1
|
Liu Y, Xu M, Zhao L, He S, Feng L, Wei L. Combat against antibiotic resistance genes during photo-treatment of magnetic Zr-MOFs@Layered double hydroxide heterojunction: Conjugative transfer risk mitigating and bacterial inactivation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138160. [PMID: 40188541 DOI: 10.1016/j.jhazmat.2025.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
The dissemination of antimicrobial resistance (AMR) in wastewater treatment poses a severe threat to the global ecological environment. This study explored the effectiveness of photocatalysis in inactivating antibiotic resistant bacteria (ARB) and quantitatively clarified the inhibiting rate of the transfer of antibiotics resistance genes (ARGs). Herein, the magnetic heterojunction as UiO-66-NH2@CuFe LDH-Fe3O4 (UN-66@LDH-Fe) effectively facilitated the electron-hole separation and accelerated the photogenerated charge transfer, thereby guaranteeing the stable practical application in aeration tanks. Notably, the internal electric field of heterogeneous photocatalyst resulted in significant increase of ARGs inactivation, achieving 5.63 log of ARB, 3.66 log of tetA and 3.57 log of Ampr genes were photodegraded under optimal reaction conditions within 6 h. Based on the complex microbial and molecular mechanism of multiple-ARB communities inactivation in photo-treatment, the photogenerated reactive oxygen species (ROSs, ·OH and ·O2-) effectively destroyed bacterial membrane protein, thereby the intracellular ROSs and redox cycles further induced oxidative stress, attributing to the abundance reduction of ARGs and their host bacteria. Moreover, long-term (7 days) continuous operation preliminarily verified the practical potential in reducing AMR spread and developing wastewater treatment efficacy. Overall, this study presented an advantageous synergistic strategy for mitigating the AMR-associated environmental risk in wastewater treatment.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyang Xu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Liu Z, Lv Y, Sun Y, Hong C, Fan Y, Ma X, Gao C, Lin J, Chen T, Chen J, Wu A. New insights of transition metal sulfide nanoparticles for tumor precision diagnosis and treatment. J Control Release 2025:113871. [PMID: 40418988 DOI: 10.1016/j.jconrel.2025.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Transition metal sulfide nanoparticles (TMSs), with their unique photothermal conversion effects, Fenton-like catalytic activity, engineerable structure, and good biocompatibility, are becoming a cutting-edge research focus in the field of tumor precision diagnosis and therapy. This review systematically explores the groundbreaking potential of TMSs (MxSy, M = Fe, Mn, Cu, Mo, Co, Ni, W, etc.) in tumor precision diagnosis, specific non-invasive treatment, and multimodal synergistic therapy from the perspective of "structural design-function regulation-integrated diagnosis and therapy." The exceptional magnetic properties, photothermal effects, and high X-ray absorption capabilities of TMSs have driven extensive research and widespread application in tumor imaging, including magnetic resonance imaging, photoacoustic imaging, and computed tomography. Furthermore, we delve into mechanistically integrated strategies for various clinical applications, such as phototherapy, chemodynamic therapy, sonodynamic therapy, gas therapy, and immunotherapy. These new approaches demonstrate high specificity, efficacy, and low toxicity compared with traditional clinical treatments, highlighting the significant application value of TMSs in revolutionizing cancer therapy. Finally, the review addresses the opportunities and challenges of employing transition TMSs as nano-formulations for cancer. This review aims to provide new insights into the prospects and hurdles that need to be addressed to fully exploit the potential of TMSs in precision tumor therapy and integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Zhusheng Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yagui Lv
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanzi Sun
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chengyuan Hong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
3
|
Ouyang L, Ng M, Zhou ZH, Wu H, Tang MC, Chen SS. Manipulating Charge Dynamics in Carbon Nitride by Carbon Dot Doping for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417390. [PMID: 40285587 DOI: 10.1002/advs.202417390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Indexed: 04/29/2025]
Abstract
Graphitic carbon nitride (g-C3N4), a prominent metal-free semiconductor photocatalyst, faces limitations due to its high exciton binding energy. While significant efforts have been focused on optimizing charge-carrier processes, the interplay of exciton and free carrier in this system have received less attention. Herein, this density-functional theory (DFT) and time-dependent DFT calculations demonstrate that carbon dot-functionalized g-C3N4 (g-C3N4/CD), synthesized via a facile thermal polymerization, shifts the excited state from localized to charge transfer characteristics. The g-C3N4/CD exhibits reduced exciton binding energy from 41.0 to 24.6 meV, as shown by temperature-dependent photoluminescence spectroscopy. Particularly, g-C3N4/CD-10 (10 wt.% CD solution in precursors) achieves a 3-fold increase in the photodegradation rate (k = 0.020 min⁻¹) of an emerging environmental pollutant, levofloxacin (LEV), under 10 W LED light. Enhanced photocatalytic performances correlate with optimized band structure and efficient charge transport, as confirmed by photophysical and photoelectrochemical analyses. Although the excited state lifetime in g-C3N4/CD is slightly reduced compared to pristine g-C3N4, photocatalytic activity remains unaffected, underscoring the critical role of charge excited state in enhancing photocatalytic efficiency. This work offers insights onto the potential of manipulating charge transfer excited state dynamics for improved g-C3N4-based photocatalysis in environmental applications.
Collapse
Affiliation(s)
- Lingfeng Ouyang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518005, P. R. China
| | - Maggie Ng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518005, P. R. China
| | - Zhang-Hong Zhou
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518005, P. R. China
| | - Season Si Chen
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518005, P. R. China
| |
Collapse
|
4
|
He S, Hu Z, He C, Tian S, Ouyang G, Lin Z, Fang J. Nanoconfinement-Enabled Resistance to Water Matrix Components for Selective Degradation of Micropollutants. Angew Chem Int Ed Engl 2025; 64:e202424827. [PMID: 39824787 DOI: 10.1002/anie.202424827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples. Oxygen vacancies in TiO2 promote electron separation and oxygen adsorption, leading to a 4.9-fold increase in hydroxyl radical concentration within the nanoconfined space compared to the bulk solution. In situ X-ray photoemission spectroscopy and Raman spectroscopy unveil the nanoconfined catalytic sites on the TiO2 surface, where micropollutants smaller than the pores of GO are effectively degraded, while NOM with a larger size is excluded by GO. Furthermore, the formation of toxic disinfection byproducts is well controlled due to the exclusion of NOM. This work provides a simple yet viable strategy for designing 2D material-wrapped catalysts to selectively degrade target micropollutants in complex real waters.
Collapse
Affiliation(s)
- Shaoxiong He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Ahmed Y, Dutta KR, Akhtar P, Hossen MA, Alam MJ, Alharbi OA, AlMohamadi H, Mohammad AW. Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:264-285. [PMID: 40041431 PMCID: PMC11878149 DOI: 10.3762/bjnano.16.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
In the constantly growing field of environmental sustainability, the threat of newly discovered pollutants, particularly antibiotics, has become a crucial concern. The widespread presence of these pharmaceutical substances in water sources presents a complex hazard to human health and ecological balance, requiring immediate and novel intervention techniques. Regarding this, semiconductor-based photocatalysts have appeared as promising candidates, providing a sustainable and efficient way to remove antibiotics from aquatic ecosystems. Nanomaterials can effectively and precisely break down and neutralize antibiotic compounds with high efficiency and selectivity by utilizing a complex interaction between radical reactive oxygen species and non-radical equivalents under light irradiation. Although photocatalysts have certain drawbacks, such as a limited capacity to absorb light and concerns about catalytic stability, photocatalysis outperforms other advanced oxidation processes in multiple aspects. This study focuses on summarizing recent advances in the sustainable removal of antibiotics using semiconductor-based photocatalysts. By reviewing the latest studies and sustainable technologies, this study presents new insights into the complex relationship between contaminants and catalytic degradation processes. Compared to single and binary photocatalysts, modified ternary composites were found to have superior photodegradation performance under visible light exposure. To be specific g-C3N4-based ternary photocatalysts exhibited more than 90% degradation of tetracycline and sulfamethazine antibiotics within one hour of irradiation. This study addresses the antibiotic degradation efficiency during photocatalytic processes and suggests new approaches to improve the performance and scalability for wider use in real-world situations.
Collapse
Affiliation(s)
- Yunus Ahmed
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Keya Rani Dutta
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Parul Akhtar
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Md Arif Hossen
- Institute of River, Harbor and Environmental Science, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Md Jahangir Alam
- Department of Civil Engineering, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Abdul Wahab Mohammad
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Lin M, Wang M, Wu J, Liu M, Chen Z. Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124269. [PMID: 39862825 DOI: 10.1016/j.jenvman.2025.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC. Furthermore, the rGO/Mn NPs adsorption-oxidation system (85.2%) was more effective than the adsorption process (70.9%) in removing TC (50 mg L-1). Free radical quenching experiments and EPR results elucidated that singlet oxygen (1O2) and superoxide radicals (·O2-) are the primary reactive species responsible for the degradation of TC in the oxidation system. Based on the characterization results, a mechanism of oxidative degradation of TC by rGO/Mn NPs has been proposed. To further elucidate the degradation pathway of TC, the degradation products were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS). This analysis provides a foundation for understanding how the rGO/Mn NPs composites activate PDS to degrade TC. Additionally, the ecological structure-activity relationship analysis revealed that TC is converted into intermediates with lower toxicity.
Collapse
Affiliation(s)
- Mei Lin
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Miao Wang
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jianwang Wu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ming Liu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
7
|
Liu Z, Feng L, Li B, Lü C, Sun J, Giannakis S. Crouching bacteria, hidden tetA genes in natural waters: Intracellular damage via double persulfate activation (UVA/Fe 2+/PDS) effectively alleviates the spread of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135854. [PMID: 39316921 DOI: 10.1016/j.jhazmat.2024.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
In this study, we elucidated the chemical and biological inactivation mechanisms of peroxydisulfate (PDS) activated by UVA and Fe2+ (UVA/Fe2+/PDS) in wild-type antibiotic-resistant bacteria (ARB) isolated from a river in Inner Mongolia. Among the screened wild-type ARB, the relative abundance of unidentified Enterobacteriaceae, Stenotrophomonas, and Ralstonia was high. A ratio of 1:1 for Fe2+ and PDS under 18 W·m-2 UVA radiation (sunny days) completely inactivated the environmental ARB isolates. In the macro view of the inactivation process, Fe2+ first activates PDS rapidly, and later the UVA energy accumulated starts to activate PDS; HO• then becomes the main active species at a rate-limiting step. From a micro perspective, damage to the cell wall, intracellular proteins, inactivation of antioxidant enzymes, and genetic material degradation are the inactivation series of events by UVA/Fe2+/PDS, contributing to the 97.8 % inactivation of ARB at the initial stage. No regrowth of sublethal ARBs was observed. The transfer of tetracycline resistance genes from ARB to lab E. coli was evaluated by horizontal gene transfer (HGT), in which no HGT occurred when ARB was eliminated by UVA/Fe2+/PDS. Moreover, the sulfate and iron residuals in the effluents of treated water were lower than the drinking water standards. In summary, PDS, UVA, and Fe2+ activation effectively inactivated wild ARB with a low concentration of reagents, while inhibiting their regrowth and spread of resistance due to the contribution of intracellular inactivation pathways.
Collapse
Affiliation(s)
- Zhuochu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Ling Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China.
| | - BoWei Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Jiquan Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
| |
Collapse
|
8
|
Hou X, Zhang Y, Wang M, Lu J, Ma D, Li Q, Li L, Wang Z, Gao B, Wang Y. Synergistic singlet oxygen and UV irradiation for efficient intracellular ARGs removal via peroxymonosulfate/catalytic membrane-UV system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136385. [PMID: 39488981 DOI: 10.1016/j.jhazmat.2024.136385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The eliminate of antibiotic resistance genes (ARGs) is pivotal in mitigating the proliferation of antibiotic resistance. In this study, a PMS/CM-UV system was engineered, combining a Co3O4-modified carbon nanotubes catalytic membrane with LED-UV lamps, to effectively eliminate intracellular ARGs (iARGs). Leveraging the synergistic effect of singlet oxygen (1O2) and UV irradiation, this process requires only a brief hydraulic retention time of a few minutes and standard UV disinfection irradiation intensity. The cellular physiological function and transcriptomic analysis indicated that reactive oxygen species (ROS) and UV irradiation compromised the cell membrane integrity of E. coli MG1655-SD, as indicated by the down-regulation of the feoB gene, leading to an increased concentration of 1O2 within the intracellular environment. The synergistic effect of 1O2 and UV irradiation resulted in the down-regulation of btuE, thereby curtailing the SOS and oxidative stress responses. Additionally, UV irradiation down-regulated ftsK, uvrB, and uvrA genes, involved in DNA replication, damage site recognition, and self-repair. These processes collectively contribute to the oxidative damage of iARGs by 1O2 before their release into the extracellular environment. This work provided a strategy to develop advanced oxidation disinfection technology aimed at ARGs removal.
Collapse
Affiliation(s)
- Xuan Hou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yunxin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Min Wang
- Binzhou Energy Development Service Center, Binzhou 256603, PR China
| | - Jiajun Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ling Li
- State Key Lab of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266200, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
9
|
Zhao Z, Zhou Z, Zhang X, Hou C, Wu D. Overlooked pyrite-mediated heterogeneous Fenton processes: Mechanisms of surface hydroxyl radical generation and associated decontamination performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175833. [PMID: 39214359 DOI: 10.1016/j.scitotenv.2024.175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pyrite-based Fenton-like processes have been extensively studied for wastewater decontamination; however, most relevant studies placed excessive emphasis on the homogeneous Fenton reaction mediated by aqueous Fe2+, resulting in the proposed technologies facing issues such as additional acid requirements for pH adjustment and excessive iron sludge production. Herein, through in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), custom dual-chamber reactor experiments, and a series of control experiments, significant hydroxyl radical generation was identified during the pyrite/H2O2 process, while the dominant reactive iron species was verified to the structural Fe sites on the pyrite surface, rather than structural Fe(II) in secondary iron minerals and surface adsorbed Fe2+. Consequently, even with significant suppression of the homogeneous Fenton pathway, the pyrite/H2O2 process exhibited significant degradation efficiency for sulfamethoxazole (SMX) at pH 4. Moreover, the pyrite/H2O2 process was found to selectively remove 50 μM of pollutants with high affinity for pyrite (bisphenol A, carbamazepine, nitrobenzene, and SMX), even in the presence of 50-100 mM methanol. Compared to the typical iron-based reductive catalyst (zero-valent iron, ZVI), pyrite mediated a Fenton process with greater potential for practical applications at pH 4, achieving a 43.75-fold reduction in iron sludge production and almost doubling the H2O2 utilization efficiency. Additionally, in contrast to ZVI, minimal iron oxide formed on the pyrite surface during the oxidation process. Thus, after seven cycles of degradation experiments, the decontamination efficiency of the pyrite/H2O2 process remained stable. These findings are crucial for understanding the complex environmental behavior of pyrite in both natural and engineering processes and provide a new perspective for the efficient utilization of pyrite resources as well.
Collapse
Affiliation(s)
- Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengsi Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Ahmed Y, Siddiqua Maya AA, Akhtar P, Alam MS, AlMohamadi H, Islam MN, Alharbi OA, Rahman SM. A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122614. [PMID: 39383757 DOI: 10.1016/j.jenvman.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
The existence of antibiotics in water sources poses substantial hazards to both the environment and public health. To effectively monitor and combat this problem, accurate predictive models are essential. This research focused on employing machine learning (ML) techniques to construct some models for analyzing the adsorption capacity of ciprofloxacin (CIP) antibiotic from contaminated water. The robustness of ten machine learning algorithms was evaluated using performance metrics such as the Coefficient of determination (R2), Mean Square Error (MSE), Median Absolute Error (MedAE), Mean Absolute Error (MAE), Correlation coefficient (R), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), and Root Mean Square Error (RMSE). The hyperparameters of the ML models were fine-tuned using the Bayesian optimization algorithm. The optimized models were comprehensively evaluated using feature importance analysis to quantify the relative significance of operational variables accurately. After a thorough assessment and comparison of various machine learning models, it was evident that the HistGradientBoosting (HGB) model outperformed others in terms of CIP adsorption performance. This was supported by their low MAE value of 0.1865 and high R2 value of 0.9999. The modeling projected the highest antibiotic adsorption (99.28%) under optimized conditions, including 10 mg/L of CIP, 357 mg/L of CuWO4@TiO2 adsorbent, a contact time of 60 min at room temperature, and near neutral pH (7.5). The combination of advanced ML algorithms and nano adsorbents has great potential for addressing the problem of antibiotic pollution in water sources.
Collapse
Affiliation(s)
- Yunus Ahmed
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh.
| | - Akser Alam Siddiqua Maya
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - Parul Akhtar
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - Md Shafiul Alam
- Department of Electrical and Electronic Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh.
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Md Nurul Islam
- Department of Electrical Engineering, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Syed Masiur Rahman
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Yu Z, Zhou Y, Zhang H, Zhang M, Gong S, Yin H, Sun T. Oxygen vacancy-rich β-Bi 2O 3/Bi 2O 2SiO 3 Z-Scheme heterojunction: A strategy to enhance visible light-driven photocatalytic removal of ARB and ARGs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124500. [PMID: 38964641 DOI: 10.1016/j.envpol.2024.124500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Oxygen vacancy-rich β-Bi2O3/Bi2O2SiO3 (BO/BOS) Z-Scheme heterojunction was prepared by hydrothermal method-assisted calcination. Under visible light, β-Bi2O3/Bi2O2SiO3 photocatalyst demonstrated superior photocatalytic efficacy in degrading antibiotics and antibiotic-resistant Escherichia coli (AR E. coli) compared to individual β-Bi2O3 and Bi2O2SiO3. The experimental results showed that BO/BOS-450 sample possessed the best photocatalytic activity against tetracycline (2 h, 80.8%), amoxicillin (4 h, 57.9%) and AR E. coli (3 h, 107.43 CFU·mL-1). BO/BOS-450 sample showed 91.8% electrostatic capture of AR E. coli in the bacterial capture experiment. In the antibiotic-resistant genes (ARGs) degradation experiment, BO/BOS-450 sample was able to bring the log10 (Ct/C0) value of tetA to -3.49 after 2 h. Oxygen vacancies (OVs) were verified through HR-TEM, XPS and EPR analyses. ESR experiments aligned with the quenching experiment results, confirming that the crucial active species were ‧O2- and h+ during photocatalytic sterilization. A small-scale sewage treatment equipment was designed for the effective removal of ARB from real water samples.
Collapse
Affiliation(s)
- Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Shuqi Gong
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Tianyi Sun
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| |
Collapse
|
12
|
Lin Z, Fu Y, Zhang B, Wang F, Shen C. Copper single-atom catalysts for broad-spectrum antibiotic-resistant bacteria (ARBs) antimicrobial: Activation of peroxides and mechanism of ARBs inactivation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135409. [PMID: 39096636 DOI: 10.1016/j.jhazmat.2024.135409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Antibiotic-resistant bacteria (ARBs) have been widely detected in wastewater and become a potential threat to human health. This work found that low-load single-atom copper (0.1 wt%) anchored on g-C3N4 (SA-Cu/g-C3N4) exhibited excellent ability to activate H2O2 and inactivate ARBs during the photo-Fenton process. The presence of SA-Cu/g-C3N4 (0.4 mg/mL) and H2O2 (0.1 mM) effectively inactivated ARBs. More than 99.9999 % (6-log) of methicillin-resistant Staphylococcus aureus (MRSA), and carbapenem-resistant Acinetobacter baumannii (CRAB) could be inactivated within 5 min. Extended-spectrum β-lactamase-producing pathogenic Escherichia coli (ESBL-E) and vancomycin-resistant Enterococcus faecium (VRE) were killed within 10 and 30 min, respectively. In addition, more than 5-log of these ARBs were killed within 60 min in real wastewater. Furthermore, D2O-labeling with Raman spectroscopy revealed that SA-Cu/g-C3N4 completely suppressed the viable but nonculturable (VBNC) state and reactivation of bacteria. Electron paramagnetic resonance spectroscopy results demonstrated that g-C3N4 mainly produced 1O2, while SA-Cu/g-C3N4 simultaneously produced both 1O2 and •OH. The •OH and 1O2 cause lipid peroxidation damage to the cell membrane, resulting in the death of the bacteria. These findings highlight that the SA-Cu/g-C3N4 catalyst is a promising photo-Fenton catalyst for the inactivation of ARBs in wastewater.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| | - Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Zhao R, Chen D, Liu H, Tian H, Li R, Huang Y. FePO 4/WB as an efficient heterogeneous Fenton-like catalyst for rapid removal of neonicotinoid insecticides: ROS quantification, mechanistic insights and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135068. [PMID: 39002487 DOI: 10.1016/j.jhazmat.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Iron-based catalysts for peroxymonosulfate (PMS) activation hold considerable potential in water treatment. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, an iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of neonicotinoid insecticides (NEOs). Based on electron paramagnetic resonance (EPR) characterization, scavenging experiments, chemical probe approaches, and quantitative tests, both radicals (HO• and SO4⋅-) and non-radicals (1O2 and Fe(IV)) were produced in the FePO4/WB-PMS system, with relative contributions of 3.02 %, 3.58 %, 6.24 %, and 87.16 % to the degradation of imidacloprid (IMI), respectively. Mechanistic studies revealed that tungsten boride (WB) promoted the reduction of FePO4, and the generated Fe(II) dominantly activated PMS through a two-electron transfer to form Fe(IV), while a minority of Fe(II) engaged in a one-electron transfer with PMS to produce SO4⋅-, HO•, and 1O2. In addition, four degradation pathways of NEOs were proposed by analyzing the byproducts using UPLC-Q-TOF-MS/MS. Besides, seed germination experiments revealed the biotoxicity of NEOs was significantly reduced after degradation via the FePO4/WB-PMS system. Meanwhile, the recycling experiments and continuous flow reactor experiments showed that FePO4/WB exhibited high stability. Overall, this study provided a new perspective on water remediation by Fenton-like reaction. ENVIRONMENTAL IMPLICATION: Neonicotinoids (NEOs) are a type of insecticide used widely around the world. They've been found in many aquatic environments, raising concerns about their possible negative effects on the environment and health. Iron-based catalysts for peroxymonosulfate (PMS) activation hold great promise for water purification. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of NEOs. The excellent stability and reusability provided a great prospect for water remediation.
Collapse
Affiliation(s)
- Rongrong Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Danyi Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
14
|
Liu F, Shen Y, Hou Y, Wu J, Ting Y, Nie C, Tong M. Elimination of representative antibiotic-resistant bacteria, antibiotic resistance genes and ciprofloxacin from water via photoactivation of periodate using FeS 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134982. [PMID: 38917629 DOI: 10.1016/j.jhazmat.2024.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) induced by the release of antibiotics poses great threats to ecological safety and human health. In this study, periodate (PI)/FeS2/simulated sunlight (SSL) system was employed to remove representative ARB, ARGs and antibiotics in water. 1 × 107 CFU mL-1 of gentamycin-resistant Escherichia coli was effectively disinfected below limit of detection in PI/FeS2/SSL system under different water matrix and in real water samples. Sulfadiazine-resistant Pseudomonas and Gram-positive Bacillus subtilis could also be efficiently sterilized. Theoretical calculation showed that (110) facet was the most reactive facet on FeS2 to activate PI for the generation of reactive species (·OH, ·O2-, h+ and Fe(IV)=O) to damage cell membrane and intracellular enzyme defense system. Both intracellular and extracellular ARGs could be degraded and the expression levels of multidrug resistance-related genes were downregulated during the disinfection process. Thus, horizontal gene transfer (HGT) of ARB was inhibited. Moreover, PI/FeS2/SSL system could disinfect ARB in a continuous flow reactor and in an enlarged reactor under natural sunlight irradiation. PI/FeS2/SSL system could also effectively degrade the HGT-promoting antibiotic (ciprofloxacin) via hydroxylation and ring cleavage process. Overall, PI/FeS2/SSL exhibited great promise for the elimination of antibiotic resistance from water.
Collapse
Affiliation(s)
- Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yutao Shen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Jingfeng Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yong Ting
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chenyi Nie
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| |
Collapse
|
15
|
de Oliveira Marques Cavalcanti V, Napoleão DC, Santana ILDS, Santana RMDR, Lucena ALAD, da Motta Sobrinho MA. Production of pyrite-based catalysts supported on graphene oxide and zinc oxide to treat drug mixture via advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55958-55973. [PMID: 39251534 DOI: 10.1007/s11356-024-34931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Advanced oxidation processes (AOP) stood out as an efficient alternative for the treatment of organic contaminants. In this work, there were proposed syntheses of mixed catalysts of pyrite and graphene oxide and pyrite and zinc oxide to treat a mixture of the drugs atenolol and propranolol in aqueous solution through the photo-Fenton process with ultraviolet radiation. The efficiency of the methodologies used in the syntheses was confirmed through different characterization analyses. It was verified that the pyrite and zinc oxide catalyst led to the best contaminant degradation percentages with values equal to 88 and 84% for the groups monitored at the wavelengths (λ) of 217 and 281 nm. The degradation kinetics presented a good fit to the kinetic model proposed by Chan and Chu (2003) with R2 equal to 0.99, indicating a pseudo-first-order degradation profile. Finally, toxicity tests were carried out with two types of seeds, watercress and cabbage, for the solution before and after treatment. The cabbage seeds showed a reduction in germination percentages for the samples after treatments, while no toxicity was observed for watercress ones. This highlights the importance of evaluating the implications caused by products in relation to different organisms representing the biota.
Collapse
Affiliation(s)
| | - Daniella Carla Napoleão
- Chemical Engineering Department, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Dos Economistas, 53, Recife, PE, Brazil.
| | - Ingrid Larissa da Silva Santana
- Chemical Engineering Department, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Dos Economistas, 53, Recife, PE, Brazil
| | - Rayany Magali da Rocha Santana
- Chemical Engineering Department, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Dos Economistas, 53, Recife, PE, Brazil
| | - Alex Leandro Andrade de Lucena
- Chemical Engineering Department, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Dos Economistas, 53, Recife, PE, Brazil
| | - Maurício Alves da Motta Sobrinho
- Chemical Engineering Department, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Dos Economistas, 53, Recife, PE, Brazil
| |
Collapse
|
16
|
Yadav M, Kumar U, Kumar De A, Sinha I. Neutral pH Fenton and photo-Fenton activity of Mo-doped iron-pyrite particles. Phys Chem Chem Phys 2024; 26:22442-22453. [PMID: 39140624 DOI: 10.1039/d4cp00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Low H2O2 utilization efficiency for hydroxyl radical generation, acidic pH, and recyclability are critical limitations of heterogeneous Fenton and photo-Fenton catalysts. The present research shows that the optimum Mo doping of FeS2 particles can largely alleviate these catalysis constraints. A solvothermal protocol was followed to prepare polyvinyl pyrrolidone (PVP) stabilized FeS2 and Mo-doped FeS2 particles. XRD observations showed that Mo doping increases the lattice parameters of FeS2. The band gap of the Mo-doped FeS2 particles decreased to 1.58 eV from the 2.24 eV value exhibited by pure FeS2 particles. Structural and electronic structure DFT calculations support these results. The Fenton and photo-Fenton p-nitrophenol (PNP) degradation at neutral pH on PVP-stabilized Mo-doped FeS2 and FeS2 particles were examined. The photo-Fenton results were substantially better than under Fenton conditions. The best PNP degradation photo-Fenton turnover frequency (TOF) recorded was 254.50 μmol g-1 min-1 on the PVP stabilized 4% Mo-doped FeS2 sample. The Mo-doped FeS2 catalysts were stable under photo-Fenton recycling, and the H2O2 (1.66 mM) required for these reactions was significantly lower than most reports (30-6000 mM). Given the economic importance of the latter in Fenton/photo-Fenton reactions, H2O2 normalized turnover frequency (13.85 and 153.31 mg-1 min-1 L for Fenton and photo-Fenton) values were used to evaluate catalytic activities.
Collapse
Affiliation(s)
- Maheswari Yadav
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Uttam Kumar
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Arup Kumar De
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
- Knowledge Resources & Information Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur-831007, India.
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
17
|
Hu X, Zhang Z, Lu P, Zhou Y, Zhou Y, Bai Y, Yao J. Cyano-deficient g-C 3N 4 for round-the-clock photocatalytic degradation of tetracycline: Mechanism and application prospect evaluation. WATER RESEARCH 2024; 260:121936. [PMID: 38917504 DOI: 10.1016/j.watres.2024.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Without light at night, the system for photocatalytic degradation of refractory organic pollutants in aquatic environments based on free radicals will fall into a dormant state. Hence, a round-the-clock photocatalyst (CCN@SMSED) was prepared by in situ growth of cyanide-deficient g-C3N4 on the surface of Sr2MgSi2O7:Eu2+,Dy3+ through a simple calcination method. The CCN@SMSED exhibits an outstanding oxidative degradation ability for refractory tetracycline (TC) in water under both light and dark conditions, which is attributed to the synergistic effect of free radical (•O2- and •OH) and non-radical (h+ and 1O2). Electrochemical analyses further indicate that direct electron transfer (DET) is also one of the reasons for the efficient degradation of TC. Remarkably, the continuous working time of the round-the-clock photocatalyst in a dark environment was estimated for the first time (about 2.5 h in this system). The degradation pathways of TC mainly include demethylation, ring opening, deamination and dehydration, and the growth of Staphylococcus aureus shows that the process is biosafe. More importantly, CCN@SMSED holds significant promise for practical application due to its low energy consumption and suitability for removing TC from a variety of complex water bodies. This work provides an energy consumption reference for the practical application of round-the-clock photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Xueli Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian Province 350118, China.
| | - Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
18
|
Huang D, Huang H, Wang G, Li R, Xiao R, Du L, Zhou W, Xu W. Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. J Colloid Interface Sci 2024; 668:12-24. [PMID: 38669989 DOI: 10.1016/j.jcis.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
19
|
Wang R, Wang A, Pan Y, Ni J, Deng Y, Tao Z, Liang X, Tang J, Tian X, Zha T, Liu D, Ma J. Construction of an S-scheme electron transfer channel in Cu 0/CuFe 2O 4 magnetic plate column reactor for the LEV degradation: New strategy of visible Photo-Fenton system application. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135173. [PMID: 39003812 DOI: 10.1016/j.jhazmat.2024.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu0/CuFe2O4 (STCCF) utilizes Cu0 to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min-1, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yingjie Deng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhe Tao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xunming Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tiancheng Zha
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
20
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
21
|
Shu X, Qin Z, Nie C, Zhang D, Du H, Zhang Q, Dang Z. Inhibition photooxidation of pyrite under illumination via altering photogenerated carrier migration pathways: Role of DTC-TETA surface passivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171988. [PMID: 38537811 DOI: 10.1016/j.scitotenv.2024.171988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.
Collapse
Affiliation(s)
- Xiaohua Shu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - ZiQi Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Changda Nie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Dinghua Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Haijie Du
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China.
| | - Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
22
|
Li X, Wang H, Li S, Xu Y, Bian Z. Doping and defects in carbon nitride cause efficient in situ H 2O 2 synthesis to allow efficient photocatalytic sterilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172109. [PMID: 38556021 DOI: 10.1016/j.scitotenv.2024.172109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 μM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.
Collapse
Affiliation(s)
- Xinyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shunlin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ye Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Jiang S, Han Y, Sun B, Zeng L, Gong J. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS 2 surface for enhanced electro-Fenton reaction. CHEMOSPHERE 2024; 353:141588. [PMID: 38430939 DOI: 10.1016/j.chemosphere.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.
Collapse
Affiliation(s)
- Shan Jiang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Yunuo Han
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Benjian Sun
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Lingyu Zeng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jianyu Gong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
24
|
Qi F, Peng J, Liang Z, Guo J, Yin J, Song A, Li Z, Liu J, Fang T, Zhang J, Wu L, Zhang Q, Wang T, Du Z, Mao H. Transforming waste brake pads from automobiles into Nano-Catalyst: Synergistic Fe-C-Cu triple sites for efficient fenton-like oxidation of organic pollutants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:225-234. [PMID: 38218093 DOI: 10.1016/j.wasman.2023.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The arbitrary disposal of used brake pads from motor vehicles has resulted in severe heavy metal pollution and resource wastage, highlighting the urgent need to explore the significant untapped potential of these discarded materials. In this study, The in-situ growth of highly dispersed Fe2O3 nanocrystals was achieved by simple oxidation annealing of brake pad debris(BPD). Interestingly, Cu remained unoxidized and acted as a "valence state transformation bridge of Fe2O3" to construct the "triple Fe-C-Cu sites". The Fenton degradation experiment of pollutants was conducted under constant temperature conditions at 40 °C, a stirring rate of 1300 rpm, a pH value of 3, a catalyst dosage of 0.5 g/L, pollutant dosage ranging from 50 to 400 mg/L, and H2O2 dosage of 0.25 g/L. Experimental results showed that BPD treated at 300 °C for 2 h exhibited optimal Fenton-like oxidation activity, achieving rapid degradation of over 90 % of refractory antibiotics, such as tetracycline and ciprofloxacin, in organic wastewater within 10 min. This remarkable performance was mainly attributed to the synergistic effect of "Fe-C-Cu triple sites", where the electron-donating role of C in the Fe-C and Cu-C interfaces facilitated the conversion of the Fe(III) to Fe(II) and Cu(II) to Cu(I). In addition, the ability of Cu2+ to accept electrons at the Fe-Cu interface promoted the transition from Fe (II) to Fe (III). This "balance of electron gain and loss" accelerated the interfacial electron transfer and the recycle of dual Fenton sites, Fe(II)/Fe(III) and Cu(I)/Cu(II), to generate more ·OH from H2O2. Therefore, this strategy of functionalizing BPD as Fenton-like catalysts without the addition of external Fe provides intriguing prospects for understanding the construction of Fe-based Fenton catalysts and resource utilization of Fe-containing solid waste materials.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ainan Song
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongxuan Li
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhuofei Du
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Gao J, Xing X, Cai W, Li Z, Shi G, Chen Y, Liang H, Chen C, Ma K, Chen J, Hu C. Effect of micropollutants on disinfection byproducts and antibiotic resistance genes in drinking water in the process of biological activated carbon treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132304. [PMID: 37748307 DOI: 10.1016/j.jhazmat.2023.132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/27/2023]
Abstract
The biofilm stress response of biological activated carbon (BAC) was investigated under prolonged exposure to sulfadiazine and 2,4-Dichlorophenoxyacetic acid, simulating complex emerging organic contaminants (EOCs) that are mainly involved in the formation of nitrogenous disinfection byproducts (N-DBPs) and antibiotic resistance genes (ARGs). Under trace complex EOCs condition (2 µg/L), N-DBP precursors and abundance of ARGs increased significantly in BAC effluent. The total formation potential of haloacetonitriles (HANs) and halonitromethanes (HNMs) was 751.47 ± 2.98 ng/L, which was much higher than the control group (440.67 ± 13.38 ng/L without EOCs). Similarly, the relative abundance of ARGs was more than twice that in the control group. The complex EOCs induce excessive extracellular polymeric substance secretion (EPS), thereby causing more N-DBP precursors and stronger horizontal gene transfer. Metagenome analysis revealed that functional amino acid and protein biosynthesis genes were overexpressed compared to the control group, causing more EPS to be secreted into the external environment. Complex EOCs promote Cobetia, Clostridium, and Streptomyces dominance, contributing to the production of N-DBP precursors and ARGs. For the first time, in addition to the direct hazards of the EOCs, this study successfully revealed the indirect water quality risks of complex EOCs from the microbial stress response during BAC treatment. Synergistic regulation of EOCs and microorganisms is important for tap water security.
Collapse
Affiliation(s)
- Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Li Y, Liu S, Huang L, Shu S, Yao J, Zhu M, Li Y, Qiu L, Huang L, Fu S. A novel Z-type heterojunction Bi 3O 4Cl/Bi 4O 5I 2 photocatalytic composite with broad-spectrum antibacterial activity and degradation properties. J Colloid Interface Sci 2023; 652:798-812. [PMID: 37619259 DOI: 10.1016/j.jcis.2023.08.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
At present, the sustainable development of humans is facing health problems and ecological imbalance caused by environmental pollution. To solve the bacteria, antibiotics and other pollutants in wastewater, Bi3O4Cl and Bi4O5I2 with appropriate bandgap width were selected to prepare Z-type heterojunction Bi3O4Cl/Bi4O5I2 photocatalytic materials by calcination method. Under LED light, the best sample Bi3O4Cl/Bi4O5I2-4 could completely inactivate Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in 30 min, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) in 20 min, and degrade 70.6% of tetracycline (TC) and 97.4% of Rhodamine B (RhB). Photocurrent and electrochemical impedance tests (EIS) confirmed the high photocurrent response and low charge transfer resistance in the Bi3O4Cl/Bi4O5I2. The photocatalytic antibacterial and degradation mechanism of Z-type Bi3O4Cl/Bi4O5I2 heterojunction was verified by capture experiments. Thus, this study provides a compact and efficient photocatalyst with broad-spectrum antibacterial activity and degradation properties.
Collapse
Affiliation(s)
- Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shuai Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuangxiu Shu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiao Yao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Menghao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanling Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijing Huang
- Institute of Micro-Nano Optoelectronic and Terahertz Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Sibei Fu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
27
|
Wang X, Ren X, Yang J, Zhao Z, Zhang X, Yang F, Zhang Z, Chen P, Li L, Zhang R. Mn-single-atom nano-multizyme enabled NIR-II photoacoustically monitored, photothermally enhanced ROS storm for combined cancer therapy. Biomater Res 2023; 27:125. [PMID: 38049922 PMCID: PMC10694968 DOI: 10.1186/s40824-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
RATIONALE To realize imaging-guided multi-modality cancer therapy with minimal side effects remains highly challenging. METHODS We devised a bioinspired hollow nitrogen-doped carbon sphere anchored with individually dispersed Mn atoms (Mn/N-HCN) via oxidation polymerization with triton micelle as a soft template, followed by carbonization and annealing. Enzyme kinetic analysis and optical properties were performed to evaluate the imaging-guided photothermally synergized nanocatalytic therapy. RESULTS Simultaneously mimicking several natural enzymes, namely peroxidase (POD), catalase (CAT), oxidase (OXD), and glutathione peroxidase (GPx), this nano-multizyme is able to produce highly cytotoxic hydroxyl radical (•OH) and singlet oxygen (1O2) without external energy input through parallel and series catalytic reactions and suppress the upregulated antioxidant (glutathione) in tumor. Furthermore, NIR-II absorbing Mn/N-HCN permits photothermal therapy (PTT), enhancement of CAT activity, and photoacoustic (PA) imaging to monitor the accumulation kinetics of the nanozyme and catalytic process in situ. Both in vitro and in vivo experiments demonstrate that near-infrared-II (NIR-II) PA-imaging guided, photothermally enhanced and synergized nanocatalytic therapy is efficient to induce apoptosis of cancerous cells and eradicate tumor tissue. CONCLUSIONS This study not only demonstrates a new method for effective cancer diagnosis and therapy but also provides new insights into designing multi-functional nanozymes.
Collapse
Affiliation(s)
- Xiaozhe Wang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaofeng Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Zican Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiaoyu Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - Liping Li
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
28
|
Cai L, Yao Q, Du X, Zhong J, Lu H, Tao X, Zhou J, Dang Z, Lu G. Validation of quenching effectiveness and pollutant degradation ability of singlet oxygen through model reaction system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132488. [PMID: 37696208 DOI: 10.1016/j.jhazmat.2023.132488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Quenching method is widely used to assess the contribution of specified reactive species through the probe inhibition efficiency (IE) caused by adding excessive quencher. However, for reactive species with weak ability such as singlet oxygen (1O2), the quenching results are prone to ambiguity. In this study, an 1O2 system using furfuryl alcohol (FFA) as a probe was successfully constructed by methylene-blue-N vis-photosensitization, to discuss the quenching, interference elimination and pollutant degradation ability of 1O2. Inhibition of FFA transformation caused by both quenching and interrupting of 1O2 production was found. The quenching is affected by quencher dosage and ability, which depends on the second-order-rate constant (k). A high k means a strong ability, and less dosage is required to achieve the same IE. Comparison between the calculated ratio of reactive species consumed by quencher and experimental IE helps to judge the interruption of 1O2 production. None of the organic-solvents (methanol, ethanol, iso-propanol, n-butanol, iso-butanol, tert-butanol, tetrahydrofuran, acetonitrile, acetone and chloroform) scavenged 1O2, which would be used as screening-agent for other reactive species (e.g., hydroxyl radicals) that would interrupt 1O2 contribution assessment. Besides, 1O2 was powerless to degrade most selected pollutants. These results encourage proper use of quenchers and better experimental design.
Collapse
Affiliation(s)
- Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayi Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haijian Lu
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Liu Y, Dong W, Jiang X, Xu J, Yang K, Zhu L, Lin D. Efficient Degradation of Intracellular Antibiotic Resistance Genes by Photosensitized Erythrosine-Produced 1O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12105-12116. [PMID: 37531556 DOI: 10.1021/acs.est.3c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant 1O2 under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and 1O2 concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by 1O2. Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high 1O2 yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by 1O2 and provide a new strategy of developing technologies with high 1O2 yield, like ERY photosensitizing, for efficient iARG removal.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xunheng Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
30
|
Li M, Wang P, Zhang K, Zhang H, Bao Y, Li Y, Zhan S, Crittenden JC. Single cobalt atoms anchored on Ti 3C 2T x with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes. Proc Natl Acad Sci U S A 2023; 120:e2305705120. [PMID: 37428922 PMCID: PMC10629531 DOI: 10.1073/pnas.2305705120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
The assimilation of antibiotic resistance genes (ARGs) by pathogenic bacteria poses a severe threat to public health. Here, we reported a dual-reaction-site-modified CoSA/Ti3C2Tx (single cobalt atoms immobilized on Ti3C2Tx MXene) for effectively deactivating extracellular ARGs via peroxymonosulfate (PMS) activation. The enhanced removal of ARGs was attributed to the synergistic effect of adsorption (Ti sites) and degradation (Co-O3 sites). The Ti sites on CoSA/Ti3C2Tx nanosheets bound with PO43- on the phosphate skeletons of ARGs via Ti-O-P coordination interactions, achieving excellent adsorption capacity (10.21 × 1010 copies mg-1) for tetA, and the Co-O3 sites activated PMS into surface-bond hydroxyl radicals (•OHsurface), which can quickly attack the backbones and bases of the adsorbed ARGs, resulting in the efficient in situ degradation of ARGs into inactive small molecular organics and NO3. This dual-reaction-site Fenton-like system exhibited ultrahigh extracellular ARG degradation rate (k > 0.9 min-1) and showed the potential for practical wastewater treatment in a membrane filtration process, which provided insights for extracellular ARG removal via catalysts design.
Collapse
Affiliation(s)
- Mingmei Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Kaida Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Hongxiang Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environmental, Nanchang University, Nanchang, Jiangxi330031, China
| | - Yueping Bao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Yi Li
- Department of Chemistry, Tianjin University, Tianjin300072, China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - John C. Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
31
|
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. WATER RESEARCH 2023; 230:119508. [PMID: 36610181 DOI: 10.1016/j.watres.2022.119508] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
32
|
Miele RG, Carvalho JFD, Almeida JD, Oliveira IHMD, Parise BDF, Moraes JEFD. Photo-Fenton process applied for the treatment of industrial wastewaters containing diclofenac: optimization with low iron ions concentrations and without pH control. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:550-562. [PMID: 37042057 DOI: 10.1080/10934529.2023.2200720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diclofenac (DCF) can cause several adverse effects in the environment and it should be removed from industrial pharmaceutical wastewaters. Advanced oxidation processes (AOPs) are promising methods for the DCF degradation. But, in many cases, AOPs require acidic pH. However, at this condition, DCF precipitates, which may hinder its oxidation. Thus, in this work, some AOP were studied for the DCF degradation, especially the photo-Fenton process, applying the experimental design technique (Doehlert matrix), operating without and with pH control (between 6.5 and 7.0). As independent variables, the initial ferrous ion concentration ([Fe2+]) and the molar addition rate of H2O2 (FH2O2) were evaluated. Empirical models were proposed and optimized conditions were determined without ([Fe2+] = 0.27 mmol L-1 and FH2O2 = 1.64 mmol min-1) and with pH control ([Fe2+] = 1.0 mmol L-1 and FH2O2 = 1.64 mmol L-1), with the following predicted mineralization percentages: 93% and 68%, respectively. So, photo-Fenton process without pH control presented the best performances. Furthermore, at this condition, iron concentration respects the limit value established by the Brazilian environmental legislation. That is, in this condition, additional processes, in order to remove iron ions, would not be necessary, that is very interesting for applications on an industrial scale.
Collapse
Affiliation(s)
- Rafael Gonçalves Miele
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - Joyce Ferreira de Carvalho
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - Juliana de Almeida
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - Isaac Henrique Molina de Oliveira
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - Barbara de França Parise
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - José Ermírio Ferreira de Moraes
- Laboratório de Engenharia e Controle Ambiental (LENCA), Departamento de Engenharia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| |
Collapse
|