1
|
Ofodile J, Pfannerstill EY, Arata C, Pusede SE, Ivey CE, Goldstein AH. Inequality in Hazardous Air Pollutant Emissions and Concentrations Measured Over Los Angeles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7588-7599. [PMID: 40219953 PMCID: PMC12020357 DOI: 10.1021/acs.est.5c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/16/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
In Los Angeles, air pollution disproportionately impacts communities of color and low-income residents. Routine city-wide measurements of hazardous air pollutants (HAPs), of concern for health and contributing to urban air pollution, are notably lacking. In this study, we use the highest spatially resolved (∼2 km) measurements of emissions and concentrations ever reported of HAPs while covering a whole megacity and combine observations with US Census information. We observe higher concentrations and emissions of 17 measured HAPs, such as benzene, naphthalene, and p-chlorobenzotrifluoride (PCBTF), in California-designated Disadvantaged Communities (DACs) and census tracts with low-income Hispanics and Asians. These groups share an unequal burden from traffic-related emissions, with benzene, nitrogen oxides (NOx), and carbon monoxide (CO) concentrations up to 60% higher. However, in DACs and census tracts with large Hispanic populations (>50%), we observe toluene-to-benzene emission ratios above 3, pointing to inequalities in other HAPs primarily caused by non-traffic emission sources such as industry and solvents. In these communities, regulatory inventories also significantly underestimate emissions. We find that efforts to address HAP inequalities and environmental justice concerns in Los Angeles will need to consider contributions from volatile chemical products, which represent a growing source of emissions driving inequalities in impacted communities.
Collapse
Affiliation(s)
- Jennifer Ofodile
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eva Y. Pfannerstill
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sally E. Pusede
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Cesunica E. Ivey
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Mustansar T, van den Brekel L, Timmermans EJ, Agyemang C, Vaartjes I. Air pollution exposure disparities among ethnic groups in high-income countries: A scoping review. ENVIRONMENTAL RESEARCH 2025; 267:120647. [PMID: 39725138 DOI: 10.1016/j.envres.2024.120647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The adverse health effects of air pollution are well-established. Previous reviews have highlighted disparities in air pollution exposure between minoritized ethnic groups and majoritized ethnic groups. However, these reviews primarily focused on proximity to pollution sources rather than objectively measured concentrations. This scoping review aims to provide an overview of the extent of inequalities in objectively measured air pollution exposure among ethnic groups in high-income countries. METHODS We systematically searched PubMed, Scopus, Web of Science, and Google Scholar for studies published in English, that reported on objectively measured air pollution exposure stratified by ethnic groups in high-income countries. Data on study characteristics and air pollution exposure were extracted. RESULTS The majority of all 55 included studies were conducted in North America (n = 46), followed by Europe (n = 8), and Oceania (n = 1). Across studies, 25 ethnic groups were identified, with African American, Hispanic, Latino, and Asian populations being the most studied minoritized ethnic groups. PM2.5 was the most studied (n = 38) air pollutant. Eighteen studies statistically tested differences in exposure across ethnic groups. Thirteen studies reported significantly higher air pollution exposure among minoritized ethnic populations compared to the majoritized ethnic population, and five studies showed mixed evidence. CONCLUSIONS This review highlights the extent of disparities in air pollution exposure among ethnic groups in high-income countries. It underscores the need for further research to understand the contributing factors and potential interventions to address these disparities.
Collapse
Affiliation(s)
- Tehreem Mustansar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Lieke van den Brekel
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Erik J Timmermans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Wang Y, Wang Y, Li Q, Tan Y, Li M, Zhang Y, He C, Wang T. Soil Emissions of Reactive Oxidized Nitrogen Reduce the Effectiveness of Anthropogenic Source Control in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21015-21024. [PMID: 39547667 DOI: 10.1021/acs.est.4c08526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nitrogen dioxide (NO2) has decreased by ∼33% across over 1200 monitoring sites in China during 2015-2023, following a series of clean air policies. However, most of these sites are located in or near cities, leading to uncertainties in NO2 trends beyond urban regions due to limited observations. Here, we used satellite measurements to examine the differences in NO2 trends between urban and rural China. In urban areas, NO2 columns decreased by 4.0% per annum (a-1) during summer 2011-2023, consistent with bottom-up anthropogenic emission inventory and in situ measurements. In contrast, rural NO2 columns showed a slower than expected reduction (-2.6 to -0.0% a-1) during the same period. Model simulations with updates in the soil reactive oxidized nitrogen (Nr) scheme indicated that increasing soil Nr emissions can be an important factor contributing to the observed slow NO2 decrease in rural areas. This unregulated source increased summertime pollutant levels, partially offsetting the national efforts to mitigate NO2, ozone (O3), and particulate nitrate (NO3-) levels by 20.9%, 15.4%, and 4.7%, respectively, from 2011 to 2020. In the agriculture-intensive North China Plain, the increase in soil Nr emissions offset 46.6% of the NO2 reductions achieved by clean air policies. Our results highlight the increasing significance of soil emissions and the need to control them in future air-quality policies.
Collapse
Affiliation(s)
- Yurun Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinyi Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yue Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yingnan Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cheng He
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
4
|
Dressel IM, Zhang S, Demetillo MAG, Yu S, Fields K, Judd LM, Nowlan CR, Sun K, Kotsakis A, Turner AJ, Pusede SE. Neighborhood-Level Nitrogen Dioxide Inequalities Contribute to Surface Ozone Variability in Houston, Texas. ACS ES&T AIR 2024; 1:973-988. [PMID: 39295746 PMCID: PMC11406531 DOI: 10.1021/acsestair.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
In Houston, Texas, nitrogen dioxide (NO2) air pollution disproportionately affects Black, Latinx, and Asian communities, and high ozone (O3) days are frequent. There is limited knowledge of how NO2 inequalities vary in urban air quality contexts, in part from the lack of time-varying neighborhood-level NO2 measurements. First, we demonstrate that daily TROPOspheric Monitoring Instrument (TROPOMI) NO2 tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale NO2 inequalities in Houston, comparing NO2 inequalities based on TROPOMI TVCDs and spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking Aerosol Convection ExpeRiment-Air Quality (TRACER-AQ). We further evaluate the application of daily TROPOMI TVCDs to census tract-scale NO2 inequalities (May 2018-November 2022). This includes explaining differences between mean daily NO2 inequalities and those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO2 column-surface relationships weaken as a function of observation separation distance. Second, census tract-scale NO2 inequalities, city-wide high O3, and mesoscale airflows are found to covary using principal component and cluster analysis. A generalized additive model of O3 mixing ratios versus NO2 inequalities reproduces established nonlinear relationships between O3 production and NO2 concentrations, providing observational evidence that neighborhood-level NO2 inequalities and O3 are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian communities will have co-benefits, reducing both NO2 disparities and high O3 days city wide.
Collapse
Affiliation(s)
- Isabella M Dressel
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sixuan Zhang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mary Angelique G Demetillo
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Shan Yu
- Department of Statistics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kimberly Fields
- Carter G. Woodson Institute for African American and African Studies, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Laura M Judd
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Caroline R Nowlan
- Atomic and Molecular Physics Division, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts 02138, United States
| | - Kang Sun
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
- Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Alexander Kotsakis
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Alexander J Turner
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Koolik LH, Alvarado Á, Budahn A, Plummer L, Marshall JD, Apte JS. PM 2.5 exposure disparities persist despite strict vehicle emissions controls in California. SCIENCE ADVANCES 2024; 10:eadn8544. [PMID: 39259801 PMCID: PMC11389777 DOI: 10.1126/sciadv.adn8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
As policymakers increasingly focus on environmental justice, a key question is whether emissions reductions aimed at addressing air quality or climate change can also ameliorate persistent air pollution exposure disparities. We examine evidence from California's aggressive vehicle emissions control policy from 2000 to 2019. We find a 65% reduction in modeled statewide average exposure to PM2.5 from on-road vehicles, yet for people of color and overburdened community residents, relative exposure disparities increased. Light-duty vehicle emissions are the main driver of the exposure and exposure disparity, although smaller contributions from heavy-duty vehicles especially affect some overburdened groups. Our findings suggest that a continued trend of emissions reductions will likely reduce concentrations and absolute disparity but may not reduce relative disparities without greater attention to the systemic factors leading to this disparity.
Collapse
Affiliation(s)
- Libby H Koolik
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720, USA
| | - Álvaro Alvarado
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Amy Budahn
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Laurel Plummer
- California Office of Environmental Health Hazard Assessment, Sacramento, CA 95814, USA
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua S Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
6
|
Zalzal J, Minet L, Brook J, Mihele C, Chen H, Hatzopoulou M. Capturing Exposure Disparities with Chemical Transport Models: Evaluating the Suitability of Downscaling Using Land Use Regression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39092553 DOI: 10.1021/acs.est.4c03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
High resolution exposure surfaces are essential to capture disparities in exposure to traffic-related air pollution in urban areas. In this study, we develop an approach to downscale Chemical Transport Model (CTM) simulations to a hyperlocal level (∼100m) in the Greater Toronto Area (GTA) under three scenarios where emissions from cars, trucks and buses are zeroed out, thus capturing the burden of each transportation mode. This proposed approach statistically fuses CTMs with Land-Use Regression using machine learning techniques. With this proposed downscaling approach, changes in air pollutant concentrations under different scenarios are appropriately captured by downscaling factors that are trained to reflect the spatial distribution of emission reductions. Our validation analysis shows that high-resolution models resulted in better performance than coarse models when compared with observations at reference stations. We used this downscaling approach to assess disparities in exposure to nitrogen dioxide (NO2) for populations composed of renters, low-income households, recent immigrants, and visible minorities. Individuals in all four categories were disproportionately exposed to the burden of cars, trucks, and buses. We conducted this analysis at spatial resolutions of 12, 4, 1 km, and 100 m and observed that disparities were significantly underestimated when using coarse spatial resolutions. This reinforces the need for high-spatial resolution exposure surfaces for environmental justice analyses.
Collapse
Affiliation(s)
- Jad Zalzal
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Laura Minet
- Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Jeffrey Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 3M7, Canada
| | - Cristian Mihele
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, North York, Ontario M3H 5T4, Canada
| | - Hong Chen
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 3M7, Canada
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
- Public Health Ontario, 480 University Avenue, Toronto, Ontario M5G 1 V2, Canada
- ICES, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
7
|
Kerr GH, Meyer M, Goldberg DL, Miller J, Anenberg SC. Air pollution impacts from warehousing in the United States uncovered with satellite data. Nat Commun 2024; 15:6006. [PMID: 39048550 PMCID: PMC11269699 DOI: 10.1038/s41467-024-50000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Regulators, environmental advocates, and community groups in the United States (U.S.) are concerned about air pollution associated with the proliferating e-commerce and warehousing industries. Nationwide datasets of warehouse locations, traffic, and satellite observations of the traffic-related pollutant nitrogen dioxide (NO2) provide a unique capability to evaluate the air quality and environmental equity impacts of these geographically-dispersed emission sources. Here, we show that the nearly 150,000 warehouses in the U.S. worsen local traffic-related air pollution with an average near-warehouse NO2 enhancement of nearly 20% and are disproportionately located in marginalized and minoritized communities. Near-warehouse truck traffic and NO2 significantly increase as warehouse density and the number of warehouse loading docks and parking spaces increase. Increased satellite-observed NO2 near warehouses underscores the need for indirect source rules, incentives for replacing old trucks, and corporate commitments towards electrification. Future ground-based monitoring campaigns may help track impacts of individual or small clusters of facilities.
Collapse
Affiliation(s)
- Gaige Hunter Kerr
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA.
| | - Michelle Meyer
- International Council on Clean Transportation, Washington, DC, USA
| | - Daniel L Goldberg
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| | - Joshua Miller
- International Council on Clean Transportation, Washington, DC, USA
| | - Susan C Anenberg
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Bradley A, Croes BE, Harkins C, McDonald BC, de Gouw JA. Air Pollution Inequality in the Denver Metroplex and its Relationship to Historical Redlining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4226-4236. [PMID: 38380822 PMCID: PMC10919081 DOI: 10.1021/acs.est.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO2 columns and modeled PM2.5 concentrations from 2019 are higher in communities subject to redlining. We calculated and compared Spearman coefficients for pollutants and race at the census tract level for every city that underwent redlining to contextualize the disparities in Denver. We find that the location of polluting infrastructure leads to higher populations of POC living near point sources, including 40% higher Hispanic and Latino populations. This influences pollution distribution, with annual average PM2.5 surface concentrations of 6.5 μg m-3 in census tracts with 0-5% Hispanic and Latino populations and 7.5 μg m-3 in census tracts with 60-65% Hispanic and Latino populations. Traffic analysis and emission inventory data show that POC are more likely to live near busy highways. Unequal spatial distribution of pollution sources and POC have allowed for pollution disparities to persist despite attempts by the city to rectify them. Finally, we identify the core causes of the pollution disparities to provide direction for remediation.
Collapse
Affiliation(s)
- Alexander
C. Bradley
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Bart E. Croes
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Joost A. de Gouw
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Wen Y, Zhang S, Wang Y, Yang J, He L, Wu Y, Hao J. Dynamic Traffic Data in Machine-Learning Air Quality Mapping Improves Environmental Justice Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38261755 DOI: 10.1021/acs.est.3c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Air pollution poses a critical public health threat around many megacities but in an uneven manner. Conventional models are limited to depict the highly spatial- and time-varying patterns of ambient pollutant exposures at the community scale for megacities. Here, we developed a machine-learning approach that leverages the dynamic traffic profiles to continuously estimate community-level year-long air pollutant concentrations in Los Angeles, U.S. We found the introduction of real-world dynamic traffic data significantly improved the spatial fidelity of nitrogen dioxide (NO2), maximum daily 8-h average ozone (MDA8 O3), and fine particulate matter (PM2.5) simulations by 47%, 4%, and 15%, respectively. We successfully captured PM2.5 levels exceeding limits due to heavy traffic activities and providing an "out-of-limit map" tool to identify exposure disparities within highly polluted communities. In contrast, the model without real-world dynamic traffic data lacks the ability to capture the traffic-induced exposure disparities and significantly underestimate residents' exposure to PM2.5. The underestimations are more severe for disadvantaged communities such as black and low-income groups, showing the significance of incorporating real-time traffic data in exposure disparity assessment.
Collapse
Affiliation(s)
- Yifan Wen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
| | - Shaojun Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
- Beijing Laboratory of Environmental Frontier Technologies, Beijing 100084, P. R. China
- Laboratory of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, P. R. China
| | - Yuan Wang
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Jiani Yang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Liyin He
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Ye Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
- Beijing Laboratory of Environmental Frontier Technologies, Beijing 100084, P. R. China
- Laboratory of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, P. R. China
| | - Jiming Hao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
- Beijing Laboratory of Environmental Frontier Technologies, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Sayyed TK, Ovienmhada U, Kashani M, Vohra K, Kerr GH, O’Donnell C, Harris MH, Gladson L, Titus AR, Adamo SB, Fong KC, Gargulinski EM, Soja AJ, Anenberg S, Kuwayama Y. Satellite data for environmental justice: a scoping review of the literature in the United States. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2024; 19:10.1088/1748-9326/ad1fa4. [PMID: 39377051 PMCID: PMC11457489 DOI: 10.1088/1748-9326/ad1fa4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In support of the environmental justice (EJ) movement, researchers, activists, and policymakers often use environmental data to document evidence of the unequal distribution of environmental burdens and benefits along lines of race, class, and other socioeconomic characteristics. Numerous limitations, such as spatial or temporal discontinuities, exist with commonly used data measurement techniques, which include ground monitoring and federal screening tools. Satellite data is well poised to address these gaps in EJ measurement and monitoring; however, little is known about how satellite data has advanced findings in EJ or can help to promote EJ through interventions. Thus, this scoping review aims to (1) explore trends in study design, topics, geographic scope, and satellite datasets used to research EJ, (2) synthesize findings from studies that use satellite data to characterize disparities and inequities across socio-demographic groups for various environmental categories, and (3) capture how satellite data are relevant to policy and real-world impact. Following PRISMA extension guidelines for scoping reviews, we retrieved 81 articles that applied satellite data for EJ research in the United States from 2000 to 2022. The majority of the studies leveraged the technical advantages of satellite data to identify socio-demographic disparities in exposure to environmental risk factors, such as air pollution, and access to environmental benefits, such as green space, at wider coverage and with greater precision than previously possible. These disparities in exposure and access are associated with health outcomes such as increased cardiovascular and respiratory diseases, mental illness, and mortality. Research using satellite data to illuminate EJ concerns can contribute to efforts to mitigate environmental inequalities and reduce health disparities. Satellite data for EJ research can therefore support targeted interventions or influence planning and policy changes, but significant work remains to facilitate the application of satellite data for policy and community impact.
Collapse
Affiliation(s)
- Tanya Kreutzer Sayyed
- School of Public Policy, University of Maryland, Baltimore County, Baltimore, MD, United States of America
- Author Kreutzer Sayyed, author Ovienmhada and author Kashani contributed equally to this work
| | - Ufuoma Ovienmhada
- Department of Aeronautics and Astronautics, Massachusetts institute of Technology, Cambridge, MA, United States of America
- Author Kreutzer Sayyed, author Ovienmhada and author Kashani contributed equally to this work
| | - Mitra Kashani
- Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
- Author Kreutzer Sayyed, author Ovienmhada and author Kashani contributed equally to this work
| | - Karn Vohra
- Department of Geography, University College London, London, United Kingdom
| | - Gaige Hunter Kerr
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Catherine O’Donnell
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Maria H Harris
- Environmental Defense Fund, New York, NY, United States of America
| | - Laura Gladson
- Marron Institute of Urban Management, New York University, New York, NY, United States of America
- New York University Grossman School of Medicine, New York, NY, United States of America
| | - Andrea R Titus
- New York University Grossman School of Medicine, New York, NY, United States of America
| | - Susana B Adamo
- Center for International Earth Science Information Network, The Climate School, Columbia University, New York, NY, United States of America
| | - Kelvin C Fong
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | | | - Amber J Soja
- National Institute of Aerospace, Hampton, VA, United States of America
- NASA Langley Research Center, Hampton, VA, United States of America
| | - Susan Anenberg
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Yusuke Kuwayama
- School of Public Policy, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| |
Collapse
|
11
|
Kerr GH, Goldberg DL, Harris MH, Henderson BH, Hystad P, Roy A, Anenberg SC. Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19532-19544. [PMID: 37934506 DOI: 10.1021/acs.est.3c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In the United States (U.S.), studies on nitrogen dioxide (NO2) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO2 measurements and estimates of NO2 estimates from land-use regression and photochemical models, can aid in assessing NO2 exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO2 levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO2 disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO2. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO2.
Collapse
Affiliation(s)
- Gaige Hunter Kerr
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| | - Daniel L Goldberg
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| | - Maria H Harris
- Environmental Defense Fund, 257 Park Avenue South, New York, New York 10010, United States
| | - Barron H Henderson
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Ananya Roy
- Environmental Defense Fund, 257 Park Avenue South, New York, New York 10010, United States
| | - Susan C Anenberg
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
12
|
Gohlke JM, Harris MH, Roy A, Thompson TM, DePaola M, Alvarez RA, Anenberg SC, Apte JS, Demetillo MAG, Dressel IM, Kerr GH, Marshall JD, Nowlan AE, Patterson RF, Pusede SE, Southerland VA, Vogel SA. State-of-the-Science Data and Methods Need to Guide Place-Based Efforts to Reduce Air Pollution Inequity. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:125003. [PMID: 38109120 PMCID: PMC10727036 DOI: 10.1289/ehp13063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Recently enacted environmental justice policies in the United States at the state and federal level emphasize addressing place-based inequities, including persistent disparities in air pollution exposure and associated health impacts. Advances in air quality measurement, models, and analytic methods have demonstrated the importance of finer-scale data and analysis in accurately quantifying the extent of inequity in intraurban pollution exposure, although the necessary degree of spatial resolution remains a complex and context-dependent question. OBJECTIVE The objectives of this commentary were to a) discuss ways to maximize and evaluate the effectiveness of efforts to reduce air pollution disparities, and b) argue that environmental regulators must employ improved methods to project, measure, and track the distributional impacts of new policies at finer geographic and temporal scales. DISCUSSION The historic federal investments from the Inflation Reduction Act, the Infrastructure Investment and Jobs Act, and the Biden Administration's commitment to Justice40 present an unprecedented opportunity to advance climate and energy policies that deliver real reductions in pollution-related health inequities. In our opinion, scientists, advocates, policymakers, and implementing agencies must work together to harness critical advances in air quality measurements, models, and analytic methods to ensure success. https://doi.org/10.1289/EHP13063.
Collapse
Affiliation(s)
- Julia M. Gohlke
- Environmental Defense Fund, Washington, District of Columbia, USA
- Department of Population Health Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Maria H. Harris
- Environmental Defense Fund, Washington, District of Columbia, USA
| | - Ananya Roy
- Environmental Defense Fund, Washington, District of Columbia, USA
| | | | - Mindi DePaola
- Environmental Defense Fund, Washington, District of Columbia, USA
| | - Ramón A. Alvarez
- Environmental Defense Fund, Washington, District of Columbia, USA
| | - Susan C. Anenberg
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Columbia, USA
| | - Joshua S. Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Isabella M. Dressel
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Gaige H. Kerr
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Columbia, USA
| | - Julian D. Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Aileen E. Nowlan
- Environmental Defense Fund, Washington, District of Columbia, USA
| | - Regan F. Patterson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Sally E. Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Veronica A. Southerland
- Environmental Defense Fund, Washington, District of Columbia, USA
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Columbia, USA
| | - Sarah A. Vogel
- Environmental Defense Fund, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Gibson JM, Osman KK, Conroy-Ben O, Giang A. Environmental Science for the Betterment of All. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13267-13269. [PMID: 37498804 DOI: 10.1021/acs.est.3c05429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
|
14
|
Transition metal disulfide (MoTe2, MoSe2 and MoS2) were modified to improve NO2 gas sensitivity sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|