1
|
Zhang H, Wang Z, Lin H, Liu Y, Dai H, Deng J. Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts: A review. J Environ Sci (China) 2025; 155:858-888. [PMID: 40246514 DOI: 10.1016/j.jes.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 04/19/2025]
Abstract
Volatile organic compounds (VOCs) exhausted from industrial processes are the major atmospheric pollutants, which could destroy the ecological environment and make hazards to human health seriously. Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs. Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity. To further lower the cost of catalysts, single atom catalysts (SAC) have been fabricated and extensively studied for application in VOCs oxidation due to their 100 % atom-utilization efficiency and unique catalytic performance. In this review, we comprehensively summarize the recent advances in supported noble metal (e.g., Pt, Pd, Au, and Ag) catalysts and SAC for VOCs oxidation since 2015. Firstly, this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts, including particle size, valence state and dispersion of noble metals, properties of the support, metal oxide/ion modification, preparation method, and pretreatment conditions of catalysts. Secondly, we briefly summarize the catalytic performance of SAC for typical VOCs. Finally, we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation.
Collapse
Affiliation(s)
- Honghong Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hongxia Lin
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Ma Y, Lai J, Lin B, Lin X, Lv J, Meng F, Han Z, Dong R, Jin R, Liu G, Takaoka M, Li X, Zheng M. Synergistic Enhancement of Hydrolysis-Oxidation Drives Efficient Catalytic Elimination of Chlorinated Aromatics over VO x/TiO 2 Catalysts at Low Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8834-8843. [PMID: 40257843 DOI: 10.1021/acs.est.4c13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The efficient catalytic elimination of toxic chlorinated aromatics (i.e., dioxins, chlorobenzenes, etc.) at low temperature is still a great challenge. Based on the VOx/TiO2 catalyst, a hydrolysis-oxidation strategy (CeOx and WOx doping) was built for desirable low-temperature catalytic activity, product selectivity, H2O tolerance, and chlorine desorption. The in situ and ex situ experimental characterizations and density functional theory calculations revealed that hydrolysis sites favored molecular adsorption, C-Cl cleavage, and HCl formation; meanwhile, oxidation sites enhanced the activation of reactive oxygen species and improved oxygen mobility and redox properties. The enhanced oxygen storage/release capacity (33-53 fold) and extended redox cycle (e.g., from V5+↔V4+ to V5+↔V4+↔V3+) favored the deep oxidation. The introduction of H2O triggered the hydrolysis-oxidation process that promoted the catalytic activity and chlorine desorption due to the elevated generation of ·O2- and higher-activity ·OH. Furthermore, the water resistance of the VOx/TiO2-based catalyst was enhanced after the application of the hydrolysis-oxidation strategy. The V-Ce-W/Ti catalyst exhibited remarkable removal efficiency of dioxins (96.7-98.2%), which was reduced from 0.34-0.48 ng I-TEQ Nm-3 to 0.006-0.016 ng I-TEQ Nm-3 during pilot tests at 160-180 °C, achieving ultralow emissions. This work provides practical guidance for industry development for efficiently eliminating chlorinated organics in flue gas.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianwen Lai
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoqing Lin
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fanxiang Meng
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Runtong Dong
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158540, Japan
| | - Xiaodong Li
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Duan X, Niu B, Wang Y, Yang Z, Ren H, Li G, Wei Z, Cheng J, Zhang Z, Hao Z. Regulating the Electronic Metal-Support Interaction of Single-Atom Ruthenium Catalysts for Boosting Chlorobenzene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7408-7418. [PMID: 40183972 DOI: 10.1021/acs.est.5c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Developing highly active single-atom catalysts (SACs) with excellent chlorine resistance for efficient oxidation of harmful chlorinated volatile organic compounds (CVOCs) is a great challenge. Tuning the electronic metal-support interaction (EMSI) is viable for promoting catalytic performances of SACs. Herein, an effective strategy of modulating the EMSI in Ru1/CeO2 SACs by thermal treatment control is proposed, which distinctly enhances the activities of the catalyst for chlorobenzene (CB) oxidation and chlorine conversion, accomplishing total CB degradation at nearly 260 °C. Detailed characterization and theoretical calculations reveal that the EMSI induces electron transfer from Ru to CeO2, optimizing the coordination and electronic structure of single-atom Ru and accordingly facilitating the adsorption and activation of CB. Moreover, the surface lattice oxygen (Olatt) at the Ru-O-Ce interface is demonstrated as the critical reactive oxygen species, the mobility and reactivity of which are also prompted by the EMSI, leading to the boosted conversion of reaction intermediates. This work sheds light on the effect of EMSI regulation on CVOC catalytic oxidation and provides guidance on fabricating high-efficiency SACs for environmental catalysis.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yiwen Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongna Ren
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Zhao Y, Yu Y, Li J, Xie J, He C. Hydrodechlorination under O 2 promotes catalytic oxidation of CVOCs over a Pt/TiO 2 catalyst at low temperature. Chem Commun (Camb) 2025; 61:4710-4713. [PMID: 40017438 DOI: 10.1039/d4cc06366j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A novel strategy to promote elimination of CVOCs at low temperature, specifically involving hydrodechlorination under O2, was proposed. Turnover frequency and HCl yield in oxidation of vinyl chloride increased, respectively, by over 22 and 43 times (225 °C) with the assistance of 1000 ppm H2. A new chemical equation (CH2CHCl + H2 + O2 → CO2 + HCl + H2O) was used to describe the reaction.
Collapse
Affiliation(s)
- Yonghua Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Yanke Yu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Jiahang Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Jinmin Xie
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
5
|
Li X, Wang M, Hou M, Su G, Sun B, Hua Y, Pang J, Meng J, Shi B, Li Q. Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal. ENVIRONMENTAL RESEARCH 2025; 268:120760. [PMID: 39756780 DOI: 10.1016/j.envres.2025.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies. The dominant source of HCBD emissions varied by country, mainly industrial production processes of trichloroethylene, perchloroethylene, and carbon tetrachloride in China and magnesium production in Europe. Further research on the relevant generation mechanisms is necessary to develop targeted source control strategies. HCBD has been detected in various environmental media and biological organisms worldwide. Compared to sludge and soil, the concentration of HCBD in the atmosphere and water were relatively higher, particularly in China and Nigeria, with the concentration reaching up to 179 μg/m3 and 2629 μg/L, respectively. Attention should be focused on the water treatment processes to reduce HCBD levels in sludge and ensure the safety of drinking water. Additionally, studies of HCBD exposure levels in organisms should also focus on diet to further assess health risks to humans. Currently, available disposal technologies primarily focus on the treatment of contaminated environmental media, including physical thermal desorption, chemical reduction dechlorination and oxidative degradation, and biodegradation, while the development and application of source control methods remain insufficient. However, these technologies may not completely degrade HCBD, potentially causing secondary pollution. Future efforts should prioritize the development of green, efficient, and thoroughly destructive thermal catalytic technologies, with an emphasis on the integration of multiple techniques. This work provides critical insights for the development and implementation of comprehensive control strategies for HCBD regarding its source, occurrence, and pollution disposal.
Collapse
Affiliation(s)
- Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mujie Wang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - YuKang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Chen J, Qi M, Yang Y, Xiao X, Li Y, Jin H, Wang Y. Chloride Residues in RuO 2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202420860. [PMID: 39794297 DOI: 10.1002/anie.202420860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
. Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine-containing RuO2 (RuO2-Cl) and pure RuO2 catalysts with similar morphology and crystallinity. RuO2-Cl demonstrated superior stability, three times greater than that of pure RuO2, and a lower overpotential of 176 mV at 10 mA cm-2. Furthermore, the RuO2-Cl catalysts that were in situ synthesized on a platinum-coated titanium felt could maintain high performance for up to 1200 hours at 100 mA cm-2. Computational and experimental analyses show that chloride stabilizes RuO2 by substituting the bridging oxygen atoms, which subsequently inhibits lattice oxygen evolution and Ru demetallation. Notably, this substitution also lowers the energy barrier of the rate-determining step by strengthening the binding of *OOH intermediates. These findings offer new insights into the previously unknown role of chloride residues and how to improve RuO2 stability.
Collapse
Affiliation(s)
- Jiadong Chen
- International Collaborative Laboratory of 2D Materials for, Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Menghui Qi
- Advanced Materials and Catalysis Group, Center of Chemistry for, Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yun Yang
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Xiaofen Xiao
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Ying Li
- International Collaborative Laboratory of 2D Materials for, Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Huile Jin
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for, Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
7
|
Tu C, Zhang H, Wang X, Guo Y, Dai Q. Phase-Engineered ZrO 2 for Tuning Catalytic Oxidation of Dichloromethane Over W/ZrO 2:Zr-Doped WO x Clusters and the Hydrolysis-Oxidation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2838-2848. [PMID: 39879128 DOI: 10.1021/acs.est.4c09912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Catalytic elimination through an oxidative decomposition pathway is the most promising candidate for the purification of chlorinated volatile organic compound (CVOC) pollutants, but the complicated mechanisms and the formation pathways of hydrogenated byproducts still need to be clearly revealed. Herein, W/ZrO2, as a structure-tunable catalyst, is used to catalytically oxidize dichloromethane (DCM) and clarify the formation pathway of monochloromethane (MCM). Crystal engineering of ZrO2 tailors surface WOx species; practically, the predominant Zr-WOx clusters and crystalline WO3 can be obtained on monoclinic (m-ZrO2) and tetragonal (t-ZrO2) phases. Surface Zr-WOx species are highly active due to their distorted structure and abundant Lewis acid sites. In situ DRIFTS reveal that H2O accelerates the cycle between W═O and O═W─Cl as well as replenishes consumed hydroxyls, improving the durability of W/m-ZrO2, and thus a hydrolysis-oxidation mechanism is proposed. Moreover, a hydride transfer pathway for MCM formation as a hydrodechlorinated byproduct is identified. -OCH2O- as the direct hydride donor is generated by the dissociation of DCM on surface active oxygen species or hydroxyls, and then transferred to C+H2Cl species on Lewis acid sites to produce MCM. This work could potentially contribute to developing novel oxidative elimination strategies for CVOCs and the rational design of efficient catalysts.
Collapse
Affiliation(s)
- Chensheng Tu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hao Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyi Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
8
|
Zheng Y, Han R, Yang Z, Xu W, Liu Q. Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2276-2284. [PMID: 39800981 DOI: 10.1021/acs.est.4c09264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Designing catalysts with both activity and stability remains a grand challenge for the removal of chlorinated volatile organic compounds (CVOCs) by catalytic oxidation. Herein, the Ru-Mn subnanometric species encapsulated in ZSM-5 zeolite (RuMn@Z) was synthesized. It shows that the 90% conversion of dichloromethane is as low as 320 °C, which is significantly lower than that of Ru@Z (350 °C) and the impregnation catalyst (RuMn/Z, 355 °C). Importantly, the RuMn@Z catalyst exhibits excellent high-temperature resistance (800 °C for 10 h), water resistance, long-term stability, and cyclic stability. Different from the RuMn/Z with nanoscale metal interaction, Ru and Mn species in RuMn@Z have strong electronic interaction on the subnanometric scale due to the confinement effect of zeolite. As the electronic structure regulator, the Mn species keeps the Ru species in an electron-deficient state through the Ru-O-Mn bonds, which effectively activates lattice oxygen species and molecular oxygen to participate in the reaction. Moreover, the confinement effect also makes the acid tightly coupled with the redox site, which promotes the rapid conversion of dechlorination products, formates, and other intermediate products. Therefore, this study provides valuable insights into the design of high-performance catalysts for CVOCs removal and other environmental fields.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Zongxiang Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Weinuo Xu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Wu L, Liu Y, Yu X, Gao R, Jia Y, Sun Q, Feng Y, Jing L, Hou Z, Deng J, Dai H. Constructing Bridge Hydroxyl Groups on the Ru/MO x/HZSM-5 (M = W, Mo) Catalysts to Promote the Hydrolysis Oxidation of Multicomponent VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:945-955. [PMID: 39718825 DOI: 10.1021/acs.est.4c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chlorinated and oxygenated volatile organic compounds (CVOCs and OVOCs) pose a significant threat to human health. Catalytic oxidation effectively removes these pollutants, but catalyst deactivation is a challenge. Our study focused on the hydrolysis oxidation of chlorobenzene (CB) and ethyl acetate (EA) over Ru/MOx/HZSM-5 (M = W, Mo). It was found that doping MoOx to the catalyst increased the structural hydroxyl amount and balanced surface acidity, thus significantly improving the catalytic stability, with Ru/MoOx/HZSM-5 exhibiting a better activity for CB and EA oxidation (T90% = 438 and 276 °C at space velocity = 20,000 mL g-1 h-1, respectively). Water vapor introduction considerably promoted hydrolysis oxidation and protected the active sites from being poisoned by cumulative chlorine. The synergistic interaction of the Mo-O(H)-Al structure in Ru/MoOx/HZSM-5 with the Si-OH-Al structure promotes the activation of H2O to form bridging hydroxyl groups, which provide a proton-rich environment for hydrolysis oxidation. It was also found that dissociated H2O reacted with adsorbed oxygen species to form highly active *OOH, accelerating the deep oxidation of intermediates. We believe that the present study can provide a unique strategy for the effective elimination of multicomponent VOCs under complex conditions.
Collapse
Affiliation(s)
- Linke Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yiwen Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qinpei Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Ding M, Zhang Y, Guo Y, Hua W, Yang J, Wang L, Guo Y, Dai Q, Wang A, Zhan W. Selective Adsorption of Chlorine Species on RuO 2 Sites for Efficient Elimination of Vinyl Chloride on the Ru/SnO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:956-967. [PMID: 39758035 DOI: 10.1021/acs.est.4c09658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO2 (Ru/SnO2) was prepared with the lattice matching principle. As RuO2 and SnO2 are both rutile phases, Ru species were present as highly dispersed RuO2 particles on the Ru/SnO2 catalyst. These particles adsorbed chlorine species with greater efficiency during the CVOCs combustion, thereby protecting the oxygen vacancies. Therefore, the double sites, oxygen vacancy to oxidize and RuO2 to adsorb chlorine species, on the Ru/SnO2 catalyst led to a notable enhancement in activity, stability, and byproduct selectivity. In contrast, the high dispersion of Ru species on the CeO2 support, as the typical catalyst for chlorinated hydrocarbon combustion, gave rise to a predominantly Ru-O-Ce structure. This structure did not prevent the adsorption of chlorine species on the oxygen vacancies, resulting in deactivation at low temperatures and an increased polychlorinated byproduct concentration. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further corroborated the variation in the adsorption sites of chlorine species on the two catalysts. This work provides a new strategy for designing efficient Ru-based catalysts for catalytic CVOCs combustion.
Collapse
Affiliation(s)
- Min Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenchao Hua
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
11
|
Ren Y, Dong C, Song C, Qu Z. Spinel-Based Catalysts That Enable Catalytic Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20785-20811. [PMID: 39535160 DOI: 10.1021/acs.est.4c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Volatile organic compounds (VOCs) have caused serious harm to human health and ecological environment, and have received much attention in recent years. Despite the successful applications of catalytic combustion of VOCs as the core technology of VOCs removal in industry, the development of efficient catalysts that can mineralize VOCs into nontoxic CO2 and H2O at low temperatures remains a great challenge. Recent studies show that spinel-based materials as efficient catalysts were extensively used in the catalytic oxidation VOCs field due to their synergistic effect, manifold compositions, and electron configurations. However, most of the pollutants are complex, consisting of multiple VOCs, water vapor, CO2, SO2 and other substances, which presents a significant challenge in constructing highly active and stable catalysts. To meet the future demand for efficient catalysts capable of removing various types of VOCs, it is urgent to rationally design and scientifically prepare spinel catalysts based on existing knowledge. This work reviews the research and development of various spinel catalysts with an emphasis on their catalytic performance in VOCs oxidation. The catalytic performance of spinel-based catalysts for different sorts of VOCs was summarized and compared. Moreover, the effects of the reaction conditions on the catalytic performance of spinel-based catalysts were examined to accommodate complicated operating conditions. Subsequently, the regulation of spinel oxides in structure and defect was coherently reviewed to guide the development and design of efficient catalysts. Especially, the research techniques for the reaction mechanism over spinel catalysts were displayed to better deepen the understanding of catalytic oxidation of VOCs. Finally, the current development and challenges were proposed and put forward for future research. This review provided a systematic understanding of the VOCs oxidation over spinel-based catalysts and offered guidance for the development of high-performance catalysts for VOCs elimination.
Collapse
Affiliation(s)
- Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ci Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
12
|
Lin F, Chen Z, Gong H, Wang X, Qin Y. Molybdenum Carbide Catalyst Enables Efficient Conversion of Chlorinated Volatile Organic Waste into Syngas through Catalytic Steam Reforming. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61868-61876. [PMID: 39538437 DOI: 10.1021/acsami.4c10695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Catalytic steam reforming offers a groundbreaking approach for converting industrial chlorinated volatile organic compound (CVOC) waste into valuable syngas (H2 and CO) and recovering HCl. However, the lack of C-Cl bond activation ability in traditional transition metal catalysts results in their insufficient reforming activity toward CVOCs. Herein, a novel molybdenum carbide (β-Mo2C) catalyst is developed and loaded onto a γ-Al2O3 support synthesized through a self-assembly method. The γ-Al2O3 support provides abundant unsaturated coordinated Al3+ ions, which effectively anchor and disperse β-Mo2C nanoparticles. In the catalytic steam reforming reaction at 600 °C, the β-Mo2C/γ-Al2O3 catalyst achieves a conversion efficiency higher than 95% and syngas yields of 82.4-92.3% for various typical industrial CVOCs. The mechanistic research reveals that the coordination between C and Mo atoms in β-Mo2C leads to a slightly electron-deficient state of the Mo sites, accompanied by a high density of unoccupied 4d orbitals. These characteristics are highly advantageous for the adsorption and dechlorination of CVOC molecules. The produced nonchlorinated intermediates can subsequently be oxidized to CO and H2 by hydroxyl radicals on adjacent Mo sites.
Collapse
Affiliation(s)
- Feng Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huijuan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
- Center of Material Analysis, Nanjing University, Nanjing 210023, PR China
| | - Xiaoshu Wang
- Center of Material Analysis, Nanjing University, Nanjing 210023, PR China
| | - Yong Qin
- Center of Material Analysis, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
13
|
Wang A, Ding M, Cai Y, Wang L, Guo Y, Guo Y, Zhan W. Ultra-efficient Ru and Nb Co-Modified CeO 2 Catalysts for Catalytic Oxidation of 1,2-Dichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20300-20312. [PMID: 39473281 DOI: 10.1021/acs.est.4c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The oxidation of chlorinated volatile organic compounds on CeO2 is hindered by its high susceptibility to chlorine poisoning, resulting in a reduced efficiency and stability. In this study, Ru- and Nb-co-modified CeO2 catalysts were designed to achieve excellent activity, stability, and CO2 selectivity in the catalytic oxidation of 1,2-dichloroethane (EDC). The formation of Nb-O-Ce bonds was observed to enhance the surface acidic sites, thereby improving HCl selectivity and reducing the production of chlorinated byproducts. Meanwhile, it inhibits the formation of Ru-O-Ce and promotes the generation of highly dispersed RuO2 particles on the surface, enhancing the redox properties and mobility of the surface oxygen, thus increasing CO2 selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy results revealed that chlorine species preferentially attach to Nb species rather than to oxygen vacancies on the Ru/Nb/CeO2 catalyst. This allows more alkane groups to oxidize to formate on the oxygen vacancies, reducing byproduct concentration. Additionally, the oxidation of alkane groups to carboxylic acids is initiated on the Nb species, completing a comprehensive oxidation process under the synergistic effect of RuO2.
Collapse
Affiliation(s)
- Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Min Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuang Cai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
14
|
Wang X, Li Z, Gao R, Yu X, Feng Y, Wang Z, Jing L, Wei Z, Liu Y, Dai H, Zhao Z, Deng J. Photothermal Catalytic Removal of 1,2-DCE with High HCl Selectivity over the Brønsted Acid-Enriched Sulfur-Doped MOFs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39270042 DOI: 10.1021/acs.est.4c07755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.
Collapse
Affiliation(s)
- Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zeya Li
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Dai Q, Xu R, Xia H, Qiao B, Niu Q, Wang L, Wang A, Guo Y, Guo Y, Wang W, Zhan W. Catalytic Hydrolysis-Oxidation of Halogenated Methanes over Phase- and Defect-Engineered CePO 4: Halogenated Byproduct-Free and Stable Elimination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39037090 DOI: 10.1021/acs.est.4c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.
Collapse
Affiliation(s)
- Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ronghua Xu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hangqi Xia
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Boyuan Qiao
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Qiang Niu
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Yang Y, Hou Y, Tian J, Ding X, Ma S, Zeng Z, Huang Z. Changes of Nitrate Activity and Byproduct Distribution Characteristics for Synergistic NOx and Dioxin Abatement over V 2O 5/AC Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693872 DOI: 10.1021/acsami.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The simultaneous removal of NOx and dioxins has been considered an economical and effective technology of controlling multipollutant flue gas in the context of "carbon peaking and carbon neutrality". However, this technology has not yet been implemented in practical situations, because the interactive relationship between the selective catalytic reduction (SCR) reaction and dioxin catalytic oxidation lacks a deep understanding, especially on a carbon-based catalyst. In this research, the influence of NO and NH3 on the oxidation characteristics and byproducts distribution of dibenzofuran (DBF) was studied on V2O5/AC catalyst. Results indicated that NH3 has a stronger inhibition effect for DBF catalytic oxidation than NO due to obvious competitive adsorption between NH3 and DBF on the V2O5/AC catalyst. In addition, although both NO and NH3 inhibit the complete degradation of DBF, their effects on the byproduct distribution are not consistent. NO primarily affects the level of oxygen-containing byproducts, while NH3 primarily affects the level of alkane byproducts. Furthermore, the SCR reaction activity demonstrated a reduction when DBF was present. The occupation of V2O5 sites by DBF and its oxidizing intermediates has hindered the production of monodentate nitrate and the reactivity of bridged nitrate, resulting in a decrease in SCR activity via the L-H mechanism. This work aims to provide theoretical guidance for simultaneous removal of NOx and dioxins in industrial fumes.
Collapse
Affiliation(s)
- Yatao Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Tian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoxiao Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zequan Zeng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
17
|
Tian Z, Hao Y, Chee TS, Cai H, Zhu L, Duan T, Xiao C. Hollow Core-Shell Bismuth Based Al-Doped Silica Materials for Powerful Co-Sequestration of Radioactive I 2 and CH 3I. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308451. [PMID: 38059738 DOI: 10.1002/smll.202308451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1, respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.
Collapse
Affiliation(s)
- Zhenjiang Tian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tien-Shee Chee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - He Cai
- Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ, UK
| | - Lin Zhu
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Tao Duan
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Zhou Z, Li Q, Su G, Pang J, Sun B, Meng J, Shi B. Catalytic degradation of chlorinated volatile organic compounds (CVOCs) over Ce-Mn-Ti composite oxide catalysts. J Environ Sci (China) 2024; 138:326-338. [PMID: 38135400 DOI: 10.1016/j.jes.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 12/24/2023]
Abstract
Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds (CVOCs) in actual exhaust gasses. Here, commercial TiO2, typically used for molding catalysts, was chosen as the carrier to fabricate a series of Ce0.02Mn0-0.24TiOx materials with different Mn doping ratios and employed for chlorobenzene (CB) destruction. The introduction of Mn remarkedly facilitated the synergistic effect of each element via the electron transfer processes: Ce3++Mn4+/3+↔Ce4++Mn3+/2+ and Mn4+/3++Ti4+↔Mn3+/2++Ti3+. These synergistic interactions in Ce0.02Mn0.04-0.24TiOx, especially Ce0.02Mn0.16TiOx, significantly elevated the active oxygen species, oxygen vacancies and redox properties, endowing the superior catalytic oxidation of CB. When the Mn doping amount increased to 0.24, a separate Mn3O4 phase appeared, which in turn might weaken the synergistic effect. Furthermore, the acidity of Ce0.02Mn0.04-0.24TiOx was decreased with the Mn doping, regulating the balance of redox property and acidity. Notably, Ce0.02Mn0.16TiOx featured relatively abundant B-acid sites. Its coordinating redox ability and moderate acidity promoted the deep oxidation of CB and RCOOH- intermediates, as well as the rapid desorption of Cl species, thus obtaining sustainable reactivity. In comparison, CeTiOx owned the strongest acidity, however, its poor redox property was not sufficient for the timely oxidative decomposition of the easier adsorbed CB, resulting in its rapid deactivation. This finding provides a promising strategy for the construction of efficient commercial molding catalysts to decompose the industrial-scale CVOCs.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guijin Su
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Lv X, Wu S, Shao S, Yan D, Xu W, Jia H, He H. Efficient Catalytic Elimination of Chlorobenzene Based on the Water Vapor-Promoting Effect within Mn-Based Catalysts: Activity Enhancement and Polychlorinated Byproduct Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3985-3996. [PMID: 38357760 DOI: 10.1021/acs.est.3c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.
Collapse
Affiliation(s)
- Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siting Shao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Yan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Xie X, Xiao F, Zhan S, Zhu M, Xiang Y, Zhong H, Huang H. Deep Oxidation of Chlorinated VOCs by Efficient Catalytic Peroxide Activation over Nanoconfined Co@NCNT Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1625-1635. [PMID: 38207092 DOI: 10.1021/acs.est.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.
Collapse
Affiliation(s)
- Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510006, P. R. China
| | - Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Ran H, Zhang S, Ni W, Jing Y. Precise activation of C-C bonds for recycling and upcycling of plastics. Chem Sci 2024; 15:795-831. [PMID: 38239692 PMCID: PMC10793209 DOI: 10.1039/d3sc05701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.
Collapse
Affiliation(s)
- Hongshun Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Wenyi Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Yaxuan Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| |
Collapse
|
22
|
Zhou F, He D, Ren G, Yarahmadi H. In situ and bio-green synthesis of silver nanoparticles immobilized on zeolite as a recyclable catalyst for the degradation of OPDs. Sci Rep 2024; 14:1143. [PMID: 38212519 PMCID: PMC10784553 DOI: 10.1038/s41598-024-51271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, silver nanoparticles (Ag-NPs) were synthesized using a green and biologically inspired approach by utilizing reducing compounds from Thyme plant leaves. Zeolite was used to immobilize the synthesized Ag-NPs (Ag@Z). The modified Zeolite served as a catalyst for the reduction reaction of various organic pollutant dyes (OPDs) including 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), methylene blue (MB), and methyl orange (MO) with sodium borohydride. The degradation of OPDs was monitored by measuring changes in their maximum absorption wavelength intensity. A thorough examination of multiple parameters (catalyst, silver and sodium borohydride dosage, yield degradation, and reaction time) was carried out to identify the optimized conditions for the degradation of OPDs. The results showed that the Ag@Z catalyst achieved an efficiency of over 93% in less than 10 min for the degradation of OPDs. The recoverability and reusability of the catalyst were examined, revealing a partial loss in efficiency after four recovery stages. Structural analysis using XRD, SEM, and TEM techniques confirmed the characteristics and morphology of the synthesized catalyst.
Collapse
Affiliation(s)
- Fujiang Zhou
- College of Science, Qiongtai Normal University, Haikou, 571100, Hainan, China
| | - Danfeng He
- College of Science, Qiongtai Normal University, Haikou, 571100, Hainan, China.
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Hossein Yarahmadi
- Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran.
| |
Collapse
|
23
|
Wang J, Wu Y, Zhang C, Geng A, Sun Z, Yang J, Xi J, Wang L, Yang B. Effect of weak electrical stimulation on m-dichlorobenzene biodegradation in biotrickling filters: Insights from performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2023; 390:129881. [PMID: 37852508 DOI: 10.1016/j.biortech.2023.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.
Collapse
Affiliation(s)
- Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yu Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiawei Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
24
|
Che M, Su H, Zhao X, Fu D, Huang R, Guo X, Su R. Tannic acid promotes the activation of persulfate with Fe(ii) for highly efficient trichloroethylene removal. RSC Adv 2023; 13:34371-34377. [PMID: 38024972 PMCID: PMC10665609 DOI: 10.1039/d3ra06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Trichloroethylene (TCE) is an Environmental Protection Agency (EPA) priority pollutant that is difficult to be removed by some remediation methods. For instance, TCE removal using persulfate (PS) activated by ferrous iron (Fe(ii)) has been tested but is limited by the unstable Fe(ii) concentration and the initial pH of contaminated water samples. Here we reported a new TCE removal system, in which tannic acid (TA) promoted the activation of PS with Fe(ii) (TA-Fe(ii)-PS system). The effect of initial pH, temperature, and concentrations of PS, Fe(ii), TA, inorganic anions and humic acid on TCE removal was investigated. We found that the TA-Fe(ii)-PS system with 80 mg L-1 of TA, 1.5 mM of Fe(ii) and 15 mM of PS yielded about 96.2-99.1% TCE removal in the pH range of 1.5-11.0. Radical quenching experiments were performed to identify active species. Results showed that SO4˙- and ˙OH were primarily responsible for TCE removal in the TA-Fe(ii)-PS system. In the presence of TA, the Fe-TA chelation and the reduction of TA could regulate Fe(ii) concentration and activate persulfate for continuously releasing reactive species under alkaline conditions. Based on the excellent removal performance for TCE, the TA-Fe(ii)-PS system becomes a promising candidate for controlling TCE in groundwater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Daqing Fu
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Xuehui Guo
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
25
|
Gao G, Liu W, Liu Z, Li Z, Xu H, Huang W, Yan N, Qu Z. Electron Donation from Boron Suboxides via Strong p-d Orbital Hybridization Boosts Molecular O 2 Activation on Ru/TiO 2 for Low-Temperature Dibromomethane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17566-17576. [PMID: 37906097 DOI: 10.1021/acs.est.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.
Collapse
Affiliation(s)
- Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
- Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210019, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
26
|
Pan C, Wang W, Fu C, Chol Nam J, Wu F, You Z, Xu J, Li J. Promoted wet peroxide oxidation of chlorinated volatile organic compounds catalyzed by FeOCl supported on macro-microporous biomass-derived activated carbon. J Colloid Interface Sci 2023; 646:320-330. [PMID: 37201460 DOI: 10.1016/j.jcis.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are a recalcitrant class of air pollutants, and the strongly oxidizing reactive oxygen species (ROS) generated in advanced oxidation processes (AOPs) are promising to degrade them. In this study, a FeOCl-loaded biomass-derived activated carbon (BAC) has been used as an adsorbent for accumulating CVOCs and catalyst for activating H2O2 to construct a wet scrubber for the removal of airborne CVOCs. In addition to well-developed micropores, the BAC has macropores mimicking those of biostructures, which allows CVOCs to diffuse easily to its adsorption sites and catalytic sites. Probe experiments have revealed HO• to be the dominant ROS in the FeOCl/BAC + H2O2 system. The wet scrubber performs well at pH 3 and H2O2 concentrations as low as a few mM. It is capable of removing over 90% of dichloroethane, trichloroethylene, dichloromethane and chlorobenzene from air. By applying pulsed dosing or continuous dosing to replenish H2O2 to maintain its appropriate concentration, the system achieves good long-term efficiency. A dichloroethane degradation pathway is proposed based on the analysis of intermediates. This work may provide inspiration for the design of catalyst exploiting the inherent structure of biomass for catalytic wet oxidation of CVOCs or other contaminants.
Collapse
Affiliation(s)
- Cong Pan
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Wenyu Wang
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Chenchong Fu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jong Chol Nam
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Feng Wu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Zhixiong You
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jing Xu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China.
| | - Jinjun Li
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
27
|
Yan X, Zhao L, Huang Y, Zhang J, Jiang S. Three-dimensional porous CuO-modified CeO 2-Al 2O 3 catalysts with chlorine resistance for simultaneous catalytic oxidation of chlorobenzene and mercury: Cu-Ce interaction and structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131585. [PMID: 37163894 DOI: 10.1016/j.jhazmat.2023.131585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Chlorine poisoning effects are still challenging to develop efficient catalysts for applications in chlorobenzene (CB) and mercury (Hg0) oxidation. Herein, three-dimensional porous CuO-modified CeO2-Al2O3 catalysts with macroporous framework and mesoporous walls prepared via a dual template method were employed to study simultaneous oxidation of CB and Hg0. CuO-modified CeO2-Al2O3 catalysts with three-dimensional porous structure exhibited outstanding activity and stability for simultaneous catalytic oxidation of CB and Hg0. The results demonstrated that the addition of CuO into CeO2-Al2O3 can simultaneously enhance the acid sites and redox properties through the electronic inductive effect between CuO and CeO2 (Cu2++Ce3+↔Cu++Ce4+). Importantly, the synergistic effect between Cu and Ce species can induce abundant oxygen vacancies formation, produce more reactive oxygen species and facilitate oxygen migration, which is beneficial for the deep oxidation of chlorinated intermediates. Moreover, macroporous framework and mesoporous nanostructure dramatically improved the specific surface area for enhancing the contact efficiency between reactants and active sites, leading to a remarkable decrease of byproducts deposition. CB and Hg0 had function of mutual promotion in this reaction system. In tune with the experimental results, the possible mechanistic pathways for simultaneous catalytic oxidation of CB and Hg0 were proposed.
Collapse
Affiliation(s)
- Xin Yan
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Lingkui Zhao
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China.
| | - Yan Huang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Junfeng Zhang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Su Jiang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| |
Collapse
|
28
|
Zhang N, Li X, Guo Y, Guo Y, Dai Q, Wang L, Zhan W. Crystal Engineering of TiO 2 for Enhanced Catalytic Oxidation of 1,2-Dichloroethane on a Pt/TiO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7086-7096. [PMID: 37071842 DOI: 10.1021/acs.est.3c00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Crystal engineering of metal oxide supports represents an emerging strategy to improve the catalytic performance of noble metal catalysts in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). Herein, Pt catalysts on a TiO2 support with different crystal phases (rutile, anatase, and mixed phase (P25)) were prepared for catalytic oxidation of 1,2-dichloroethane (DCE). The Pt catalyst on P25-TiO2 (Pt/TiO2-P) showed optimal activity, selectivity, and stability, even under high-space velocity and humidity conditions. Due to the strong interaction between Pt and P25-TiO2 originating from the more lattice defects of TiO2, the Pt/TiO2-P catalyst possessed stable Pt0 and Pt2+ species during DCE oxidation and superior redox property, resulting in high activity and stability. Furthermore, the Pt/TiO2-P catalyst possessed abundant hydroxyl groups, which prompted the removal of chlorine species in the form of HCl and significantly decreased the selectivity of vinyl chloride (VC) as the main byproduct. On the other hand, the Pt/TiO2-P catalyst exhibited a different reaction path, in which the hydroxyl groups on its surface activated DCE to form VC and enolic species, besides the lattice oxygen of TiO2 for the Pt catalysts on rutile and anatase TiO2. This work provides guidance for the rational design of catalysts for CVOCs.
Collapse
Affiliation(s)
- Nini Zhang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiangmei Li
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Chen X, Jia Z, Liu Z, Wang X, Liang M. Strong metal-support interactions between atomically dispersed Ru and CrO x for improved durability of chlorobenzene oxidation. RSC Adv 2023; 13:3255-3264. [PMID: 36756428 PMCID: PMC9890632 DOI: 10.1039/d2ra07650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
In this work, two single-atom catalysts (SACs) with atomically dispersed RuO2 supported on CrO x were successfully synthesized with a simple reduction strategy for the efficient catalytic oxidation of chlorobenzene (CB). With characterizations like Cs-corrected STEM, XPS, H2-TPR, and O2-TPD, the structure-activity relationship is addressed. The noble metal precursor Ru3+ was anchored with different oxygen species and exposed facets based on the physicochemical properties of catalyst supports. Based on the analysis results, the Ru3+ precursor could be mainly anchored into the surface lattice oxygen of Cr2O3-M over high-index facets (223) and adsorbed oxygen of Cr2O3-P over low-index facets (104), where the precursor Ru3+ was all oxidized to RuO2 when being anchored with the oxygen species of Cr2O3-M and Cr2O3-P, respectively according to XPS analysis. There is a stronger metal-support interaction (SMSI) between Ru ions and the surface lattice oxygen of Cr2O3-M, according to H2-TPR and O2-TPD characterizations. Further, the catalytic performance for CB combustion at a high space velocity of 120 000 mL (g-1 h-1) was tested, and 1RuCr2O3-M performed better than 1RuCr2O3-P in both durability and activity. This could be attributed to the SMSI between single-atom Ru and the lattice oxygen of the 1RuCr2O3-M catalyst and the abundant active sites from the exposed high-index facets. The study provided a novel synthesis strategy for Ru-based SACs with SMSI effect, and the good durability of the catalyst (1RuCr2O3-M) extended the great potential for practical application.
Collapse
Affiliation(s)
- Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Ziliang Jia
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| | - Meisheng Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan China
| |
Collapse
|
30
|
Duan X, Zhao T, Niu B, Wei Z, Li G, Zhang Z, Cheng J, Hao Z. Simultaneously Constructing Active Sites and Regulating Mn-O Strength of Ru-Substituted Perovskite for Efficient Oxidation and Hydrolysis Oxidation of Chlorobenzene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205054. [PMID: 36437038 PMCID: PMC9875690 DOI: 10.1002/advs.202205054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are a class of hazardous pollutants that severely threaten environmental safety and human health. Although the catalytic oxidation technique for CVOCs elimination is effective, enhancing the catalytic efficiency and simultaneously inhibiting the production of organic byproducts is still of great challenge. Herein, Ru-substituted LaMn(Ru)O3+ δ perovskite with Ru-O-Mn structure and weakened Mn-O bond strength has been developed for catalytic oxidation of chlorobenzene (CB). The formed Ru-O-Mn structure serves as favorable sites for CB adsorption and activation, while the weakening of Mn-O bond strength facilitates the formation of active oxygen species and improves oxygen mobility and catalyst reducibility. Therefore, LaMn(Ru)O3+ δ exhibits superior low-temperature activity with the temperature of 90% CB conversion decreasing by over 90 °C compared with pristine perovskite, and the deep oxidation of chlorinated byproducts produced in low temperature is also accelerated. Furthermore, the introduction of water vapor into reaction system triggers the process of hydrolysis oxidation that promotes CB destruction and inhibits the generation of chlorinated byproducts, due to the higher-activity *OOH species generated from the dissociated H2 O reacting with adsorbed oxygen. This work can provide a unique, high-efficiency, and facile strategy for CVOCs degradation and environmental improvement.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zheng Wei
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| |
Collapse
|
31
|
Zhang H, Wang S, Wang M, Li G, Yu L, Liu X, Wang Z, Zhang C. Catalytic oxidation of vinyl chloride over Co–Ce composite oxides derived from ZIF-67 template: Effect of cerium incorporation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Ozerova AM, Potylitsyna AR, Bauman YI, Tayban ES, Lipatnikova IL, Nartova AV, Vedyagin AA, Mishakov IV, Shubin YV, Netskina OV. Synthesis of Chlorine- and Nitrogen-Containing Carbon Nanofibers for Water Purification from Chloroaromatic Compounds. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8414. [PMID: 36499909 PMCID: PMC9741473 DOI: 10.3390/ma15238414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Chlorine- and nitrogen-containing carbon nanofibers (CNFs) were obtained by combined catalytic pyrolysis of trichloroethylene (C2HCl3) and acetonitrile (CH3CN). Their efficiency in the adsorption of 1,2-dichlorobenzene (1,2-DCB) from water has been studied. The synthesis of CNFs was carried out over self-dispersing nickel catalyst at 600 °C. The produced CNFs possess a well-defined segmented structure, high specific surface area (~300 m2/g) and high porosity (0.5-0.7 cm3/g). The addition of CH3CN into the reaction mixture allows the introduction of nitrogen into the CNF structure and increases the volume of mesopores. As a result, the capacity of CNF towards adsorption of 1,2-DCB from its aqueous solution increased from 0.41 to 0.57 cm3/g. Regardless of the presence of N, the CNF samples exhibited a degree of 1,2-DCB adsorption from water-organic emulsion exceeding 90%. The adsorption process was shown to be well described by the Dubinin-Astakhov equation. The regeneration of the used CNF adsorbent through liquid-phase hydrodechlorination was also investigated. For this purpose, Pd nanoparticles (1.5 wt%) were deposited on the CNF surface to form the adsorbent with catalytic function. The presence of palladium was found to have a slight effect on the adsorption capacity of CNF. Further regeneration of the adsorbent-catalyst via hydrodechlorination of adsorbed 1,2-DCB was completed within 1 h with 100% conversion. The repeated use of regenerated adsorbent-catalysts for purification of solutions after the first cycle of adsorption ensures almost complete removal of 1,2-DCB.
Collapse
Affiliation(s)
- Anna M. Ozerova
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Arina R. Potylitsyna
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Yury I. Bauman
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Elena S. Tayban
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Inna L. Lipatnikova
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Anna V. Nartova
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Aleksey A. Vedyagin
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Ilya V. Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
| | - Yury V. Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentieva Av. 3, 630090 Novosibirsk, Russia
| | - Olga V. Netskina
- Boreskov Institute of Catalysis SB RAS, Lavrentieva Av. 5, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
33
|
Facile synthesis of pure silicon zeolite-confined silver nanoparticles and their catalytic activity for the reduction of 4-nitrophenol and methylene blue. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|