1
|
Wu K, Cao J, Zhang R, Pei Y, Peng T, Chen G. Micro-doping tin-bismuth on modification of Co 3O 4 electrocatalyst and degradation of ammonia nitrogen. ENVIRONMENTAL RESEARCH 2025; 275:121366. [PMID: 40090478 DOI: 10.1016/j.envres.2025.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Co3O4 has exhibited chlorine evolution reaction (CER) activity comparable to that of RuO2. However, it is plagued by relatively low catalytic activity and insufficient long-term stability. In the field of cobalt oxide doping, typically, a relatively large quantity of dopants is used to modulate its performance. In contrast, the exploration of doping with trace amounts of elements has been scarce. In this study, small amounts of Sn and Bi were introduced into the Co3O4 electrocatalyst. The impacts of different doping ratios on the morphology and catalytic performance of the catalyst were systematically investigated. Under specific proportion conditions, the co-doping of these two elements with cobalt tetroxide demonstrated a remarkable synergistic effect. Moreover, a mechanism for the improvement of catalyst performance, based on DFT calculations, was proposed. Subsequently, the ammonia-nitrogen degradation capacity and long-term stability of the modified catalyst were evaluated through ammonia-nitrogen degradation experiments. The degradation mechanism was further elucidated using free-radical scavenging experiments.
Collapse
Affiliation(s)
- KeXuan Wu
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Jing Cao
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Ran Zhang
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Yong Pei
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Ting Peng
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Ge Chen
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| |
Collapse
|
2
|
Yuan KX, Wu Q, Hu K, Liu YL, Wang W, Feng H, Liu Y, Bao X, Ma J. Harnessing Electrochemistry Synergy in Reverse Osmosis: Modulating Ammonium Localized Oxidation and Restricted Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4188-4198. [PMID: 39968933 DOI: 10.1021/acs.est.4c13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The unsatisfactory selectivity of reverse osmosis (RO) membranes toward ammonium poses a critical challenge in water safety when reclaiming water from domestic wastewater. Herein, we developed a novel integrated electrochemical-assisted RO (ECRO) system using the electrically treated feed spacer and permeate carrier as electrodes. This system enhanced ammonium removal efficiency significantly while maintaining low energy consumption, increasing from 94.36% at 0 V to 99.91% at 4 V. The improvement was primarily attributed to localized oxidation and restricted transport of ammonium ions. Specifically, the permeate carrier anode facilitated the indirect oxidation of ammonium through active chlorine via the breakpoint chlorination pathway, notably localized on the permeate side to prevent damage to the separation layer of the RO membrane and simultaneously avoid additional chemical additives. Furthermore, the restricted ammonium ion transport was responsible for its improved enthalpic barrier, as evidenced by both experimental investigation and Monte Carlo simulation. This rise in enthalpic barrier was primarily driven by the reverse electric field force across the RO membrane, coupled with the constrained ion migration near the membrane surface and ion diffusion within the membrane. This study offers new insights and a theoretical foundation for the optimization of electrochemistry synergy membrane systems, highlighting the potential for enhancing ammonium removal in wastewater reclamation in a green and low-energy manner.
Collapse
Affiliation(s)
- Ke-Xin Yuan
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Kai Hu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Xian Bao
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
3
|
Xin H, Zhang W, Zhang X, Zhang G, Ji Q, Liu H, Qu J. Energy Recovery from Hexavalent Chromium Reduction for In Situ Electrocatalytic Hydrogen Peroxide Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17485-17496. [PMID: 39290141 DOI: 10.1021/acs.est.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.
Collapse
Affiliation(s)
- Huaijia Xin
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofeng Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Zhu W, Wei Z, Ma Y, Ren M, Fu X, Li M, Zhang C, Wang J, Guo S. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H 2 Generation from Direct Seawater Electrolysis through Decoupling Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202319798. [PMID: 38353370 DOI: 10.1002/anie.202319798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meirong Ren
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Droevendaalsesteeg 2, 6708, PB Wageningen, The Netherlands
| | - Xue Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaojun Guo
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Zhu X, Wang K, Liu C, Wu Y, Wu E, Lv J, Xiao X, Zhu X, Chu C, Chen B. Natural Disinfection-like Process Unveiled in Soil Microenvironments by Enzyme-Catalyzed Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3838-3848. [PMID: 38351523 DOI: 10.1021/acs.est.3c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Yajing Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China
| |
Collapse
|
6
|
Kuang W, Yan Z, Chen J, Ling X, Zheng W, Huang W, Feng C. A Bipolar Membrane-Integrated Electrochlorination Process for Highly Efficient Ammonium Removal in Mature Landfill Leachate: The Importance of ClO • Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18538-18549. [PMID: 36240017 DOI: 10.1021/acs.est.2c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical oxidation has been demonstrated to be a useful method for removing biorefractory organic pollutants in mature landfill leachate but suffers from low efficiency in eliminating ammonium because of its resistance to being oxidized by HO• or free chlorine (FC) at decreased pH. Here, we propose a new bipolar membrane-electrochlorination (BPM-EC) process to address this issue. We found that the BPM-EC system was significantly superior to both the undivided and divided reactors with monopolar membranes in terms of elevated rate of ammonium removal, attenuated generation of byproducts (e.g., nitrate and chloramines), increased Faradaic efficiency, and decreased energy consumption. Mechanistic studies revealed that the integration of BPM was helpful in creating alkaline environments in the vicinity of the anode, which facilitated production of surface-bound HO• and FC and eventually promoted in situ generation of ClO•, a crucial reactive species mainly responsible for accelerating ammonium oxidation and selective transformation to nitrogen. The efficacy of BPM-EC in treating landfill leachates with different ammonium concentrations was verified under batch and continuous-flow conditions. A kinetic model that incorporates the key parameters was developed, which can successfully predict the optimal number of BPM-EC reactors (e.g., 2 and 5 for leachates containing 589.4 ± 5.5 and 1258.1 ± 9.6 mg L-1 NH4+-N, respectively) necessary for complete removal of ammonium. These findings reveal that the BPM-EC process shows promise in treating ammonium-containing wastewater, with advantages that include effectiveness, adaptability, and flexibility.
Collapse
Affiliation(s)
- Wenjie Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou510006, PR China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou510006, PR China
| | - Jinxiu Chen
- Guangdong Yinniu Environmental Information Technology Co., Ltd, Guangzhou510006, PR China
| | - Xiaotang Ling
- Guangdong Yinniu Environmental Information Technology Co., Ltd, Guangzhou510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou510006, PR China
| | - Weijun Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou510006, PR China
| |
Collapse
|
7
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|