1
|
Huang W, Zhang J, Chen B, Gui X, Zhang Z, Hu L, Liang J, Cao X, Xu X. Release and Redistribution of Arsenic Associated with Ferrihydrite Driven by Aerobic Humification of Exogenous Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8189-8200. [PMID: 40243271 DOI: 10.1021/acs.est.4c13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Humification of exogenous soil organic matter (ESOM) remodels the organic compositions and microbial communities of soil, thus exerting potential impacts on the biogeochemical transformation of iron (hydr)oxides and associated trace metals. Here, we conducted a 70-day incubation experiment to investigate how aerobic straw humification influenced the repartitioning of arsenic (As) associated with ferrihydrite in paddy soil. Results showed that the humification was characterized by rapid OM degradation (1-14 days) and subsequent slow maturation (14-70 days). During the degradation stage, considerable As (13.1 mg·L-1) was released into the aqueous phase, which was reimmobilized to the solid phase in the maturation stage. Meanwhile, the low-crystalline structural As/Fe was converted to a more stable species, with a subtle crystalline phase transformation. The generated highly unsaturated and phenolic compounds and enriched Enterobacter and Sphingomonas induced ferrihydrite (∼3.1%) and As(V) reduction, leading to As release during the degradation stage. In the maturation stage, carboxylic-rich alicyclic molecules facilitated the aqueous As reimmobilization. Throughout the humification process, organo-mineral complexes formed between OM and ferrihydrite via C-O-Fe bond contributed to the solid-phase As/Fe stabilization. Collectively, this work highlighted the ESOM humification-driven iron (hydr)oxide transformation and associated As redistribution, advancing our understanding of the coupled biogeochemical behaviors of C, Fe, and As in soil.
Collapse
Affiliation(s)
- Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Wu S, Chi J, Fang L, Liu K, Zhang W, Gong Z, Liu C, Putnis CV, Li F. Cadmium Immobilization on Fe Oxyhydroxides Enhanced by DOM Using Single-Molecule Determinations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3771-3779. [PMID: 39950734 DOI: 10.1021/acs.est.4c12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The groups from dissolved organic matter (DOM) enhance cadmium (Cd) immobilization on Fe oxyhydroxide, while it is difficult to evaluate the contributions of different groups on the binding configurations and strength between Cd and Fe oxyhydroxides because of DOM's complex composition and lack of in situ methods. Here, we selected organic small molecules with representative functional groups to investigate the molecular mechanisms of Cd immobilization on goethite using batch experiments, solid characterization, theoretical calculations, and single-molecule force spectroscopy (SMFS) combined with K-means analysis. These organic molecules increase Cd adsorption on goethite, with carboxyl groups showing the most substantial enhancement (increased by 81.7%). Solid-state characterization reveals that the adsorption of organic molecules is the primary driver of enhanced Cd immobilization, promoting the formation of new Cd-O(C) and Cd-O(Fe/C) bonds. Especially, thermodynamic analysis indicates that Cd-O(C) and Cd-O(Fe/C) bonds represent 75%-80% of total Cd binding configurations in the presence of organic molecules. Notably, the newly developed thermodynamic results show a strong correlation with the adsorption capacity, which may deepen the understanding of DOM-mediated Cd immobilization on Fe oxyhydroxides, offering crucial insights into Cd behavior and providing a theoretical basis for pollution control in subsurface and superficial environments.
Collapse
Affiliation(s)
- Shiyin Wu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Hassan S, Bali BS, Muneer W, Yaseen A, Bhat S, Zaman M, Ganiee SA, Shah AJ, Ganai BA. A review on amino acids as proxies for organic matter degradation in aquatic ecosystems: implications for nutrient cycling, climate change, and ecosystem management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3593-3616. [PMID: 39873875 DOI: 10.1007/s11356-025-35949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles. Therefore, the present review critically investigated amino acids as crucial markers for assessing the degradation status in lacustrine and marine sediments and highlighted the pivotal function of biotic and abiotic determinants that influence the mineralization of organic matter. The review thoroughly discussed studies on the spatio-temporal distribution patterns of amino acids and their bio-refractory nature to overcome the challenges in evaluating sediment organic matter degradation in aquatic systems. Recognizing the paramount impact of climate change on aquatic ecosystems, the review further elucidated how integrating amino acid-based data into climate models is essential for predicting complex interplay between degradation processes and evolving environmental dynamics. Finally, the specific needs for further research and recommendations for developing efficient and sustainable strategies to study organic matter degradation were highlighted. The present review will deliver fresh inferences to researchers, ecologists, and policymakers for a better understanding of source distribution and degradation status of organic matter for evidence-based conservation and management strategies.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bikram Singh Bali
- Department of Earth Science, University of Kashmir, Srinagar, 190006, India
| | - Wani Muneer
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Sabreena Bhat
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
4
|
Feng X, Wang X, Wei Z, Wu M, Ma X, Yan X, Shan J. Depth weakens effects of long-term fertilization on dissolved organic matter chemodiversity in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178237. [PMID: 39721550 DOI: 10.1016/j.scitotenv.2024.178237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return). The results revealed that fertilization regimes significantly increased soil TC, TN, and NO3- contents, as well as DOM chemodiversity in the top soil layer, particularly under NPKHS and NPKS treatments. Both the DOM chemodiversity and bacterial diversity decreased with soil depth. However, below 0-20 cm, DOM chemodiversity was not significantly affected by fertilization treatments. Co-occurrence network analysis further showed that microbial decomposition primarily drove the changes in DOM composition across soil profile. Overall, our study suggests that long-term NPK fertilization and straw return significantly increased DOM chemodiversity only in the top layer of paddy soil by regulating soil TC, TN, and NO3- contents. Our study provides useful information regarding the vertical molecular composition of DOM and enhances the understanding of DOM chemodiversity along soil profile in rice paddy ecosystems.
Collapse
Affiliation(s)
- Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China.
| |
Collapse
|
5
|
Ren D, Yang B, Wang Y, Wang J. Molecular-level insight into the role of soil-derived dissolved organic matter composition in regulating photochemical reactivity. WATER RESEARCH 2024; 268:122765. [PMID: 39541853 DOI: 10.1016/j.watres.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Soil-derived dissolved organic matter (DOM) links soil and water carbon pools and is an important source of photochemically produced reactive intermediates (PPRIs) in aquatic environments. Despite its importance, the variations in photochemical reactivity of soil-derived DOM molecules in producing PPRIs across broad geographical regions, and the factors driving these variations, remain unclear. Herein, we resolved the apparent quantum yields (Φ(PPRIs)) of hydroxyl radicals (•OH), singlet oxygen (1O2), and excited triplet-state DOM (3DOM*) for irradiated DOM from 22 representative soil reference materials in China, and linked them to soil pH, mineral weathering degree, and DOM characteristics. Generally, the average Φ(PPRIs) values of the soil-derived DOM followed the order of Φ(3DOM*) (1.67× 10-2) > Φ(1O2) (1.47× 10-2) > Φ(•OH) (7.31× 10-5). The DOM from less weathered soils showed higher Φ(•OH) and Φ(3DOM*) and comparable Φ(1O2) than that from more weathered soils. The differences were mainly regulated by the abundance of humic-, lignin-, tannin-, and aromatic-like compounds, as indicated by the correlation and random forest model analyses. Partial least squares and multiple linear regression analyses identified DOM molecular weight, nominal oxidation state of carbon, and soil chemical index of alteration as effective predictors of •OH yields. Soil chemical index of alteration emerged as a prioritized predictor of 3DOM* yields, while the electron-donating capacity and humic-like compound content of the soil-derived DOM were effective predictors of 1O2 yields. This study advances our understanding of how mineral weathering processes regulate the photochemical reactivity of soil-derived DOM in the aquatic environment across wide geographical regions.
Collapse
Affiliation(s)
- Dong Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhang Z, Cui X, Qu X, Fu H, Tao S, Zhu D. Revealing Molecular Structures of Nitrogen-Containing Compounds in Dissolved Black Carbon Using Ultrahigh-Resolution Mass Spectrometry Combined with Thermodynamic Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11998-12007. [PMID: 38935345 DOI: 10.1021/acs.est.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Landscape wildfires generate a substantial amount of dissolved black carbon (DBC) annually, yet the molecular nitrogen (N) structures in DBC are poorly understood. Here, we systematically compared the chemodiversity of N-containing molecules among three different DBC samples from rice straw biochar pyrolyzed at 300, 400, and 500 °C, one leached dissolved organic carbon (LDOC) sample from composted rice straw, and one fire-affected soil dissolved organic matter (SDOMFire) sample using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). N-Containing molecules contributed 20.0%, 36.1%, and 43.7% of total compounds in Combined DBC (pooling together the three DBC), LDOC, and SDOMFire, respectively, and molecules with fewer N atoms had higher proportions (i.e., N1 > N2 > N3). The N-containing molecules in Combined DBC were dominated by polycyclic aromatic (62.2%) and aromatic (14.4%) components, while those in LDOC were dominated by lignin-like (50.4%) and aromatic (30.1%) components. The composition and structures of N-containing molecules in SDOMFire were more similar to those in DBC than in LDOC. As the temperature rose, the proportion of the nitrogenous polycyclic aromatic component in DBC significantly increased with concurrent enhanced oxidation and unsaturation of N. As indicated by density functional theory (DFT)-based thermodynamic calculations, the proportion of aliphatic amide N decreased from 23.2% to 7.9%, whereas that of nitroaromatic N increased from 10.0% to 39.5% as the temperature increased from 300 to 500 °C; alternatively, the proportion of aromatic N in the 5/6 membered ring remained relatively stable (∼31%) and that of aromatic amide N peaked at 400 °C (32.7%). Our work first provides a comprehensive and thorough description of molecular N structures of DBC, which helps to better understand and predict their fate and biogeochemical behavior.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiurui Cui
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shu Tao
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Yang Z, Ohno T, Singh B. Effect of Land Use Change on Molecular Composition and Concentration of Organic Matter in an Oxisol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10095-10107. [PMID: 38805386 PMCID: PMC11171453 DOI: 10.1021/acs.est.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Land use change from native vegetation to cropping can significantly affect the quantity and quality of soil organic matter (SOM). However, it remains unclear how the chemical composition of SOM is affected by such changes. This study employed a sequential chemical extraction to partition SOM from an Oxisol into several distinct fractions: water-soluble fractions (ultrapure water (W)), organometal complexes (sodium pyrophosphate (PP)), short-range ordered (SRO) oxides (hydroxylamine-HCl (HH)), and well-crystalline oxides (dithionite-HCl (DH)). Coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the impact of land use change on the molecular composition of different OM fractions was investigated. Greater amounts of OM were observed in the PP and HH fractions compared to other fractions, highlighting their importance in SOM stabilization. The composition of different OM fractions varied based on extracted phases, with lignin-like and tannin-like compounds being prevalent in the PP and HH fractions, while aliphatic-like compounds dominated in the DH fraction. Despite changes in the concentration of each OM fraction from native vegetation to cropping, there was little influence of land use change on the molecular composition of OM associated with different mineral phases. No significant selective loss or preservation of organic carbon compounds was observed, indicating the composition of SOM remained unchanged.
Collapse
Affiliation(s)
- Zongtang Yang
- School
of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales 2015, Australia
| | - Tsutomu Ohno
- School
of Food and Agriculture, University of Maine, Orono, Maine 04469-5763, United
States
| | - Balwant Singh
- School
of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales 2015, Australia
| |
Collapse
|
8
|
Xue J, Deng Y, Zhang Y, Du Y, Fu QL, Xu Y, Shi J, Wang Y. Hidden Role of Organic Matter in the Immobilization and Transformation of Iodine on Fe-OM Associations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9840-9849. [PMID: 38775339 DOI: 10.1021/acs.est.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.
Collapse
Affiliation(s)
- Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxi Zhang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
9
|
Song Y, Yao S, Li X, Wang T, Jiang X, Bolan N, Warren CR, Northen TR, Chang SX. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:227-237. [PMID: 38680731 PMCID: PMC11047296 DOI: 10.1016/j.eehl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil. Soil metabolites, including fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds, often contain essential nutrients such as nitrogen, phosphorus, and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms. This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling. We describe important applications of metabolomics in studying soil carbon cycling and sequestration, and the response of soil organic pools to changing environmental conditions. This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome, as well as responses of soil metabolome to plant and environmental stresses such as soil contamination. We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Li
- School of Environment and Ecology, Jiangnan University, Wuxi 225127, China
| | - Tao Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Nedland, WA-6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA-6009, Australia
- Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Charles R. Warren
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia
| | - Trent R. Northen
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
10
|
Jabinski S, d. M. Rangel W, Kopáček M, Jílková V, Jansa J, Meador TB. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers. Appl Environ Microbiol 2024; 90:e0206523. [PMID: 38527003 PMCID: PMC11022577 DOI: 10.1128/aem.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.
Collapse
Affiliation(s)
- Stanislav Jabinski
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Wesley d. M. Rangel
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Marek Kopáček
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Veronika Jílková
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Jan Jansa
- Institute of Microbiology CAS, Praha, Czechia
| | - Travis B. Meador
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
11
|
Wu B, Wan Q, Li X, Lin S, Jiang Y, Yang X, Li J, Lin Q, Morel JL, Qiu R. Heavy metal migration dynamics and solid-liquid distribution strategy in abandoned tailing soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133794. [PMID: 38368686 DOI: 10.1016/j.jhazmat.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The tailings soil originating from an abandoned sulfur-iron mine in Sichuan Province, China, exhibits elevated concentrations of heavy metals (HMs) and possesses limited soil conservation capacity. Variability soil particle size fractions (PSFs) contributes to an increased risk of HMs ion migration. Existing research on HMs behavior has focused on the bulk soil scale, resulting in a dearth of comprehensive information concerning different particle sizes and colloid scales. We collected soil samples from upstream source (XWA), migration path (XWB), and downstream farmland (XWC) of an abandoned tailing and categorized into sand, silt, clay, colloid and dissolved, respectively. The investigation primarily aimed to elucidate the solid-liquid distribution trade-off strategies of soil HMs along migration pathway. Results show that PSFs composition predominantly influences HMs solid-liquid distribution. In the mining area, large particles serve as the principal component for HMs enrichment. However, along the migration pathway, the proportion of highly mobile fine particles increases, shifting HMs from solid to liquid phase. Furthermore, inorganic elements such as Mg, Al, and Fe influence on HMs distribution within PSFs through various reactions, whereas organic matter and glomalin-related soil protein (GRSP) also exert regulatory roles. Increasing the proportion of large particles can reduce the risk of HMs migration.
Collapse
Affiliation(s)
- Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanqi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
13
|
Han B, Chen L, Xiao K, Liu Y, Cao D, Yu L, Li Y, Tao S, Liu W. Spatial heterogeneity and compositional profiles of dissolved organic matter in farmland soils across mainland China. J Environ Sci (China) 2024; 137:593-603. [PMID: 37980042 DOI: 10.1016/j.jes.2023.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 11/20/2023]
Abstract
Dissolved organic matter (DOM) plays an essential role in many geochemical processes, however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of mainland China, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) (field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins, and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetable-field soil samples across mainland China were provided at the molecular level, with large abundance and great variability.
Collapse
Affiliation(s)
- Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yujun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Li Q, Chang J, Li L, Lin X, Li Y. Research progress of nano-scale secondary ion mass spectrometry (NanoSIMS) in soil science: Evolution, applications, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167257. [PMID: 37741415 DOI: 10.1016/j.scitotenv.2023.167257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nano-scale secondary ion mass spectrometry (NanoSIMS) has emerged as a powerful analytical tool for investigating various aspects of soils. In recent decades, the widespread adoption of advanced instrumentation and methods has contributed significantly to our understanding of organic-mineral assemblages. However, few literature reviews have comprehensively summarized NanoSIMS and its evolution, applications, limitations, and integration with other analytical techniques. In this review, we addressed this gap by comprehensively overviewing the development of NanoSIMS as an analytical tool in soils. This review covers studies on soil organic matter (SOM) cycling, soil-root interactions, and the behavior of metals, discussing the capability and limitations related to the distribution, composition, and interactions of various soil components that occur at mineral-organic interfaces. Furthermore, we examine recent advancements in high-resolution imaging and mass spectrometry technologies and their impact on the utilization of NanoSIMS in soils, along with potential new applications such as utilizing multiple ion beams and integrating them with other analytical techniques. The review emphasizes the importance of employing advanced techniques and methods to explore micro-interfaces and provide in situ descriptions of organic-mineral assemblages in future research. The ongoing development and refinement of NanoSIMS may yield new insights and breakthroughs in soil science, deepening our understanding of the intricate relationships between soil components and the processes that govern soil health and fertility.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Linfeng Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyang Lin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yichun Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
15
|
Liu J, Zhu C, Liu X, Wang X, Zhou D. Nonmicrobial mechanisms dominate the release of CO 2 and the decomposition of organic matter during the short-term redox process in paddy soil slurry. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:227-234. [PMID: 38435352 PMCID: PMC10902510 DOI: 10.1016/j.eehl.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 03/05/2024]
Abstract
Both biotic and abiotic mechanisms play a role in soil CO2 emission processes. However, abiotically mediated CO2 emission and the role of reactive oxygen species are still poorly understood in paddy soil. This study revealed that •OH promoted CO2 emission in paddy soil slurries during short-term oxidation (4 h). •OH generation was highly hinged on active Fe(II) content, and the •OH contribution to CO2 efflux was 10%-33% in topsoil and 40%-77% in deep-soil slurries. Net CO2 efflux was higher in topsoil slurries, which contained more dissolved organic carbon (DOC). CO2 efflux correlated well with DOC contents, suggesting the critical role of DOC. Microbial mechanisms contributed 9%-45% to CO2 production, as estimated by γ-ray sterilization experiments in the short-term reoxidation process. Solid-aqueous separation experiments showed a significant reduction in net CO2 efflux across all soil slurries after the removal of the original aqueous phase, indicating that the water phase was the main source of CO2 emission (>50%). Besides, C emission was greatly affected by pH fluctuation in acidic soil but not in neutral/alkaline soils. Fourier transform ion cyclotron resonance mass spectrometry and excitation-emission matrix results indicated that recalcitrant and macromolecular dissolved organic matter (DOM) components were more easily removed or attacked by •OH. The decrease in DOM content during the short-term reoxidation was the combined result of •OH oxidation, co-precipitation, and soil organic matter release. This study emphasizes the significance of the generally overlooked nonmicrobial mechanisms in promoting CO2 emission in the global C cycle, and the critical influence of the aqueous phase on C loss in paddy environments.
Collapse
Affiliation(s)
- Jinsong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Zhu S, Luo W, Mo Y, Ding K, Zhang M, Jin C, Wang S, Chao Y, Tang YT, Qiu R. New Insights into the Role of Natural Organic Matter in Fe-Cr Coprecipitation: Importance of Molecular Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13991-14001. [PMID: 37523249 DOI: 10.1021/acs.est.3c03279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Coprecipitation of Fe/Cr hydroxides with natural organic matter (NOM) is an important pathway for Cr immobilization. However, the role of NOM in coprecipitation is still controversial due to its molecular heterogeneity and diversity. This study focused on the molecular selectivity of NOM toward Fe/Cr coprecipitates to uncover the fate of Cr via Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). The results showed that the significant effects of Suwannee River NOM (SRNOM) on Cr immobilization and stability of the Fe/Cr coprecipitates did not merely depend on the adsorption of SRNOM on Fe/Cr hydroxides. FT-ICR-MS spectra suggested that two pathways of molecular selectivity of SRNOM in the coprecipitation affected Cr immobilization. Polycyclic aromatics and polyphenolic compounds in SRNOM preferentially adsorbed on the Fe/Cr hydroxide nanoparticles, which provided extra binding sites and promoted the aggregation. Notably, some specific compounds (i.e., polyphenolic compounds and highly unsaturated phenolic compounds), less unsaturated and more oxygenated than those adsorbed on Fe/Cr hydroxide nanoparticles, were preferentially incorporated into the insoluble Cr-organic complexes in the coprecipitates. Kendrick mass defect analysis revealed that the insoluble Cr-organic complexes contained fewer carbonylated homologous compounds. More importantly, the spatial distribution of insoluble Cr-organic complexes was strongly related to Cr immobilization and stability of the Fe/Cr-NOM coprecipitates. The molecular information of the Fe/Cr-NOM coprecipitates would be beneficial for a better understanding of the transport and fate of Cr and exploration of the related remediation strategy.
Collapse
Affiliation(s)
- Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wendan Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yijun Mo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Kengbo Ding
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Jin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yuanqing Chao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ye-Tao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Deng W, Wang Y, Liu W. Effects of incorporating Mn into goethite on adsorption of dissolved organic matter and potentially toxic elements in soil: Isotherms, kinetics, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116260. [PMID: 37247650 DOI: 10.1016/j.envres.2023.116260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Goethite is ubiquitous in the environment and plays key role in preserving dissolved organic matter (DOM) and deactivating potentially toxic elements (PTEs) by adsorbing DOM and PTEs. Various non-Fe metals are usually incorporated into natural goethite, substituting Fe in the goethite structure, which dramatically influence the physico-chemical properties and adsorption behavior of the goethite. In the present study, adsorption of DOM and Pb(II) on Mn-substituted goethite samples was investigated. The results displayed that the specific surface area (SSA) of mineral samples increased by 67.6% as the incorporation of Mn for Fe, from 25.71 m2 g-1 for pure goethite to 43.09 m2 g-1for Mn-goethite. Besides, the Mn substitution caused more hydroxyl groups and relatively fewer positive charges on mineral surface, and Mn in the Mn-goethite samples was predominantly present as Mn(III). The amount of DOM adsorbed to per unit mass of goethite was increased as Mn content increased, which was attributed to Mn incorporation increasing the SSA of mineral samples. However, the SSA-normalized absorption capacity for goethite to DOM was decreased by Mn because Mn substitution decreased the number of positive charges of mineral samples, which weakened the electrostatic attraction between DOM and the minerals. The amount of Pb(II) adsorbed to per unit mass of goethite was increased by Mn substitution, and the amount of Pb(II) adsorbed to per unit SSA of goethite increased as the amount of Mn substitution increased, indicating that the increased capacity for adsorbing Pb was not only caused by the SSA increasing but also by there were more surface hydroxyl groups on the Mn-goethite than pure goethite and Pb(II) preferentially adsorbed to Mn sites on the Mn-goethite. The present study results showed that Mn-goethite could be used to sequester DOM and remediate soil contaminated with PTEs because Mn-goethite has a high adsorption capacity and is environmentally benign.
Collapse
Affiliation(s)
- Wenbo Deng
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Yajing Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Wenjuan Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
18
|
Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu YG. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11357-11372. [PMID: 37493521 DOI: 10.1021/acs.est.3c02620] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianran Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Zhu X, Wang K, Liu Z, Wang J, Wu E, Yu W, Zhu X, Chu C, Chen B. Probing Molecular-Level Dynamic Interactions of Dissolved Organic Matter with Iron Oxyhydroxide via a Coupled Microfluidic Reactor and an Online High-Resolution Mass Spectrometry System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2981-2991. [PMID: 36749182 DOI: 10.1021/acs.est.2c06816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between dissolved organic matter (DOM) and iron (Fe) oxyhydroxide are crucial in regulating the biogeochemical cycling of nutrients and elements, including the preservation of carbon in soils. The mechanisms of DOM molecular assembly on mineral surfaces have been extensively studied at the mesoscale with equilibrium experiments, yet the molecular-level evolution of the DOM-mineral interface under dynamic interaction conditions is not fully understood. Here, we designed a microfluidic reactor coupled with an online solid phase extraction (SPE)-LC-QTOF MS system to continually monitor the changes in DOM composition during flowing contact with Fe oxyhydroxide at circumneutral pH, which simulates soil minerals interacting with constant DOM input. Time-series UV-visible absorption spectra and mass spectrometry data showed that after aromatic DOM moieties were first preferentially sequestered by the pristine Fe oxyhydroxide surface, the adsorption of nonaromatic DOM molecules with greater hydrophobicity, lower acidity, and lower molecular weights (<400) from new DOM solutions was favored. This is accompanied by a transition from mineral surface chemistry-dominated adsorption to organic-organic interaction-dominated adsorption. These findings provide direct molecular-level evidence to the zonal model of DOM assembly on mineral surfaces by taking the dynamics of interfacial interactions into consideration. This study also shows that coupled microfluidics and online high-resolution mass spectrometry (HRMS) system is a promising experimental platform for probing microscale environmental carbon dynamics by integrating in situ reactions, sample pretreatment, and automatic analysis.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
20
|
Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|