1
|
Wang S, Jiang Z, Zhao L, Zhang K, Chen Z, Li S, Miao Y, Hu C, Wang Z. Combined semi-continuous feeding and stripping: Improving volatile fatty acid production and sulfate reduction in a two-phase anaerobic sulfate reduction system. ENVIRONMENTAL RESEARCH 2025; 276:121485. [PMID: 40147514 DOI: 10.1016/j.envres.2025.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
This study developed a two-phase anaerobic sulfate reduction system with semi-continuous feeding, integrated with vapor stripping, to assess its treatment performance at varying chemical oxygen demand (COD)/SO42- ratios. At a COD/SO42- ratio of 2, the system achieved high removal efficiencies of 91.85 % for COD and 92.70 % for sulfate, respectively. Vapor stripping effectively maintained low free H2S concentrations, remaining below 50 mg/L in the first-phase reactor (Ra) and below 30 mg/L in the second-phase reactor (Rm). Additionally, the scouring effect of vapor stripping altered the functional group composition on the sludge surface, promoting the formation of sulfate-reducing granular sludge. Microbial analysis revealed a synchronized enrichment of Desulfovibrio and Enterococcus in Ra, as well as Methanosaeta and Enterococcus in Rm under a semi-continuous feeding regime combined with vapor stripping. Conductivity measurements and correlation analyses suggested that electroactive Methanosaeta and Enterococcus engaged in syntrophic metabolism via extracellular electron transfer, which was particularly beneficial for organic removal under low COD/SO42- ratio conditions. At a COD/SO42- ratio of 2, dissimilatory sulfate reduction (DSR) prevailed in Ra, whereas assimilatory sulfate reduction (ASR) dominated in Rm. This balance optimized sulfate removal efficiency while mitigating sulfide toxicity toward methanogens. Overall, this study presents a promising approach for the efficient treatment of high-sulfate organic wastewater with low COD/SO42- ratio.
Collapse
Affiliation(s)
- Sifang Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zerong Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Linan Zhao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaoming Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ziyao Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Shilin Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, United States; Department of Marine and Environmental Sciences, Northeastern University, Boston, 02115, United States
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Hu X, Zhou Q, Chen D, Guo Z, Gao Y, Chen C, Hou J, Noël V, Lin D, Zhu L, Xu J. Modulating Iron Crystals with Lattice Chalcophile-Siderophile Elements for Selective Dechlorinations Over Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416663. [PMID: 40052224 PMCID: PMC12061335 DOI: 10.1002/advs.202416663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/27/2025] [Indexed: 05/10/2025]
Abstract
Selective dechlorination of organic chlorides over hydrogen evolution reaction (HER) remains a challenge because of their coincidence. Nanoscale zerovalent iron (nFe0) draws a promising picture of in situ groundwater dechlorination, but its indiscriminate reactivity limits the application. Here, nFe0 crystals are designed with electron shuttles and improved hydrophobic nature based on elemental chalcophile-siderophile characteristics, where chalcophile-siderophile S served as a bridge to allow impregnating nFe0 crystals with weakly siderophile and strongly chalcophile Cu. Even impregnations of lattice chalcophile-siderophile elements into the nFe0 crystals are evidenced at both intraparticle and individual-particle levels. The modulated Fe microenvironment and physicochemical properties broke the reactivity-selectivity-longevity-stability trade-off. Compared to nFe0, superhydrophobic Cu─S─nFe0 with lattice expansion promoted dechlorination by 20-fold but inhibited HER by 150-fold, utilizing ≈80-100% electrons from the Fe0 reservoir. This work demonstrates the concept of engineering nFe0 lattice with tunable structure-property relationships, mimicking reductive dehalogenases by selectively interacting with halocarbon functional groups for efficient dehalogenation and sustainable groundwater remediation.
Collapse
Affiliation(s)
- Xiaohong Hu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Qianhai Zhou
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Du Chen
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Zhongyuan Guo
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Yiman Gao
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Chaohuang Chen
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Jie Hou
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Vincent Noël
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Daohui Lin
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Lizhong Zhu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Jiang Xu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Zhang Z, Ren X, Liu Y, Song S, Ren Y, Li L, Pang H, Yang J, Lu J. Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137285. [PMID: 39847929 DOI: 10.1016/j.jhazmat.2025.137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO2) and ferrous ions (Fe2+) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO2-Fe2+ improves the effect of sulfide control. When the ratio of the agent to the sewage (w/v) was 0.30 %, the RT50 of sulfide production rate was 8.34 days. The analysis of microbial communities in sewage biofilm revealed that the relative abundances of sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) demonstrated an overall downward tendency, suggesting that the potent oxidizing •OH generated by the synergism of CaO2 and Fe2+ could indiscriminately restrain the growth of microorganisms. Additionally, intracellular metabolic pathways, along with enzyme activities and the relative abundances of genes associated with sulfide metabolism, were significantly impaired. The cost of CaO2-Fe2+ synergistic dosing is 31.3 % of CaO2 and 63.4 % of Fe2+ alone addition. It can be reasonably proposed that the addition of CaO2-Fe2+ may provide an efficacious and cost-effective method for the mitigation of sulfide in sewer systems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaowei Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxin Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yating Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|
4
|
Gao X, Wang X, Zhuang Z, Tian X, Nie Y. Key role of sulfur in sulfidated zerovalent iron during persulfate activation for the dynamic equilibrium of oxidative radicals including SO 4•- and •OH. ENVIRONMENTAL RESEARCH 2024; 263:119957. [PMID: 39307229 DOI: 10.1016/j.envres.2024.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Surface sulfidation has been widely investigated to effectively enhance the utilization and selectivity of iron electrons for enhanced pollutant reduction. However, there is relatively less knowledge on whether sulfidation facilitates the catalytic oxidation process and the mechanism of enhancement. Therefore, in this study, the role of surface sulfidation in modulating the oxidant decomposition pathway and reactive oxygen species generation was investigated with the sulfidated zerovalent iron (S-ZVI) activated persulfate (PS) system. The results revealed that sulfur on the surface of S-ZVI not only facilitates PS activation to generate more SO4•-, but also acts as an essential in the dynamic equilibrium between SO4•- and •OH. Specifically, the S-ZVI surface sulfide first forms sulfur monomers during catalysis, which promotes electron transfer to accelerate Fe3+ to Fe2+ cycling, prompting the generation of more SO4•- also generates SO32-. Then, SO32- is further reacted with •OH to generate the [O--O-SO3-] intermediate of SO4•-, which leads to a dynamic equilibrium of SO4•- and •OH, mitigating the further conversion of SO4•- to •OH. These findings unveiled the dynamic variation of sulfur on the surface of S-ZVI during PS activation, elevating new insights for the sulfate radical-based efficient degradation.
Collapse
Affiliation(s)
- Xuyun Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Zihan Zhuang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Xu H, Ren L, Qin C, Zhang H, Li X, Zhao Y. New insights on zero-valent iron permeable reactive barrier for Cr(VI) removal: The function of FeS reaction zone downstream in-situ generated by sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136282. [PMID: 39486332 DOI: 10.1016/j.jhazmat.2024.136282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
The biogeochemical behavior downstream of the zero-valent iron permeable reactive barrier (ZVI-PRB) plays an enormous positive role in the remediation of contaminated-groundwater, but has been completely neglected for a long time. Therefore, this study conducted a 240-day SRB-enhanced ZVI-PRB column experiment, focusing on what exactly happens downstream of ZVI-PRB. Results show that biosulfidation of SRB inside ZVI-PRB prolonged the complete Cr(VI) removal longevity of ZVI-PRB from 38 days to at least 240 days. More importantly, unlike previous studies that focused on improving the performance of ZVI-PRB itself, this study found an in-situ generated FeS reduction reaction zone downstream of the ZVI-PRB. When the ZVI-PRB fails, the downstream reaction zone can continue to play a role in Cr(VI) removal. The maximum Cr(VI) removal capacity of the aquifer media from the reaction zone reached 155.1 mg/kg, which was 39.7 % of commercial ZVI capacity. The reduction zone was further confirmed to be predominantly FeS rather than FeS2. Biogeochemistry occurring within and downstream of ZVI-PRB leads to the formation of FeS. Gene sequencing revealed significantly higher SRB abundance downstream of ZVI-PRB than within the ZVI-PRB. The understanding of the downstream FeS reaction zone provides new insights for more effective remediation using ZVI-PRB.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Liming Ren
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Xu G, Yang H, Han J, Liu X, Shao K, Li X, Wang G, Yue W, Dou J. Regulatory roles of extracellular polymeric substances in uranium reduction via extracellular electron transfer by Desulfovibrio vulgaris UR1. ENVIRONMENTAL RESEARCH 2024; 262:119862. [PMID: 39208974 DOI: 10.1016/j.envres.2024.119862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The pathway of reducing U(VI) to insoluble U(IV) using electroactive bacteria has become an effective and promising approach to address uranium-contaminated water caused by human activities. However, knowledge regarding the roles of extracellular polymeric substances (EPS) in the uranium reduction process involving in extracellular electron transfer (EET) mechanisms is limited. Here, this study isolated a novel U(VI)-reducing strain, Desulfovibrio vulgaris UR1, with a high uranium removal capacity of 2.75 mM/(g dry cell). Based on a reliable EPS extraction method (45 °C heating), manipulation of EPS in D. vulgaris UR1 suspensions (removal or addition of EPS) highlighted its critical role in facilitating uranium reduction efficiency. On the second day, U(VI) removal rates varied significantly across systems with different EPS contents: 60.8% in the EPS-added system, 48.5% in the pristine system, and 22.2% in the EPS-removed system. Characterization of biogenic solids confirmed the reduction of U(VI) by D. vulgaris UR1, and the main products were uraninite and UO2 (2.88-4.32 nm in diameter). As EPS formed a permeable barrier, these nanoparticles were primarily immobilized within the EPS in EPS-retained/EPS-added cells, and within the periplasm in EPS-removed cells. Multiple electroactive substances, such as tyrosine/tryptophan aromatic compounds, flavins, and quinone-like substances, were identified in EPS, which might be the reason for enhancement of uranium reduction via providing more electron shuttles. Furthermore, proteomics revealed that a large number of proteins in EPS were enriched in the subcategories of catalytic activity and electron transfer activity. Among these, iron-sulfur proteins, such as hydroxylamine reductase (P31101), pyruvate: ferredoxin oxidoreductase (A0A0H3A501), and sulfite reductase (P45574), played the most critical role in regulating EET in D. vulgaris UR1. This work highlighted the importance of EPS in the uranium reduction by D. vulgaris UR1, indicating that EPS functioned as both a reducing agent and a permeation barrier for access to heavy metal uranium.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Juncheng Han
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xindai Li
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guanying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Beijing Boqi Electric Power Science and Technology Co., Ltd, Beijing 100012, PR China
| | - Weifeng Yue
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
7
|
Zhang Y, Li F, Wang X, Zhao C, Zhang Y, Wang C, Li Y, Zhao X, Xu C. Trade-off between sulfidated zero-valent iron reactivity and air stability: Regulation of iron sulfides by ammonium dihydrogen phosphate. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135274. [PMID: 39053067 DOI: 10.1016/j.jhazmat.2024.135274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The reactivity and stability of zero-valent iron (ZVI) and sulfidated zero-valent iron (S-ZVI) are inherently contradictory. Iron sulfides (FeSX) on the S-ZVI surface play multiple roles, including electrostatic adsorption and catalyzing reduction. We proposed to balance the reactivity and air stability of S-ZVI by regulating FeSX. Benefiting from the superior coordination and accelerate electron transport capabilities of phosphate, herein, eco-friendly ammonium dihydrogen phosphate (ADP) was employed to synthesize N, P, and S-incorporated ZVI (NPS-ZVI) and regulate the FeSX. Raman, FTIR, XPS, and density functional theory (DFT) calculations were combined to reveal that HPO42- acts as the main P species on the Fe surface. The superior reactivity of NPS-ZVI was quantified by kobs, kSA, and kM of Cr(VI), which were 210.77, 27.44, and 211.17-fold than ZVI, respectively. NPS-ZVI demonstrated excellent reusability, with no risk of secondary pollution. Critically, NPS-ZVI could effectively maintain FeSX stability under the combination of diffusion limitation and surface protection mechanisms of ADP. The superior reactivity of NPS-ZVI was attributed to the fact that ADP maintains FeSX stability and accelerates electron transport. This study provides a novel strategy in balancing the reactivity and air stability of S-ZVI and offers theoretical support for material modification.
Collapse
Affiliation(s)
- Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chengxuan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanlu Li
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Yuan M, Chen G, Xiao Y, Qu Y, Ren Y. The mechanisms of yeast extracellular metabolites in stimulating microbial degradation of trichloroethylene: Physiological characteristics and omics analysis. ENVIRONMENTAL RESEARCH 2024; 255:119193. [PMID: 38777296 DOI: 10.1016/j.envres.2024.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The biodegradation of Trichloroethylene (TCE) is limited by low microbial metabolic capacity but can be enhanced through biostimulation strategies. This study explored the physiological effects and potential molecular mechanisms of the yeast Yarrowia lipolytica extracellular metabolites (YEMs) on the degradation of TCE by Acinetobacter LT1. Results indicated that YEMs stimulated the efficiency of strain LT1 by 50.28%. At the physiological level, YEMs exhibited protective effects on cell morphology, reduced oxidative stress, lessened membrane damage, and enhanced energy production and conversion. Analysis of omics results revealed that the regulation of various metabolic pathways by YEMs improved the degradation of TCE. Furthermore, RT-qPCR showed that the genes encoding YhhW protein in TCE stress and YEMs stimulation groups were 1.72 and 3.22 times the control group, respectively. Molecular docking results showed that the conformation of YhhW after binding to TCE changed into a more active form, which enhanced enzyme activity. Therefore, it is speculated that YhhW is the primary degradative enzyme involved in the process of YEMs stimulating strain LT1 to degrade TCE. These results reveal how YEMs induce strain LT1 to enhance TCE degradation.
Collapse
Affiliation(s)
- Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
9
|
Sun H, Zhou ZJ, Wen HQ, Chen FF, Pan Y, Tang Q, Yu HQ. Deciphering the Roles of Extracellular Polymeric Substances (EPS) in Shaping Disinfection Kinetics through Permanent Removal via Genetic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6552-6563. [PMID: 38571383 DOI: 10.1021/acs.est.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.
Collapse
|
10
|
Yang Y, Zhan C, Li Y, Zeng J, Lin K, Sun J, Jiang F. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology. WATER RESEARCH 2024; 253:121270. [PMID: 38359598 DOI: 10.1016/j.watres.2024.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Sulfidated zero-valent iron (S-ZVI) is an attractive material of permeable reactive barriers (PRBs) for the remediation of contaminated groundwater. However, S-ZVI is prone to be passivated due to the oxidation of reactive and conductive iron sulfide (FeSx) shell and the formation of inactive and non-conductive ferric (hydr)oxides, which serve as electron transfer barriers to hinder the electron flow from Fe° core to contaminants. This study thus proposed a novel approach for in-situ reactivation and reuse of micronsized S-ZVI (S-mZVI) in PRB using sulfate-reducing bacteria (SRB) enriched culture to realize long-lasting remediation of Cr(VI)-contaminated groundwater. S-mZVI were passivated after reactions with Cr(VI) due to the formation of electron transfer barriers (mainly inactive and non-conductive Fe(III) (hyd)oxides, which increased the polarization resistance from 16.38 to 27.38 kΩ cm2 and hindered the electron transfer from the Fe° core. Interestingly, the passivated S-mZVI was efficiently reactivated by providing the SRB-enriched culture and organic carbon within 12 h, and the Cr(VI) removal capacity of S-mZVI in the three use cycles increased to 37.4 mg Cr/g, which was 2.1 times higher than that of the virgin S-mZVI. After biological reactivation, the Rp of reactivated S-mZVI decreased to 12.30 kΩ cm2. SRB-mediated reactivation removed the electron transfer barriers via biotic and abiotic reduction of Fe(III) (hyd)oxides. Especially, the microbial Fe(III) reduction mediated by FmnA-dmkA-fmnB-pplA-ndh2-eetAB-dmkB protein family enhanced the Fe2+ release from the surface and the subsequent re-formation of reactive and conductive FeSx shell. A long-term PRB column test further demonstrated the feasibility of in-situ biological reactivation and reuse of S-mZVI for enhanced Cr(VI)-contaminated groundwater remediation. Within 64 days, the Cr(VI) removal capacity of S-mZVI in the four use cycles increased by 3.2 times, compared to the virgin one. The bio-reactivation using the SRB-enriched culture and sulfate locally-available in groundwater will reduce the chemical and maintenance costs associated with the frequent replacement of reactive ZVI-based materials. The PRB technology based on the bio-renewable S-mZVI can be a sustainable alternative to the conventional PRBs for the long-lasting and low-cost remediation of groundwater contaminated by oxidative pollutants.
Collapse
Affiliation(s)
- Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chungeng Zhan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiajia Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Xu H, Qin C, Zhang H, Zhao Y. New insights into long-lasting Cr(VI) removal from groundwater using in situ biosulfidated zero-valent iron with sulfate-reducing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120488. [PMID: 38457892 DOI: 10.1016/j.jenvman.2024.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Sulfidation enhances the reactivity of zero-valent iron (ZVI) for Cr(VI) removal from groundwater. Current sulfidation methods mainly focus on chemical and mechanical sulfidation, and there has been little research on biosulfidation using sulfate-reducing bacteria (SRB) and its performance in Cr(VI) removal. Herein, the ability of the SRB-biosulfidated ZVI (SRB-ZVI) system was evaluated and compared with that of the Na2S-sulfidated ZVI system. The SRB-ZVI system forms a thicker and more porous FeSx layer than the Na2S-sulfidated ZVI system, resulting in more sufficient sulfidation of ZVI and a 2.5-times higher Cr(VI) removal rate than that of the Na2S-sulfidated ZVI system. The biosulfidated-ZVI granules and FeSx suspension are the major components of the SRB-ZVI system. The SRB-ZVI system exhibits a long-lasting (11 cycles) Cr(VI) removal performance owing to the regeneration of FeSx. However, the Na2S-sulfidated ZVI system can perform only two Cr(VI) removal cycles. SRB attached to biosulfidated-ZVI can survive in the presence of Cr(VI) because of the protection of the biogenic porous structure, whereas SRB in the suspension is inhibited. After Cr(VI) removal, SRB repopulates in the suspension from biosulfidated-ZVI and produce FeSx, thus providing conditions for subsequent Cr(VI) removal cycles. Overall, the synergistic effect of SRB and ZVI provides a more powerful and environmentally friendly sulfidation method, which has more advantageous for Cr(VI) removal than those of chemical sulfidation. This study provides a visionary in situ remediation strategy for groundwater contamination using ZVI-based technologies.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Yang G, Wei L, Wang X, Wu X, He Y, Li G, Chen T, Zhu W. Enhancing Commercially Iron Powder Electron Transport by Surface Biosulfuration to Achieve Uranium Extraction from Uranium Ore Wastewater. Inorg Chem 2024; 63:1378-1387. [PMID: 38164710 DOI: 10.1021/acs.inorgchem.3c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The zero-valent iron (ZVI) has attracted increasing attention due to the enhanced reactivity of ZVI to uranium wastewater. However, ZVI practical application is hampered due to its susceptibility to oxidation and the formation of passivation layers during storage and in situ restoration. To address these issues, we used a biosulfuration approach to modify ZVI for application in uranium ore wastewater treatment. A series of physicochemical characterization tools and photoelectronic analyses showed that BS-ZVI considerably increased carrier separation efficiency and visible light absorption capacity, resulting in a significant photoassisted enhancement effect on uranium extraction. Accordingly, the uranium removal efficiency of BS-ZVI reached 91% within 60 min, and its maximum adsorption capacity was 336.3 mg/g. By analyzing the mechanism, the improved U(VI) removal performance was mostly responsible on the dissolution of the passivation layer on the surface of ZVI, the generation of Fe(II) and FeS, and the important role of Shewanella putrefaciens extracellular polymers (EPS). Overall, the BS-ZVI biohybrid merges with the high activity of ZVI, bio-FeS, and self-regeneration ability of bacteria, expanding a promising new approach for sustainable treatment of uranium mine wastewater.
Collapse
Affiliation(s)
- Guolin Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
- Laboratory Animal Centre, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Ling Wei
- Department of Agricultural Science and Technology, Nanchong Vocation and Technical College, Nanchong, Sichuan 637131, P. R. China
| | - Xin Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Xudong Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Guo Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|
13
|
Wang B, Luo Q, Pan Y, Mei Z, Sun T, Zhong Z, He F, Liang L, Wang Z, Xing B. Enhanced Biogenic Sulfidation of Zero-Valent Iron in Columns: Implications for Promoting Dechlorination in Permeable Reactive Barriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20951-20961. [PMID: 38009568 DOI: 10.1021/acs.est.3c06976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biogenic sulfidation of zero-valent iron (ZVI) using sulfate reducing bacteria (SRB) has shown enhanced dechlorination rates comparable to those produced by chemical sulfidation. However, controlling and sustaining biogenic sulfidation to enhance in situ dechlorination are poorly understood. Detailed interactions between SRB and ZVI were examined for 4 months in column experiments under enhanced biogenic sulfidation conditions. SRB proliferation and changes in ZVI surface properties were characterized along the flow paths. The results show that ZVI can stimulate SRB activity by removing excessive free sulfide (S2-), in addition to lowering reduction potential. ZVI also hinders downgradient movement of SRB via electrostatic repulsion, restricting SRB presence near the upgradient interface. Dissolved organic carbon (e.g., >2.2 mM) was essential for intense biogenic sulfidation in ZVI columns. The presence of SRB in the upgradient zone appeared to promote the formation of iron polysulfides. Biogenic FeSx deposition increased the S content on ZVI surfaces ∼3-fold, corresponding to 3-fold and 2-fold improvements in the trichloroethylene degradation rate and electron efficiency in batch tests. Elucidation of SRB and ZVI interactions enhances sustained sulfidation in ZVI permeable reactive barrier.
Collapse
Affiliation(s)
- Binbin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Luo
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yujia Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zihan Mei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Taoyu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhong Zhong
- Eco-Environmental Science & Research Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Guo H, Liu S, Wang Y, Hou J, Zhu T, Liu Y. A novel free nitrous acid (FNA)-generation pathway via ferric salts hydrolysis to mitigate sulfide and methane production in sewer: Insights into the performance and microbial mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132284. [PMID: 37591170 DOI: 10.1016/j.jhazmat.2023.132284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Ferric chloride (FeCl3) served as a solid acid has attracted attention recently. However, the feasibility of FeCl3 combined with nitrite for free nitrous acid (FNA) generation in controlling sulfide and methane as well as the triggering mechanisms in the complex syntrophic consortium (i.e., sewer biofilm) remain largely unknown. This work disclosed FeCl3 as an alternative acid source could obtain comparable sulfide and methane mitigations at a low FNA dose (i.e., 0.26 mg N/L), compared to that of HCl acid source. Whereas, a faster recovery rate of sulfide production was observed using FeCl3 under a higher FNA dose (i.e., 0.81 mg N/L) despite the methane control still being comparable. The toxicological mechanisms revealed FNA reacted with proteins amide Ⅰ in extracellular polymeric substances and destroyed protein hydrogen bond. Enzymatic and genic analysis unveiled the overall suppression of hydrolysis, acidogenesis, acetogenesis, sulfidogenesis and methanogenesis steps due to the inactivation of viable cells by reactive nitrogen species. Economic and environmental assessments demonstrated that the ferric-based FNA strategy reduced chemical costs and N2O emission (ca. 26.5% decrease) compared to the traditional HCl-based FNA method. This work broadens the application of iron salt-based technology in urban water system, together with understanding the biological mechanisms of FNA-based technology.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Zhang S, Li C, Ke C, Liu S, Yao Q, Huang W, Dang Z, Guo C. Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. WATER RESEARCH 2023; 243:120339. [PMID: 37482009 DOI: 10.1016/j.watres.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
16
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Wang Y, Ma J. Charge transfer interactions exist in extracellular polymeric substances: Comparison with natural organic matter. CHEMOSPHERE 2023:139030. [PMID: 37236282 DOI: 10.1016/j.chemosphere.2023.139030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Extracellular polymeric substances (EPS) and natural organic matter (NOM) are widely present in the environment. While the molecular basis of NOM's optical properties and reactivity after treatment with sodium borohydride (NaBH4) has been successfully explained by the charge transfer (CT) model, the corresponding structure basis and properties of EPS remain poorly understood. In this work, we investigated the reactivity and optical properties of EPS after NaBH4 treatment, comparing them to the corresponding changes in NOM. After reduction, EPS exhibited optical properties and a reactivity with Au3+ similar to NOM, manifesting an irreversible loss of visible absorption (≥70%) associated with blue-shifted fluorescence emission (8-11 nm) and a lower rate of gold nanoparticles formation (decreasing by ≥ 32%), which can be readily explained by the CT model as well. Furthermore, the absorbance and fluorescence spectra of EPS were solvent polarity dependent, contrary to the superposition model. These findings contribute to an original understanding of the reactivity and optical properties of EPS and facilitate further cross-disciplinary studies.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiahai Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|