1
|
Park C, Jang J, Jang J. Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6502-6511. [PMID: 40159124 DOI: 10.1021/acs.est.4c14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The measurement of respiratory viruses in indoor air is critical for effectively preventing the spread of diseases. This is typically accomplished by counting the nucleic acids or plaques of air-sampled viruses. Herein, we present a growth-based airborne virus surveillance (G-AVS) platform based on paper-based electrochemical immunosensors for targeting hemagglutinin (HA) and nucleoprotein (NP), and water-condensation air sampling for the quantitative measurement of airborne influenza viruses. The measurements, compared with RT-qPCR, demonstrated consistency between the two. In the measurements of airborne influenza viruses conducted in an elementary school using G-AVS, 23% (4/17) of indoor air samples were positive, with concentrations ranging from 1.7 × 104 to 1.6 × 106 gene copies/m3, while losses in the HA relative to NP were 48-75% at a relative humidity of 27.0-36.8% and 60 min air sampling, similar to infectivities reported in the literature. This platform has the potential for rapid and cost-effective airborne virus measurement.
Collapse
Affiliation(s)
- Chanhwi Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junbeom Jang
- Department of Mechanical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Mechanical Engineering, UNIST, Ulsan 44919, Republic of Korea
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Ong HH, Wong Y, Khanolkar J, Paine B, Wood D, Liu J, Thong M, Chow VT, Wang DY. Inhibitory Activity of Hydroxypropyl Methylcellulose on Rhinovirus and Influenza A Virus Infection of Human Nasal Epithelial Cells. Viruses 2025; 17:376. [PMID: 40143304 PMCID: PMC11946253 DOI: 10.3390/v17030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
The nasal epithelium is the primary site for entry of respiratory viruses. In comparison to oral administration, nasal drug applications directed locally to the site of infection can serve as early interventional barriers against respiratory virus pathogenesis by limiting viral spread in the upper airway. Experiments on the diffusion of methylene blue and nanoparticles in both water and low pH conditions revealed that hydroxypropyl methylcellulose (HPMC) can act as an effective physical barrier. This study also evaluated the activity of HPMC as a barrier against common respiratory viruses, i.e., rhinovirus (RV) and influenza A virus (IAV) using the in vitro human nasal epithelial cell (hNEC) model. Utilizing the hNEC infection model, we assessed the protective effects of HPMC in pH 3.5 and pH 7 buffers against RV and IAV. Acidic and pH-neutral buffers and HPMC dissolved in acidic and pH-neutral buffers were administered for 4 h prior to virus infection and at 4 h post-infection (hpi). The apical supernatant was harvested at 24 hpi to determine the viral loads of RV and IAV (H1N1 and H3N2). HPMC was demonstrated to exert protective effects in the infected hNECs independent of acidic pH. Pre-treatment with HPMC in acidic buffer significantly diminished viral loads for both RV and IAV infections of hNECs. Similarly, direct treatment of HPMC in acidic buffer after infection (4 hpi) also effectively decreased viral loads of both RV and IAV. Moreover, treatment using HPMC in acidic buffer before or after infection did not affect the epithelial integrity and ciliary function of hNECs. This study demonstrates the protective effects of HPMC in acidic buffer against RV and IAV infections of the human nasal epithelium.
Collapse
Affiliation(s)
- Hsiao-Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (H.-H.O.); (J.L.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - YongChiat Wong
- Personal Health Care, Procter & Gamble International Operations SA Singapore Branch, Singapore 138547, Singapore;
| | - Jayant Khanolkar
- Personal Health Care, Procter & Gamble UK, Reading RG2 0RX, UK; (J.K.); (B.P.); (D.W.)
| | - Belinda Paine
- Personal Health Care, Procter & Gamble UK, Reading RG2 0RX, UK; (J.K.); (B.P.); (D.W.)
| | - Daniel Wood
- Personal Health Care, Procter & Gamble UK, Reading RG2 0RX, UK; (J.K.); (B.P.); (D.W.)
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (H.-H.O.); (J.L.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Mark Thong
- Department of Otolaryngology-Head & Neck Surgery, National University Health System, Singapore 119228, Singapore;
| | - Vincent T. Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (H.-H.O.); (J.L.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| |
Collapse
|
3
|
Pan J, Duggal NK, Lakdawala SS, Rockey NC, Marr LC. Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2192-2200. [PMID: 39823314 DOI: 10.1021/acs.est.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.1% and 0.5% mucin in phosphate-buffered saline (PBS) over 4 h at 20%, 50%, and 80% RH, with a maximum decay of 1.2 log10/mL. In contrast, in pure PBS droplets, the virus decayed by at least 2.6 log10/mL after 4 h at 50% and 80% RH. Mucin's protective effect was independent of its concentration, except at 80% RH after 4 h. Confocal microscopy of the particles revealed that at 20% and 50% RH, mucin led to thicker coffee rings and dendritic patterns where virions colocalized with mucin. At 80% RH, no morphological difference was observed between PBS-only and mucin-containing droplets, but virions still colocalized with mucin in the center of droplets with 0.5% mucin. Analysis by digital droplet PCR showed that mucin helped maintain virus integrity. To our knowledge, this is the first study to localize influenza virus in model respiratory droplets. The results suggest that mucin's colocalization with virions in droplets may protect the virus from environmental stressors, enhancing its stability.
Collapse
Affiliation(s)
- Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Fang Z, Dong S, Huang C, Jia S, Wang F, Liu H, Meng H, Luo L, Chen Y, Zhang H, Li R, Zhu Y, Tang M. On using an aerosol thermodynamic model to calculate aerosol acidity of coarse particles. J Environ Sci (China) 2025; 148:46-56. [PMID: 39095180 DOI: 10.1016/j.jes.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/04/2024]
Abstract
Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.
Collapse
Affiliation(s)
- Zhengyang Fang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuwei Dong
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shiguo Jia
- School of Atmospheric Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China.
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Haoming Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - He Meng
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yizhu Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Song X, Wu D, Su Y, Li Y, Li Q. Review of health effects driven by aerosol acidity: Occurrence and implications for air pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176839. [PMID: 39414033 DOI: 10.1016/j.scitotenv.2024.176839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Acidity, generally expressed as pH, plays a crucial role in atmospheric processes and ecosystem evolution. Atmospheric acidic aerosol, triggering severe air pollution in the industrialization process (e.g., London Great Smoke in 1952), has detrimental effects on human health. Despite global endeavors to mitigate air pollution, the variation of aerosol acidity remains unclear and further restricts the knowledge of the acidity-driven toxicity of fine particles (PM2.5) in the atmosphere. Here, we summarize the toxicological effects and mechanisms of inhalable acidic aerosol and its response to air pollution control. The acidity could adjust toxic components (e.g., metals, quinones, and organic peroxides) bonded in aerosol and synergize with oxidant gaseous pollutants (e.g., O3 and NO2) in epithelial lining fluid to induce oxidative stress and inflammation. The inhaled aerosol from the ambient air with higher acidity might elevate airway responsiveness and cause worse pulmonary dysfunction. Furthermore, historical observation data and model simulation indicate that PM2.5 can retain its acidic property despite considerable reductions in acidifying gaseous pollutants (e.g., SO2 and NOx) from anthropogenic emissions, suggesting its continuing adverse impacts on human health. The study highlights that aerosol acidity could partially offset the health benefits of emission reduction, indicating that acidity-related health effects should be considered for future air pollution control policies.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yi Su
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yang Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Dos Santos Silva JC, Potgieter-Vermaak S, Medeiros SHW, da Silva LV, Ferreira DV, Godoi AFL, Yamamoto CI, Godoi RHM. A fingerprint of source-specific health risk of PM 2.5-bound components over a coastal industrial city. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136369. [PMID: 39522203 DOI: 10.1016/j.jhazmat.2024.136369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The influence of specific local land-use activities (continuously redistributing elements across environments) and environmental conditions (altering the chemical composition of airborne particulate matter) on the intrinsic health risk of PM2.5 exposure is sparsely reported. To fill this gap, we employed a novel integrated approach to address the influence of short-term changes in source-specific PM2.5 composition on the exposure-response risk, while controlling for weather conditions. We combine receptor-based source apportionment with conditional logistic regression in a space-time-stratified case-crossover design. This approach is different from previous studies as it: i) controls the impact of spatiotemporal variations in air pollution and human mobility using multilocation-specific fixed and disjointed space-time strata ii) addresses the spatial heterogeneity of personal exposure separating its variable effect from other predictors by allowing different baseline hazards for each space-time stratum; iii) aligns case/control periods with strong/regular episodes of source-specific PM-multipollutant fingerprint contributions rather than health outcomes. This enabled comprehensive examination of the association between source-specific PM2.5-bound species and cardiorespiratory disease hospitalizations. The epidemiological findings were that primary anthropogenic emissions [industrial (ORs 2.5 - 4.8)] were associated with higher 1-day moving average PM-induced risks. Natural-related sources [fresh / aged sea salt aerosol, dust, soil resuspension] and secondary sulfate formation were consistently associated with higher health risks (ORs 1.0 - 1.54) after 1 to 5-days since exposure. The results emphasize the importance of source-specific air quality management in complex areas and our research provides an adaptable universal tool to support targeted place-based policy interventions to mitigate air pollution impacts on health.
Collapse
Affiliation(s)
| | - Sanja Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandra Helena Westrupp Medeiros
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Luiz Vitor da Silva
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Danielli Ventura Ferreira
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | | | - Carlos Itsuo Yamamoto
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Henrique Moreton Godoi
- Postgraduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Schaub A, Luo B, David SC, Glas I, Klein LK, Costa L, Terrettaz C, Bluvshtein N, Motos G, Violaki K, Pohl MO, Hugentobler W, Nenes A, Stertz S, Krieger UK, Peter T, Kohn T. Salt Supersaturation as an Accelerator of Influenza A Virus Inactivation in 1 μL Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18856-18869. [PMID: 39392017 DOI: 10.1021/acs.est.4c04734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Influenza A virus (IAV) spreads through exhaled aerosol particles and larger droplets. Estimating the stability of IAV is challenging and depends on factors such as the respiratory matrix and drying kinetics. Here, we combine kinetic experiments on millimeter-sized saline droplets with a biophysical aerosol model to quantify the impact of NaCl on IAV stability. We show that IAV inactivation is determined by NaCl concentration, which increases during water evaporation and then decreases again when efflorescence occurs. When drying in air with relative humidity RH = 30%, inactivation follows an inverted sigmoidal curve, with inactivation occurring most rapidly when the NaCl concentration exceeds 20 mol/(kg H2O) immediately prior to efflorescence. Efflorescence reduces the NaCl molality to saturated conditions, resulting in a significantly reduced inactivation rate. We demonstrate that the inactivation rate k depends exponentially on NaCl molality, and after the solution reaches equilibrium, the inactivation proceeds at a first-order rate. Introducing sucrose, an organic cosolute, attenuates IAV inactivation via two mechanisms: first by decreasing the NaCl molality during the drying phase and second by a protective effect against the NaCl-induced inactivation. For both pure saline and sucrose-containing droplets, our biophysical model ResAM accurately simulates the inactivation when NaCl molality is used as the only inactivating factor. This study highlights the role of NaCl molality in IAV inactivation and provides a mechanistic basis for the observed inactivation rates.
Collapse
Affiliation(s)
- Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Liviana K Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Laura Costa
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Motos G, Schaub A, David SC, Costa L, Terrettaz C, Kaltsonoudis C, Glas I, Klein LK, Bluvshtein N, Luo B, Violaki K, Pohl MO, Hugentobler W, Krieger UK, Pandis SN, Stertz S, Peter T, Kohn T, Nenes A. Dependence of aerosol-borne influenza A virus infectivity on relative humidity and aerosol composition. Front Microbiol 2024; 15:1484992. [PMID: 39479211 PMCID: PMC11521868 DOI: 10.3389/fmicb.2024.1484992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
We describe a novel biosafety aerosol chamber equipped with state-of-the-art instrumentation for bubble-bursting aerosol generation, size distribution measurement, and condensation-growth collection to minimize sampling artifacts when measuring virus infectivity in aerosol particles. Using this facility, we investigated the effect of relative humidity (RH) in very clean air without trace gases (except ∼400 ppm CO2) on the preservation of influenza A virus (IAV) infectivity in saline aerosol particles. We characterized infectivity in terms of 99%-inactivation time, t 99, a metric we consider most relevant to airborne virus transmission. The viruses remained infectious for a long time, namely t 99 > 5 h, if RH < 30% and the particles effloresced. Under intermediate conditions of humidity (40% < RH < 70%), the loss of infectivity was the most rapid (t 99 ≈ 15-20 min, and up to t 99 ≈ 35 min at 95% RH). This is more than an order of magnitude faster than suggested by many previous studies of aerosol-borne IAV, possibly due to the use of matrices containing organic molecules, such as proteins, with protective effects for the virus. We tested this hypothesis by adding sucrose to our aerosolization medium and, indeed, observed protection of IAV at intermediate RH (55%). Interestingly, the t 99 of our measurements are also systematically lower than those in 1-μL droplet measurements of organic-free saline solutions, which cannot be explained by particle size effects alone.
Collapse
Affiliation(s)
- Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Costa
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christos Kaltsonoudis
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Spyros N. Pandis
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
- Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
10
|
Schaub A, David SC, Glas I, Klein LK, Violaki K, Terrettaz C, Motos G, Bluvshtein N, Luo B, Pohl M, Hugentobler W, Nenes A, Krieger UK, Peter T, Stertz S, Kohn T. Impact of organic compounds on the stability of influenza A virus in deposited 1-μL droplets. mSphere 2024; 9:e0041424. [PMID: 39171937 PMCID: PMC11423574 DOI: 10.1128/msphere.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
The composition of respiratory fluids influences the stability of viruses in exhaled aerosol particles and droplets, though the role of respiratory organics in modulating virus stability remains poorly understood. This study investigates the effect of organic compounds on the stability of influenza A virus (IAV) in deposited droplets. We compare the infectivity loss of IAV at different relative humidities (RHs) over the course of 1 h in 1-µL droplets consisting of phosphate-buffered saline (without organics), synthetic lung fluid, or nasal mucus (both containing organics). We show that IAV stability increases with increasing organic:salt ratios. Among the various organic species, proteins are identified as the most protective component, with smaller proteins stabilizing IAV more efficiently at the same mass concentration. Organics act by both increasing the efflorescence RH and shortening the drying period until efflorescence at a given RH. This research advances our mechanistic understanding of how organics stabilize exhaled viruses and thus influence their inactivation in respiratory droplets. IMPORTANCE This study investigates how the composition of respiratory fluids affects the stability of viruses in exhaled droplets. Understanding virus stability in droplets is important as it impacts how viruses spread and how we can combat them. We focus on influenza A virus (IAV) and investigate how different organic compounds found in lung fluid and nasal mucus protect the virus from inactivation. We demonstrate that the ratio of organics to salt in the fluid is an indicator of IAV stability. Among organics, small proteins are particularly effective at protecting IAV. Their effect is in part explained by the proteins' influence on the crystallization of salts in the droplets, thereby shielding the viruses from prolonged exposure to harmful salt concentrations. Understanding these mechanisms helps us grasp how viruses sustain their infectivity over time in respiratory droplets, contributing to efforts in controlling infectious diseases.
Collapse
Affiliation(s)
- Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Liviana K Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Ma Z, Dwivedi AK, Clack HL. Effects of chemically-reductive trace gas contaminants on non-thermal plasma inactivation of an airborne virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173447. [PMID: 38788942 DOI: 10.1016/j.scitotenv.2024.173447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Transmission of airborne infectious diseases poses great risk for public health and socio-economic stability, thus, there is a need for an effective control method targeting the spread and transmission of pathogenic aerosols. The existence of chemically-reductive trace air contaminants in animal agriculture may affect the oxidation inactivation process of pathogens. In this study, we report how the presence of such gasses impacts the effectiveness of using non-thermal plasma (NTP) within a packed-bed dielectric barrier discharge reactor to inactivate MS2 bacteriophage. Inactivation of the aerosolized bacteriophage is determined by the combination of viability and polymerase chain reaction assays. Using a plasma power source with a voltage of 20 kV and frequency of 350 Hz, after differentiating and excluding the physical removal effects of viral aerosols potentially caused by plasma, the baseline inactivation of MS2 aerosol in air has been determined based on an overall air flow rate of 200 Liters per minute and plasma discharge power of 1.8 W. When either ammonia or hydrogen sulfide gas is introduced into the airstream at a concentration of 1 part per million, the NTP virus inactivation efficiency is reduced to around 0.5-log from the 1-log baseline inactivation in air alone. Higher concentrations of those gasses will not further inhibit the effectiveness of plasma inactivation.
Collapse
Affiliation(s)
- Zhenyu Ma
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Anubhav Kumar Dwivedi
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Herek L Clack
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
David SC, Schaub A, Terrettaz C, Motos G, Costa LJ, Nolan DS, Augugliaro M, Wynn HK, Glas I, Pohl MO, Klein LK, Luo B, Bluvshtein N, Violaki K, Hugentobler W, Krieger UK, Peter T, Stertz S, Nenes A, Kohn T. Stability of influenza A virus in droplets and aerosols is heightened by the presence of commensal respiratory bacteria. J Virol 2024; 98:e0040924. [PMID: 38869284 PMCID: PMC11264603 DOI: 10.1128/jvi.00409-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.
Collapse
Affiliation(s)
- Shannon C. David
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura J. Costa
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel S. Nolan
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Augugliaro
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Htet Kyi Wynn
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
14
|
Aganovic A, Kurnitski J, Wargocki P. A quanta-independent approach for the assessment of strategies to reduce the risk of airborne infection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172278. [PMID: 38583631 DOI: 10.1016/j.scitotenv.2024.172278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Jarek Kurnitski
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia; Department of Civil Engineering, Aalto university, Espoo, Finland
| | - Pawel Wargocki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
15
|
Tian J, Alexander RW, Hardy DA, Hilditch TG, Oswin HP, Haddrell AE, Reid JP. The microphysics of surrogates of exhaled aerosols from the upper respiratory tract. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:461-474. [PMID: 40236828 PMCID: PMC7617586 DOI: 10.1080/02786826.2023.2299214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 04/17/2025]
Abstract
Airborne transmission plays a significant role in the transmission of respiratory diseases such as COVID-19, for which the respiratory aerosol droplets are responsible for the transportation of potentially infectious pathogens. However, the aerosol physicochemical dynamics during the exhalation process are not well understood. The representativeness of respiratory droplet surrogates of exhaled aerosol and suspension media for aerosols currently used for laboratory studies remains debated. Here, we compare the evaporation kinetics and equilibrium thermodynamics of surrogate respiratory aerosol droplets including sodium chloride, artificial saliva (AS) and Dulbecco's modified Eagle's medium (DMEM) by using the Comparative Kinetics Electrodynamic Balance. The potential influences of droplet composition on aerosol hygroscopic response and phase behavior, and the influence of mucin are reported. The equilibrium hygroscopicity measurement was used to verify and benchmark the prediction of evaporation kinetics of complex solutions using the Single Aerosol Particle Drying Kinetics and Trajectory model. We show that the compositionally complex culture media which differs from sodium chloride and artificial saliva (mucin-free solutions). The DMEM evaporation dynamics contained three distinctive phases when drying at a range of humidities, including a semi-dissolved phase when evaporating at the environmental humidity range. The effect of mucin on droplet evaporation and phase behavior at low RH were compared between AS and DMEM solutions. In both cases, mucin delayed the crystallization time of the droplets, but it promoted phase change (from homogenous to semi-dissolved/spherical with inclusions) to occur at higher water activities.
Collapse
Affiliation(s)
- Jianghan Tian
- School of Chemistry, University of Bristol, Bristol, UK
| | - Robert W. Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | - Henry P. Oswin
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
16
|
Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health 2024; 256:114313. [PMID: 38154254 DOI: 10.1016/j.ijheh.2023.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Recent epidemiological and experimental findings reconfirm that low indoor air humidity (dry air) increases the prevalence of acute eye and airway symptoms in offices, result in lower mucociliary clearance in the airways, less efficient immune defense, and deteriorate the work productivity. New epidemiological and experimental research also support that the environmental conditions for the risk of infection of influenza and COVID-19 virus is lowest in the Goldilocks zone of 40-60% relative humidity (RH) by decrease of the airways' susceptibility, which can be elevated by particle exposure. Furthermore, low RH increases the generation of infectious virus laden aerosols exhaled from infected people. In general, elevation of the indoor air humidity from dry air increases the health of the airways concomitantly with lower viability of infectious virus. Thus, the negative effects of ventilation with dry outdoor air (low absolute air humidity) should be assessed according to 1) weakened health and functionality of the airways, 2) increased viability and possible increased transmissibility of infectious virus, and 3) evaporation of virus containing droplets to dry out to droplet nuclei (also possible at high room temperature), which increases their floating time in the indoor air. The removal of acid-containing ambient aerosols from the indoor air by filtration increases pH, viability of infectious viruses, and the risk of infection, which synergistically may further increase by particle exposure. Thus, the dilution of indoor air pollutants and virus aerosols by dry outdoor air ventilation should be assessed and compared with the beneficial health effects by control of the center zone of 40-60% RH, an essential factor for optimal functionality of the airways, and with the additional positive impact on acute symptoms, work productivity, and reduced risk of infection.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Denmark.
| |
Collapse
|
17
|
Groth R, Niazi S, Oswin HP, Haddrell AE, Spann K, Morawska L, Ristovski Z. Toward Standardized Aerovirology: A Critical Review of Existing Results and Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3595-3608. [PMID: 38355395 DOI: 10.1021/acs.est.3c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.
Collapse
Affiliation(s)
- Robert Groth
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Sadegh Niazi
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Henry P Oswin
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Allen E Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirsten Spann
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Lidia Morawska
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zoran Ristovski
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
18
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no. Am J Physiol Lung Cell Mol Physiol 2024; 326:L175-L189. [PMID: 38147795 PMCID: PMC11280677 DOI: 10.1152/ajplung.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Man Wong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Ann Song
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| |
Collapse
|
19
|
Yang S, Bekö G, Wargocki P, Zhang M, Merizak M, Nenes A, Williams J, Licina D. Physiology or Psychology: What Drives Human Emissions of Carbon Dioxide and Ammonia? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1986-1997. [PMID: 38237915 PMCID: PMC10832055 DOI: 10.1021/acs.est.3c07659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Meixia Zhang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marouane Merizak
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil & Environmental Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy,
Environment and Water Research Center, The
Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Niazi S, Groth R, Morawska L, Spann K, Ristovski Z. Dynamics and Viability of Airborne Respiratory Syncytial Virus under Various Indoor Air Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21558-21569. [PMID: 38084588 DOI: 10.1021/acs.est.3c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The factors governing the viability of airborne viruses embedded within respiratory particles are not well understood. This study aimed to investigate the relative humidity (RH)-dependent viability of airborne respiratory syncytial virus (RSV) in simulated respiratory particles suspended in various indoor air conditions. We tested airborne RSV viability in three static indoor air conditions, including sub-hysteresis (RH < 39%), hysteresis (39% < RH < 65%), and super-hysteresis (RH > 65%) air as well as in three dynamic indoor air conditions, including the transitions between the static conditions. The dynamic conditions were hysteresis → super-hysteresis → hysteresis, sub-hysteresis → hysteresis, and super-hysteresis → hysteresis. We found that after 45 min of particle aging in static conditions, the viability of RSV in sub-hysteresis, hysteresis, and super-hysteresis air was 0.72% ± 0.06%, 0.03% ± 0.006%, and 0.27% ± 0.008%, respectively. After 45 min of aging in dynamic conditions, the RSV viability decreased for particles that remained in a liquid (deliquesced) state during aging when compared with particles in a solid (effloresced) state. The decreased viability of airborne RSV for deliquesced particles is consistent with prolonged exposure to elevated aqueous solutes. These results represent the first measurements of the survival of airborne RSV over particle aging time, with equal viability in low, intermediate, and high RHs at 5 and 15 min and a V-shaped curve after 45 min.
Collapse
Affiliation(s)
- Sadegh Niazi
- International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Robert Groth
- International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control (CIIC), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia
| | - Zoran Ristovski
- International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
21
|
Glas I, David SC. A new chapter of healthy indoor air: antiviral air treatments. EMBO Mol Med 2023; 15:e18710. [PMID: 37969101 DOI: 10.15252/emmm.202318710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
Aerosol transmission remains a major challenge for the control of respiratory viruses. To date, prevention strategies include masks, vaccinations, physical distancing, travel restrictions, and lockdowns. Such measures are effective but come with heavy societal burdens and rely on public compliance. Additionally, most are simply not suitable as long-term measures. Other strategies evolve around the concept of improved indoor air quality and involve ventilation, relative humidity (RH) control, and air filtration. Unfortunately, natural ventilation increases exposure to airborne pollutants and vector-borne diseases, and incurs substantial energy losses in colder months. Mechanical ventilation concepts, including regular air changes and filtration, are effective but costly, and often require expensive engineering solutions and widespread renovations. Alternative options to reduce the spread of emerging and seasonal infections are sorely needed. In this issue of EMBO Molecular Medicine, Styles et al (2023) describe the use of propylene glycol (PG) to inactivate infectious bioaerosols and virus-containing droplets deposited on surfaces.
Collapse
Affiliation(s)
- Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Shannon C David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
23
|
Iseli AN, Pohl MO, Glas I, Gaggioli E, Martínez-Barragán P, David SC, Schaub A, Luo B, Klein LK, Bluvshtein N, Violaki K, Motos G, Hugentobler W, Nenes A, Krieger UK, Peter T, Kohn T, Stertz S. The neuraminidase activity of influenza A virus determines the strain-specific sensitivity to neutralization by respiratory mucus. J Virol 2023; 97:e0127123. [PMID: 37819131 PMCID: PMC10617592 DOI: 10.1128/jvi.01271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.
Collapse
Affiliation(s)
- Alena N. Iseli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Gaggioli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
David SC, Vadas O, Glas I, Schaub A, Luo B, D'angelo G, Montoya JP, Bluvshtein N, Hugentobler W, Klein LK, Motos G, Pohl M, Violaki K, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. mSphere 2023; 8:e0022623. [PMID: 37594288 PMCID: PMC10597348 DOI: 10.1128/msphere.00226-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.
Collapse
Affiliation(s)
- Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Giovanni D'angelo
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Paz Montoya
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
26
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Haddrell A, Otero-Fernandez M, Oswin H, Cogan T, Bazire J, Tian J, Alexander R, Mann JFS, Hill D, Finn A, Davidson AD, Reid JP. Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol. J R Soc Interface 2023; 20:20230062. [PMID: 37340783 PMCID: PMC10282576 DOI: 10.1098/rsif.2023.0062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles. At low RH, a loss of viral infectivity of approximately 55% was observed over the initial 5 s for both variants. Regardless of RH and variant, greater than 95% of the viral infectivity was lost after 40 min of being aerosolized. Aero-stability of the variants correlate with their sensitivities to alkaline pH. Removal of all acidic vapours dramatically increased the rate of infectivity decay, with 90% loss after 2 min, while the addition of nitric acid vapour improved aero-stability. Similar aero-stability in droplets of artificial saliva and growth medium was observed. A model to predict loss of viral infectivity is proposed: at high RH, the high pH of exhaled aerosol drives viral infectivity loss; at low RH, high salt content limits the loss of viral infectivity.
Collapse
Affiliation(s)
- Allen Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | | | - Henry Oswin
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Tristan Cogan
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - James Bazire
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jianghan Tian
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Robert Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - Darryl Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Population Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jonathan P. Reid
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| |
Collapse
|
28
|
Aganovic A. pH-dependent endocytosis mechanisms for influenza A and SARS-coronavirus. Front Microbiol 2023; 14:1190463. [PMID: 37234537 PMCID: PMC10206014 DOI: 10.3389/fmicb.2023.1190463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic and the influenza epidemics have revived the interest in understanding how these highly contagious enveloped viruses respond to alterations in the physicochemical properties of their microenvironment. By understanding the mechanisms and conditions by which viruses exploit the pH environment of the host cell during endocytosis, we can gain a better understanding of how they respond to pH-regulated anti-viral therapies but also pH-induced changes in extracellular environments. This review provides a detailed explanation of the pH-dependent viral structural changes preceding and initiating viral disassembly during endocytosis for influenza A (IAV) and SARS coronaviruses. Drawing upon extensive literature from the last few decades and latest research, I analyze and compare the circumstances in which IAV and SARS-coronavirus can undertake endocytotic pathways that are pH-dependent. While there are similarities in the pH-regulated patterns leading to fusion, the mechanisms and pH activation differ. In terms of fusion activity, the measured activation pH values for IAV, across all subtypes and species, vary between approximately 5.0 to 6.0, while SARS-coronavirus necessitates a lower pH of 6.0 or less. The main difference between the pH-dependent endocytic pathways is that the SARS-coronavirus, unlike IAV, require the presence of specific pH-sensitive enzymes (cathepsin L) during endosomal transport. Conversely, the conformational changes in the IAV virus under acidic conditions in endosomes occur due to the specific envelope glycoprotein residues and envelope protein ion channels (viroporins) getting protonated by H+ ions. Despite extensive research over several decades, comprehending the pH-triggered conformational alterations of viruses still poses a significant challenge. The precise mechanisms of protonation mechanisms of certain during endosomal transport for both viruses remain incompletely understood. In absence of evidence, further research is needed.
Collapse
Affiliation(s)
- Amar Aganovic
- Faculty of Engineering Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Groth R, Niazi S, Spann K, Johnson GR, Ristovski Z. Physicochemical characterization of porcine respiratory aerosol and considerations for future aerovirology. PNAS NEXUS 2023; 2:pgad087. [PMID: 37007717 PMCID: PMC10063220 DOI: 10.1093/pnasnexus/pgad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Understanding the mechanisms which inactivate airborne viruses is a current challenge. The composition of human respiratory aerosol is poorly understood and needs to be adequately investigated for use in aerovirology studies. Here, the physicochemical properties of porcine respiratory fluid (PRF) from the trachea and lungs were investigated both in bulk solutions and in aerosols. The mass ratio of Na:K in PRF compared with cell culture media (Dulbecco's Modified Eagle Medium, DMEM), which is frequently used in aerovirology studies, was significantly lower (∼2:1 vs ∼16:1). PRF contained significantly more potassium and protein than DMEM. PRF aerosols of all samples were similarly hygroscopic to human respiratory aerosol. PRF particles could nucleate with spatially separated crystals, indicating that the protein matrix was sufficiently viscous to prevent the complete coalescence of aqueous salts prior to efflorescence. The effects of these differences in compositions on the viability of viruses are currently not well understood. The virus suspensions in aerovirology studies need to be reconsidered to adequately reflect a real-world expiration scenario.
Collapse
Affiliation(s)
- Robert Groth
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sadegh Niazi
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Kirsten Spann
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Graham R Johnson
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | |
Collapse
|
30
|
Boecker D, Zhang Z, Breves R, Herth F, Kramer A, Bulitta C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc07. [PMID: 37034111 PMCID: PMC10073986 DOI: 10.3205/dgkh000433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.
Collapse
Affiliation(s)
- Dirk Boecker
- TOTO Consulting LLC, San Jose CA, USA
- *To whom correspondence should be addressed: Dirk Boecker, TOTO Consulting LLC, San Jose CA, USA, E-mail:
| | - Zhentian Zhang
- Institute for Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Felix Herth
- Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Axel Kramer
- Institut of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Bulitta
- Institut für Medizintechnik, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Amberg-Weiden, Germany
| |
Collapse
|