1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Ren H, Ninomiya K. Acetate-mediated two-stage microbial production of poly[(R)-3-hydroxybutyrate] (PHB) from CO 2 and H 2 using a synthetic medium free of vitamins and cysteine. J Biosci Bioeng 2025:S1389-1723(25)00084-2. [PMID: 40368746 DOI: 10.1016/j.jbiosc.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
The objective of this study is to use the thermophilic acetogen Thermoanaerobacter kivui and a vitamin- and cysteine-free synthetic medium for an acetate-mediated two-stage microbial production of the biodegradable polymer poly[(R)-3-hydroxybutyrate] (PHB) from CO2 and H2. In the first stage, T. kivui could produce 10 g/L acetate within 14 days during anaerobic chemoautotrophic culture with substrate gas (H2:CO2 = 80:20) using cysteine-free DSMZ 171 medium (originally vitamin-free) in the presence of the pH neutralizer CaCO3. In the second stage, the acetate-containing spent medium obtained from the vitamin- and cysteine-free chemoautotrophic culture of T. kivui could be used for the aerobic culture of Cupriavidus necator for PHB production. Specifically, C. necator consumed all of the 5 g/L acetate in the spent medium of T. kivui for 36 h. The cell concentration of C. necator reached 1.2 g/L after 30 h of culture. The PHB content of C. necator reached 38 % (=0.46 g-PHB/L). The PHB yield was 0.11 g-PHB/g-acetate used. The present study can contribute to a sustainable production of bioplastic PHB from CO2 and H2 without vitamins and amino acids and without the risk of flammability problems caused by combustible gases (mixture of H2, O2, CO2).
Collapse
Affiliation(s)
- Huan Ren
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
3
|
Bai J, Li M, Xing F, Wei X, Liu J. Electrically Driven Biocatalysis for Sustainable CO 2-to-Chemicals Transformation. CHEMSUSCHEM 2025:e2500334. [PMID: 40229208 DOI: 10.1002/cssc.202500334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
The catalytic transformation of CO2 into value-added chemicals has become a critical strategy for mitigating environmental issues and generating economic benefits. Although substantial progress has been made in renewable electricity-driven CO2 conversion into C1/C2 products, the efficient synthesis of high-value, and long-chain compounds remains a significant challenge. Biosynthesis offers a feasible route for producing long-chain value-added products at mild conditions. Consequently, the integration of electrocatalysis with bioconversion has emerged as a promising approach for sustainable CO2 conversion. This short review outlines recent advances in the sustainable synthesis of long-chain compounds from CO2 via electrically driven biocatalysis, highlighting innovative coupling strategies that combine electrochemical and biochemical processes. Furthermore, the remaining challenges and prospects are tentatively discussed for further advancing CO2-based sustainable synthesis.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Mingchang Li
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- College of Materials Science and Engineering, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Fangshu Xing
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xinfa Wei
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
4
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
6
|
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol 2024; 42:1035-1047. [PMID: 38431514 PMCID: PMC11310912 DOI: 10.1016/j.tibtech.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
7
|
Wang Y, Yu S, Zheng X, Wu X, Pu Y, Wu G, Chu N, He X, Li D, Jianxiong Zeng R, Jiang Y. Delineating cathodic extracellular electron transfer pathways in microbial electrosynthesis: Modulation of polarized potential and Pt@C addition. BIORESOURCE TECHNOLOGY 2024; 402:130754. [PMID: 38685518 DOI: 10.1016/j.biortech.2024.130754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Microbial electrosynthesis (MES) is an innovative technology that employs microbes to synthesize chemicals by reducing CO2. A comprehensive understanding of cathodic extracellular electron transfer (CEET) is essential for the advancement of this technology. This study explores the impact of different cathodic potentials on CEET and its response to introduction of hydrogen evolution materials (Pt@C). Without the addition of Pt@C, H2-mediated CEET contributed up to 94.4 % at -1.05 V. With the addition of Pt@C, H2-mediated CEET contributions were 76.6 % (-1.05 V) and 19.9 % (-0.85 V), respectively. BRH-c20a was enriched as the dominated microbe (>80 %), and its relative abundance was largely affected by the addition of Pt@C NPs. This study highlights the tunability of MES performance through cathodic potential control and the addition of metal nanoparticles.
Collapse
Affiliation(s)
- Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyang Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Zheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaobing Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Pu Y, Wang Y, Wu G, Wu X, Lu Y, Yu Y, Chu N, He X, Li D, Zeng RJ, Jiang Y. Tandem Acidic CO 2 Electrolysis Coupled with Syngas Fermentation: A Two-Stage Process for Producing Medium-Chain Fatty Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7445-7456. [PMID: 38622030 DOI: 10.1021/acs.est.3c09291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The tandem application of CO2 electrolysis with syngas fermentation holds promise for achieving heightened production rates and improved product quality. However, the significant impact of syngas composition on mixed culture-based microbial chain elongation remains unclear. Additionally, effective methods for generating syngas with an adjustable composition from acidic CO2 electrolysis are currently lacking. This study successfully demonstrated the production of medium-chain fatty acids from CO2 through tandem acidic electrolysis with syngas fermentation. CO could serve as the sole energy source or as the electron donor (when cofed with acetate) for caproate generation. Furthermore, the results of gas diffusion electrode structure engineering highlighted that the use of carbon black, either alone or in combination with graphite, enabled consistent syngas generation with an adjustable composition from acidic CO2 electrolysis (pH 1). The carbon black layer significantly improved the CO selectivity, increasing from 0% to 43.5% (0.05 M K+) and further to 92.4% (0.5 M K+). This enhancement in performance was attributed to the promotion of K+ accumulation, stabilizing catalytically active sites, rather than creating a localized alkaline environment for CO2-to-CO conversion. This research contributes to the advancement of hybrid technology for sustainable CO2 reduction and chemical production.
Collapse
Affiliation(s)
- Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaobing Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilin Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yangyang Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Sandfeld T, Grøn LV, Munoz L, Meyer RL, Koren K, Philips J. Considerations on the use of microsensors to profile dissolved H2 concentrations in microbial electrochemical reactors. PLoS One 2024; 19:e0293734. [PMID: 38241241 PMCID: PMC10798470 DOI: 10.1371/journal.pone.0293734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 01/21/2024] Open
Abstract
Measuring the distribution and dynamics of H2 in microbial electrochemical reactors is valuable to gain insights into the processes behind novel bioelectrochemical technologies, such as microbial electrosynthesis. Here, a microsensor method to measure and profile dissolved H2 concentrations in standard H-cell reactors is described. Graphite cathodes were oriented horizontally to enable the use of a motorized microprofiling system and a stereomicroscope was used to place the H2 microsensor precisely on the cathode surface. Profiling was performed towards the gas-liquid interface, while preserving the electric connections and flushing the headspace (to maintain anoxic conditions) and under strict temperature control (to overcome the temperature sensitivity of the microsensors). This method was tested by profiling six reactors, with and without inoculation of the acetogen Sporomusa ovata, at three different time points. H2 accumulated over time in the abiotic controls, while S. ovata maintained low H2 concentrations throughout the liquid phase (< 4 μM) during the whole experimental period. These results demonstrate that this setup generated insightful H2 profiles. However, various limitations of this microsensor method were identified, as headspace flushing lowered the dissolved H2 concentrations over time. Moreover, microsensors can likely not accurately measure H2 in the immediate vicinity of the solid cathode, because the solids cathode surface obstructs H2 diffusion into the microsensor. Finally, the reactors had to be discarded after microsensor profiling. Interested users should bear these considerations in mind when applying microsensors to characterize microbial electrochemical reactors.
Collapse
Affiliation(s)
| | - Louise Vinther Grøn
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Munoz
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Klaus Koren
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jo Philips
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Kimura ZI, Kuriyama H, Iwasaki Y. Exploring Acetogenesis in Firmicutes: From Phylogenetic Analysis to Solid Medium Cultivation with Solid-Phase Electrochemical Isolation Equipments. Microorganisms 2023; 11:2976. [PMID: 38138120 PMCID: PMC10746088 DOI: 10.3390/microorganisms11122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This study introduces a groundbreaking approach for the exploration and utilization of electrotrophic acetogens, essential for advancing microbial electrosynthesis systems (MES). Our initial focus was the development of Solid-Phase Electrochemical Isolation Equipment (SPECIEs), a novel cultivation method for isolating electrotrophic acetogens directly from environmental samples on a solid medium. SPECIEs uses electrotrophy as a selection pressure, successfully overcoming the traditional cultivation method limitations and enabling the cultivation of diverse microbial communities with enhanced specificity towards acetogens. Following the establishment of SPECIEs, we conducted a genome-based phylogenetic analysis using the Genome Taxonomy Database (GTDB) to identify potential electrotrophic acetogens within the Firmicutes phylum and its related lineages. Subsequently, we validated the electrotrophic capabilities of selected strains under electrode-oxidizing conditions in a liquid medium. This sequential approach, integrating innovative cultivation techniques with detailed phylogenetic analysis, paves the way for further advances in microbial cultivation and the identification of new biocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zen-ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, 2-2-11 Aga-minami, Kure, Hiroshima 737-8506, Japan; (H.K.); (Y.I.)
| | | | | |
Collapse
|
11
|
Li S, Zhang H, Zhang H, Li S, Xing F, Chen T, Duan L. Impact analysis of operating conditions on carbon dioxide reduction in microbial electrosynthesis: Insight into the substance utilization and microbial response. BIORESOURCE TECHNOLOGY 2023; 390:129879. [PMID: 37866769 DOI: 10.1016/j.biortech.2023.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Microbial electrosynthesis (MES) is facing a series of problems including low energy utilization and production efficiency of high value-added products, which seriously hinder its practical application. In this study, a more practical direct current power source was used and the anaerobic activated sludge from wastewater treatment plants was inoculated to construct the acetic acid-producing MES. The operating conditions of acetic acid production were further optimized and the specific mechanisms involving the substance utilization and microbial response were revealed. The optimum conditions were the potential of 3.0 V and pH 6.0. Under these conditions, highly electroactive biofilms formed and all kinds of substances were effectively utilized. In addition, dominant bacteria (Acetobacterium, Desulfovibrio, Sulfuricurvum, Sulfurospirillum, and Fusibacter) had high abundances. Under optimal conditions, acetic acid-forming characteristic genera (Acetobacterium) had the highest relative abundance (Biocathode-25.82 % and Suspension-17.24 %). This study provided references for the optimal operating conditions of MES and revealed the corresponding mechanisms.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Haiya Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Siqi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianyi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
12
|
Xie Y, Erşan S, Guan X, Wang J, Sha J, Xu S, Wohlschlegel JA, Park JO, Liu C. Unexpected metabolic rewiring of CO 2 fixation in H 2-mediated materials-biology hybrids. Proc Natl Acad Sci U S A 2023; 120:e2308373120. [PMID: 37816063 PMCID: PMC10589654 DOI: 10.1073/pnas.2308373120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
A hybrid approach combining water-splitting electrochemistry and H2-oxidizing, CO2-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H2-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H2-oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H2-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jingyu Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Shuangning Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | | | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
13
|
Lehmann M, Prohaska C, Zeldes B, Poehlein A, Daniel R, Basen M. Adaptive laboratory evolution of a thermophile toward a reduced growth temperature optimum. Front Microbiol 2023; 14:1265216. [PMID: 37901835 PMCID: PMC10601643 DOI: 10.3389/fmicb.2023.1265216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Thermophily is an ancient trait among microorganisms. The molecular principles to sustain high temperatures, however, are often described as adaptations, somewhat implying that they evolved from a non-thermophilic background and that thermophiles, i.e., organisms with growth temperature optima (TOPT) above 45°C, evolved from mesophilic organisms (TOPT 25-45°C). On the contrary, it has also been argued that LUCA, the last universal common ancestor of Bacteria and Archaea, may have been a thermophile, and mesophily is the derived trait. In this study, we took an experimental approach toward the evolution of a mesophile from a thermophile. We selected the acetogenic bacterium T. kivui (TOPT 66°C) since acetogenesis is considered ancient physiology and cultivated it at suboptimal low temperatures. We found that the lowest possible growth temperature (TMIN) under the chosen conditions was 39°C. The bacterium was subsequently subjected to adaptive laboratory evolution (ALE) by serial transfer at 45°C. Interestingly, after 67 transfers (approximately 180 generations), the adapted strain Adpt45_67 did not grow better at 45°C, but a shift in the TOPT to 60°C was observed. Growth at 45°C was accompanied by a change in the morphology as shorter, thicker cells were observed that partially occurred in chains. While the proportion of short-chain fatty acids increased at 50°C vs. 66°C in both strains, Adpt45_67 also showed a significantly increased proportion of plasmalogens. The genome analysis revealed 67 SNPs compared to the type strain, among these mutations in transcriptional regulators and in the cAMP binding protein. Ultimately, the molecular basis of the adaptation of T. kivui to a lower TOPT remains to be elucidated. The observed change in phenotype is the first experimental step toward the evolution of thermophiles growing at colder temperatures and toward a better understanding of the cold adaptation of thermophiles on early Earth.
Collapse
Affiliation(s)
- Maria Lehmann
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Christoph Prohaska
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Benjamin Zeldes
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Mirko Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Gizewski J, V D Sande L, Holtmann D. Contribution of electrobiotechnology to sustainable development goals. Trends Biotechnol 2023; 41:1106-1108. [PMID: 36959083 DOI: 10.1016/j.tibtech.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The UN Sustainable Development Goals (SDGs) are 17 interlinked goals designed to be a 'shared blueprint for peace and prosperity for people and the planet, now and into the future'. Therefore, global efforts should focus on achieving these. Herein, we discuss the contribution of electrobiotechnology to the realization of the SDGs.
Collapse
Affiliation(s)
- Jakub Gizewski
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Lisa V D Sande
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany.
| |
Collapse
|
15
|
Biel-Nielsen TL, Hatton TA, Villadsen SNB, Jakobsen JS, Bonde JL, Spormann AM, Fosbøl PL. Electrochemistry-Based CO 2 Removal Technologies. CHEMSUSCHEM 2023; 16:e202202345. [PMID: 36861656 DOI: 10.1002/cssc.202202345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Indexed: 06/10/2023]
Abstract
Unprecedented increase in atmospheric CO2 levels calls for efficient, sustainable, and cost-effective technologies for CO2 removal, including both capture and conversion approaches. Current CO2 abatement is largely based on energy-intensive thermal processes with a high degree of inflexibility. In this Perspective, it is argued that future CO2 technologies will follow the general societal trend towards electrified systems. This transition is largely promoted by decreasing electricity prices, continuous expansion of renewable energy infrastructure, and breakthroughs in carbon electrotechnologies, such as electrochemically modulated amine regeneration, redox-active quinones and other species, and microbial electrosynthesis. In addition, new initiatives make electrochemical carbon capture an integrated part of Power-to-X applications, for example, by linking it to H2 production. Selected electrochemical technologies crucial for a future sustainable society are reviewed. However, significant further development of these technologies within the next decade is needed, to meet the ambitious climate goals.
Collapse
Affiliation(s)
- Tessa Lund Biel-Nielsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
| | - Sebastian N B Villadsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| | | | - Jacob L Bonde
- ESTECH A/S, Sverigesvej 13, DK-5700, Svendborg, Denmark
| | - Alfred M Spormann
- Departments of Chemical Engineering and of Civil and Environmental Engineering, Stanford University, 94305, Stanford, California, USA
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Gustav Wieds Vej 10C, Building 3135, 214, DK-8000, Aarhus, Denmark
| | - Philip L Fosbøl
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Boto ST, Bardl B, Harnisch F, Rosenbaum MA. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:4375-4386. [PMID: 37288452 PMCID: PMC10243432 DOI: 10.1039/d3gc00471f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.
Collapse
Affiliation(s)
- Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| | - Bettina Bardl
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
| | - Falk Harnisch
- UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| |
Collapse
|