoenv.2025.118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Triclosan (TCS) is an effective broad-spectrum antibacterial agent. TCS possesses a stable structure, can easily accumulate in the environment, and may have numerous negative impacts on human health. One organ particularly susceptible to TCS damage is the liver; however, the molecular mechanisms underlying TCS-induced liver damage remain unclear. A long-term TCS exposure model was established in C57BL/6 mice through maternal administration from gestation to postnatal 8-week-old. The offspring were randomly assigned to three groups (0, 50, and 100 mg/kg TCS) with six animals per group, ensuring an equal gender distribution (3 males and 3 females). The results showed that TCS-exposed mice exhibited serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase enzyme activities increased by 1.5-2 times when compared with vehicle-treated mice, along with features of liver fibrosis. In the LX-2 cell line, used as an in vitro model, TCS promoted proliferation and migration and induced the activation of hepatic stellate cells (HSCs). The level of pyruvate kinase M2 (PKM2) dimer increased by 200 % in LX-2 cells treated with TCS. PKM2 dimer overexpression stimulated HSC activation, whereas treatment with TEPP-46 (a PKM2 dimer inhibitor) significantly decreased the activation process. The expression of heterogeneous ribonucleoprotein particle A1 (hnRNPA1) was upregulated in the TCS treatment group and promoted the PKM2 expression. Moreover, disruption of the hnRNPA1/PKM2 axis reduced HSC proliferation and migration activated by TCS. Overall, our findings highlighted that TCS could cause liver fibrosis by stimulating the proliferation and migration of HSCs activated via the hnRNPA1/PKM2 axis, providing promising treatment options for TCS-related liver damage.
Collapse
Affiliation(s)
- Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yunwei Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
9
|
Wang P, Li L, Zhang Y, Ren D, Feng Y, Li X, Wu D, Xie B, Ma J. Triclosan facilitates the dissemination of antibiotic resistance genes during anaerobic digestion: Focusing on horizontal transfer and microbial response. BIORESOURCE TECHNOLOGY 2024; 413:131522. [PMID: 39321940 DOI: 10.1016/j.biortech.2024.131522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The present study aims to investigate the mechanism by which triclosan influences the dissemination of antibiotic resistance genes (ARGs) during the whole anaerobic digestion process. qPCR and metagenomic analyses revealed that triclosan facilitated ARGs dissemination in a dose- and time-dependent manner. Furthermore, integrons exhibited a significant correlation with the majority of quantified ARGs, and various ARGs were frequently linked on integron gene cassettes. Microbial community and redundancy analyses indicated that triclosan altered the components of dominant ARGs hosts Firmicutes, Synergistetes and Bacteroidetes. Path modeling analysis confirmed integrons were the main driving force for facilitating ARGs dissemination. The promoted ARGs dissemination may be associated with the increased reactive oxygen species generation, cell membrane permeability, close-connected the ARGs transfer related regulatory proteins induced by triclosan. This study broadens the understanding of triclosan facilitates ARGs dissemination through anaerobic treatment, the strategies for preventing potential risks should be proposed in practice.
Collapse
Affiliation(s)
- Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Liuying Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yufei Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dayang Ren
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
10
|
Cheng X, Shen H, Zhang W, Chen B, Xu S, Wu L. Characterizing the effects of triclosan and triclocarban on the intestinal epithelial homeostasis using small intestinal organoids. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135734. [PMID: 39244982 DOI: 10.1016/j.jhazmat.2024.135734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Intestinal epithelium has the largest surface of human body, contributes dramatically to defense of toxicant-associated intestinal injury. Triclosan (TCS) and triclocarban (TCC), extensively employed as antibacterial agents in personal care products (PCPs) and healthcare facilities, caused serious damage to human intestine. However, the role of the intestinal epithelium in TCS/TCC-induced intestinal toxicity and its underlying toxic mechanisms remain incompletely understood. In this study, a novel 3D intestinal organoid model was utilized to investigate that exposure to TCS/TCC led to a compromised self-renewal and differentiation of intestinal stem cells (ISCs). Consequently, this disrupted intestinal epithelial homeostasis ultimately caused a reduction in nutrient absorption and deficient of epithelial defense to exogenous and endogenous pathogens stimulation. The inhibition of the Wnt signaling pathway in intestinal stem cell was contributed to the intestinal toxicity of TCS/TCC. These results were further confirmed in vivo with mice exposed to TCS/TCC. The findings of this study provide evidence that TCS/TCC possess the capacity to disturb the homeostasis of the intestinal epithelium, and emphasize the credibility of organoids as a valuable model for toxicological studies, as they could faithfully recapitulate in vivo phenomena.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Hongzhi Shen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| |
Collapse
|
11
|
Dai Q, Liu Z, Li H, Zhang R, Cai T, Yin J, Gao Y, Li S, Lu X, Zhen G. Enhanced dewaterability and triclosan removal of waste activated sludge with iron-rich mineral-activated peroxymonosulfate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:271-283. [PMID: 38688046 DOI: 10.1016/j.wasman.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-· and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.
Collapse
Affiliation(s)
- Qicai Dai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruiliang Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Siqin Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
12
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Gong Y, Sun J, Wang X, Barrett H, Peng H. Identification of Hydrocarbon Sulfonates as Previously Overlooked Transthyretin Ligands in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10227-10239. [PMID: 38817092 DOI: 10.1021/acs.est.3c10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Incidences of thyroid disease, which has long been hypothesized to be partially caused by exposure to thyroid hormone disrupting chemicals (TDCs), have rapidly increased in recent years. However, known TDCs can only explain a small portion (∼1%) of in vitro human transthyretin (hTTR) binding activities in environmental samples, indicating the existence of unknown hTTR ligands. In this study, we aimed to identify the major environmental hTTR ligands by employing protein Affinity Purification with Nontargeted Analysis (APNA). hTTR binding activities were detected in all 11 indoor dust and 9 out of 10 sewage sludge samples by the FITC-T4 displacement assay. By using APNA, 31 putative hTTR ligands were detected including perfluorooctanesulfonate (PFOS). Two of the most abundant ligands were identified as hydrocarbon surfactants (e.g., dodecyl benzenesulfonate). Moreover, another abundant ligand was surprisingly identified as a disulfonate fluorescent brightener, 4,4'-bis(2-sulfostyryl)biphenyl sodium (CBS). CBS was validated as a nM-affinity hTTR ligand with an IC50 of 345 nM. In total, hydrocarbon surfactants and fluorescent brighteners explain 1.92-17.0 and 5.74-54.3% of hTTR binding activities in dust and sludge samples, respectively, whereas PFOS only contributed <0.0001%. Our study revealed for the first time that hydrocarbon sulfonates are previously overlooked hTTR ligands in the environment.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Xiaoyun Wang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
14
|
Xiang T, Shi C, Guo Y, Zhang J, Min W, Sun J, Liu J, Yan X, Liu Y, Yao L, Mao Y, Yang X, Shi J, Yan B, Qu G, Jiang G. Effect-directed analysis of androgenic compounds from sewage sludges in China. WATER RESEARCH 2024; 256:121652. [PMID: 38657313 DOI: 10.1016/j.watres.2024.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiliang Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
15
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Zhang Z, Li L, Peng H, Wania F. Prioritizing molecular formulae identified by non-target analysis through high-throughput modelling: application to identify compounds with high human accumulation potential from house dust. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1817-1829. [PMID: 37842960 DOI: 10.1039/d3em00317e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Because it is typically not possible to pursue compound identification efforts for all chemical features detected during non-target analysis (NTA), the need for prioritization arises. Here we propose a strategy that ranks chemical features detected in environmental samples based on a model-derived metric that quantifies a feature's attribute that makes it desirable to elucidate its structure, e.g., a high potential for bioaccumulation in humans or wildlife. The procedure involves the identification of isomers that could plausibly represent the molecular formulae assigned to NTA-detected chemical features. For each isomer, the prioritization metric is calculated using properties predicted with high-throughput methods. After the molecular formulae are ranked based on the average values of the prioritization metric calculated for all isomers assigned to a formula, the highest ranked molecular formulae are prioritized for structure elucidation. We applied this workflow to features identified in house dust, using the ratio of chemical intake through dust ingestion to chemical concentration in blood (dose-to-concentration ratio, DCR) as the prioritization metric. Collections of isomers for the molecular formulae were assembled from the PubChem database and DCR was estimated using partitioning and biotransformation properties predicted for each isomer using quantitative structure property relationships. The ten top-ranked molecular formulae with notably lower average DCR-values represented mostly compounds already known to be indoor pollutants of concern, such as two polybrominated diphenyl ethers, bis(2-ethylhexyl) tetrabromophthalate, tetrabromobisphenol A, tris(1,3-dichloroisopropyl)phosphate and the azo dye disperse blue 373.
Collapse
Affiliation(s)
- Zhizhen Zhang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada, USA, 89557
| | - Li Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada, USA, 89557
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H4
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| |
Collapse
|
17
|
Alimi OS, Claveau-Mallet D, Lapointe M, Biu T, Liu L, Hernandez LM, Bayen S, Tufenkji N. Effects of weathering on the properties and fate of secondary microplastics from a polystyrene single-use cup. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131855. [PMID: 37478596 DOI: 10.1016/j.jhazmat.2023.131855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
In this work, we probed the changes to some physicochemical properties of polystyrene microplastics generated from a disposable cup as a result of UV-weathering, using a range of spectroscopy, microscopy, and profilometry techniques. Thereafter, we aimed to understand how these physicochemical changes affect the microplastic transport potential and contaminant sorption ability in model freshwaters. Exposure to UV led to measured changes in microplastic hydrophobicity (20-23 % decrease), density (3% increase), carbonyl index (up to 746 % increase), and microscale roughness (24-86 % increase). The settling velocity of the microplastics increased by 53 % after weathering which suggests that UV aging can increase microplastic deposition to sediments. This impact of aging was greater than the effect of the water temperature. Weathered microplastics exhibited reduced sorption capacity (up to 52 % decrease) to a model hydrophobic contaminant (triclosan) compared to unaged ones. The adsorption of triclosan to both microplastics was slightly reversible with notable desorption hysteresis. These combined effects of weathering could potentially increase the transport potential while decreasing the contaminant transport abilities of microplastics. This work provides new insights on the sorption capacity and mobility of a secondary microplastic, advances our knowledge about their risks in aquatic environments, and the need to use environmentally relevant microplastics.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, T6G 1H9 Canada.
| | - Dominique Claveau-Mallet
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2900 Edouard-Montpetit, Montreal, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Construction Engineering, École de technologie supérieure - University of Québec, Montreal, Quebec, H3C 1K3, Canada
| | - Thinh Biu
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Laura M Hernandez
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| |
Collapse
|
18
|
Qiu L, Guo X, Liang Z, Lu Q, Wang S, Shim H. Uncovering the metabolic pathway of novel Burkholderia sp. for efficient triclosan degradation and implication: Insight from exogenous bioaugmentation and toxicity pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122111. [PMID: 37392866 DOI: 10.1016/j.envpol.2023.122111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.
Collapse
Affiliation(s)
- Lan Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhiwei Liang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qihong Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shanquan Wang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China.
| |
Collapse
|
19
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Gong Y, Yang D, Liu J, Barrett H, Sun J, Peng H. Disclosing Environmental Ligands of L-FABP and PPARγ: Should We Re-evaluate the Chemical Safety of Hydrocarbon Surfactants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11913-11925. [PMID: 37527448 DOI: 10.1021/acs.est.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chemical contaminants can cause adverse effects by binding to the liver-fatty acid binding protein (L-FABP) and peroxisome proliferator-activated nuclear receptor γ (PPARγ), which are vital in lipid metabolism. However, the presence of numerous compounds in the environment has hindered the identification of their ligands, and thus only a small portion have been discovered to date. In this study, protein Affinity Purification with Nontargeted Analysis (APNA) was employed to identify the ligands of L-FABP and PPARγ in indoor dust and sewage sludge. A total of 83 nonredundant features were pulled-out by His-tagged L-FABP as putative ligands, among which 13 were assigned as fatty acids and hydrocarbon surfactants. In contrast, only six features were isolated when His-tagged PPARγ LBD was used as the protein bait. The binding of hydrocarbon surfactants to L-FABP and PPARγ was confirmed using both recombinant proteins and reporter cells. These hydrocarbon surfactants, along with >50 homologues and isomers, were detected in dust and sludge at high concentrations. Fatty acids and hydrocarbon surfactants explained the majority of L-FABP (57.7 ± 32.9%) and PPARγ (66.0 ± 27.1%) activities in the sludge. This study revealed hydrocarbon surfactants as the predominant synthetic ligands of L-FABP and PPARγ, highlighting the importance of re-evaluating their chemical safety.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
21
|
Zhang D, Lu S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162114. [PMID: 36764530 DOI: 10.1016/j.scitotenv.2023.162114] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
22
|
Caioni G, Benedetti E, Perugini M, Amorena M, Merola C. Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics (Basel) 2023; 12:724. [PMID: 37107085 PMCID: PMC10135053 DOI: 10.3390/antibiotics12040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the world's industrialized nations' biggest issues. It has a significant influence on the ecosystem and negatively affects human health. The overuse of antibiotics in the healthcare and agri-food industries has historically been defined as a leading factor, although the use of antimicrobial-containing personal care products plays a significant role in the spread of AMR. Lotions, creams, shampoos, soaps, shower gels, toothpaste, fragrances, and other items are used for everyday grooming and hygiene. However, in addition to the primary ingredients, additives are included to help preserve the product by lowering its microbial load and provide disinfection properties. These same substances are released into the environment, escaping traditional wastewater treatment methods and remaining in ecosystems where they contact microbial communities and promote the spread of resistance. The study of antimicrobial compounds, which are often solely researched from a toxicological point of view, must be resumed considering the recent discoveries, to highlight their contribution to AMR. Parabens, triclocarban, and triclosan are among the most worrying chemicals. To investigate this issue, more effective models must be chosen. Among them, zebrafish is a crucial study system because it allows for the assessment of both the risks associated with exposure to these substances as well as environmental monitoring. Furthermore, artificial intelligence-based computer systems are useful in simplifying the handling of antibiotic resistance data and speeding up drug discovery processes.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| |
Collapse
|
23
|
Gong Y, Yang D, Barrett H, Sun J, Peng H. Building the Environmental Chemical-Protein Interaction Network (eCPIN): An Exposome-Wide Strategy for Bioactive Chemical Contaminant Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3486-3495. [PMID: 36827403 DOI: 10.1021/acs.est.2c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although advancements in nontargeted analysis have made it possible to detect hundreds of chemical contaminants in a single run, the current environmental toxicology approaches lag behind, precluding the transition from analytical chemistry efforts to health risk assessment. We herein highlighted a recently developed "top-down" bioanalytical method, protein Affinity Purification with Nontargeted Analysis (APNA), to screen for bioactive chemical contaminants at the "exposome-wide" level. To achieve this, a tagged functional protein is employed as a "bait" to directly isolate bioactive chemical contaminants from environmental mixtures, which are further identified by nontargeted analysis. Advantages of this protein-guided approach, including the discovery of new bioactive ligands as well as new protein targets for known chemical contaminants, were highlighted by several case studies. Encouraged by these successful applications, we further proposed a framework, i.e., the environmental Chemical-Protein Interaction Network (eCPIN), to construct a complete map of the 7 billion binary interactions between all chemical contaminants (>350,000) and human proteins (∼20,000) via APNA. The eCPIN could be established in three stages through strategically prioritizing the ∼20,000 human proteins, such as focusing on the 48 nuclear receptors (e.g., thyroid hormone receptors) in the first stage. The eCPIN will provide an unprecedented throughput for screening bioactive chemical contaminants at the exposome-wide level and facilitate the identification of molecular initiating events at the proteome-wide level.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Zhang D, Xiao J, Xiao Q, Chen Y, Li X, Zheng Q, Ma J, Xu J, Fu J, Shen J, Xiao L, Lu S. Infant exposure to parabens, triclosan, and triclocarban via breastfeeding and formula supplementing in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159820. [PMID: 36349623 DOI: 10.1016/j.scitotenv.2022.159820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Parabens, triclosan (TCS), and triclocarban (TCC) are antimicrobial additives that are widely used in personal care products (PCPs) and may dysregulate infant gut microbiota and induce a series of chronic diseases. Dietary intake may be an underestimated exposure route of such antimicrobial additives in infants, but relevant data remain scarce. Therefore, this study determined five common preservatives, including methyl- (MeP), ethyl- (EtP), propyl- (PrP), butyl- (BuP), and benzyl-paraben (BeP), and two antimicrobials TCS and TCC, in major infant food sources (breastmilk, milk-based infant formula [MIF], and cereal-based complementary food [CCF]) in southern China. The health risks associated with dietary exposure among infants across different months of age were also evaluated. The results demonstrated a high incidence of MeP, EtP, PrP, and BeP in processed infant food products, while TCS and TCC were mainly detected in maternal breastmilk. Notably, MeP and EtP were found in all of the MIFs tested, while MeP, EtP, and BeP were detected in 85.6 %-100 % of the CCFs. By incorporating the human equivalent dose and an additional 10-fold margin of safety for infants into the health risk assessment, the 95th percentile hazard quotient of PrP via the ingestion of breastmilk among neonates exceeded 1. For the first time, the results showed that exposure to PrP via breastmilk intake may pose a considerable health risk to urban neonates in southern China. The health risks caused by antimicrobial exposure via ingesting MIF and CCF among infants were negligible. Thus, we recommend breastfeeding women reduce their consumption of PCPs and processed food, especially during the first month after delivery.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lehan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
25
|
Zhang D, Liu X, Xiao Q, Han L, Yang J, Li X, Xu J, Zheng Q, Ma J, Chen J, Lu S. Co-Exposure to Bisphenols, Parabens, and Antimicrobials and Association with Coronary Heart Disease: Oxidative Stress as a Potential Mediating Factor? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:531-538. [PMID: 36534741 DOI: 10.1021/acs.est.2c06488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronary heart disease (CHD) is the leading cause of global morbidity, but the effect of plasticizers and antimicrobial additives on CHD is unknown. Here, we conducted a case-control study to investigate the mediating role of oxidative stress in the association between co-exposure to seven bisphenols, four parabens, triclosan (TCS), triclocarban, and CHD risk in Guangzhou, China. Quantile-based g-computation and weighted quantile sum regression were used to analyze mixture-outcome associations. Quantile-based g-computation showed a positive joint effect of a decile increase in exposure to all examined pollutants on CHD risk (OR: 1.52, 95% CI: 1.25-1.84), with bisphenol A (BPA), bisphenol F (BPF), n-butyl paraben (BuP), and TCS representing major contributors. The results also showed a decile nonmonotonic increase in the exposure mixtures, positively correlated with a 2.22 ng/mL (95% CI: 1.21-3.23 ng/mL) elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), with BuP, TCS, bisphenol AP (BPAP), and BPF contributing dominantly. Mediation analysis showed that 8-OHdG mediated the relationship between BPA, BPF, BPAP, and TCS, and CHD risk. Moreover, the mediating role of high-density lipoprotein (HDL) between several bisphenols and CHD was also identified. It is yet to be verified, but bisphenols may elevate CHD risk by reducing HDL status and increasing oxidative stress.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
26
|
Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, Barrett H, Yang D, Wu M, Andrews RC, Peng H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14627-14639. [PMID: 36173153 DOI: 10.1021/acs.est.2c03608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.
Collapse
Affiliation(s)
- Wanzhen Chen
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael McKie
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Menghong Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
27
|
Cheng Z, Zhang C, Jiang W, Zhai W, Gao J, Wang P. Effects of the presence of triclocarban on the degradation and migration of co-occurring pesticides in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119840. [PMID: 35963390 DOI: 10.1016/j.envpol.2022.119840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), a bactericide widely used in personal care products, is frequently detected in soil and surface water, which may affect the environmental behavior of other environmental pollutants by changing the community structure of environmental microorganisms. This work evaluated the effects of TCC on the degradation and migration of seven herbicides and five fungicides in soil under co-occurrence conditions. TCC significantly increased the persistence of the pesticides in soil, and this effect increased with TCC concentration. For example, the half-life of metolachlor, atrazine, metribuzin, and metamitron increased 44%, 38%, 153%, and 33%, respectively, with 10 mg/kg TCC and increased 60%-640% with 100 mg/kg TCC. After 90 days, the residue of the pesticides in soil treated with TCC was significantly elevated relative to the control. TCC treatment could also increase the potential leaching risk of the herbicides in the soil, as indicated by an increased Groundwater Ubiquity Score (GUS) index. The reduced abundance of soil bacteria by TCC might be an essential reason for the impacts on the environmental behavior of the pesticides. This study confirmed that TCC could slow down the degradation of pesticides in soil, increase their persistence and even affect the leaching behavior, thus influencing the risks of the pesticides to the environment.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Chuntao Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wenqi Jiang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jing Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|