1
|
Gong Q, Zeng W, Hao X, Wang Y, Peng Y. DNA stable isotope probing and metagenomics reveal temperature responses of sulfur-driven autotrophic partial denitrification coupled with anammox (SPDA) system. WATER RESEARCH 2025; 280:123494. [PMID: 40107211 DOI: 10.1016/j.watres.2025.123494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The sulfur-driven autotrophic partial denitrification coupled with anammox (SPDA) process showed significant advantages in energy conservation and resource recovery in municipal wastewater treatment. However, its application in regions with seasonal temperature fluctuations and high latitudes is challenged by low temperatures. In this study, the feasibility of the SPDA process for treating low-strength municipal wastewater across a wide temperature range (30-10 °C) was systematically investigated. The results demonstrated that thiosulfate-driven autotrophic partial denitrification maintained an efficient nitrate removal rate of 7.82 mg NO3--N/gVSS/h and a nitrate to nitrite transformation rate of 62.7 % even at temperatures as low as 10 °C. Molecular ecological network and DNA-SIP revealed that dominant sulfur-oxidizing bacteria (SOB) shifted from norank_f_Hydrogenophilaceae and Thiobacillus at higher temperatures (30-20 °C) to Thiobacillus and Sulfurimonas as temperature decreased, thus ensuring the performance of autotrophic partial denitrification and consistent nitrite supply for anammox. Metagenomic analysis showed that the abundance of functional genes related to sulfur conversion increased almost universally, ensuring a stable electron supply for nitrate reduction through sulfur oxidation at low temperatures. The functional genes responsible for nitrate reduction changed from nar genes at higher temperatures to nap genes at lower temperatures, while a decrease in the abundance of hzs and hdh genes corresponding to reduced anammox performance. This study highlights the stable performance of the sulfur-driven autotrophic denitrification at low temperatures and the reliability of coupling with anammox, extending the applicability of SPDA to a broader geographical range.
Collapse
Affiliation(s)
- Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaojing Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Ma Y, Liu T, Yuan Z, Guo J. Microbial conversion of methane into single cell protein in a dual-membrane biofilm reactor. WATER RESEARCH 2025; 283:123838. [PMID: 40403554 DOI: 10.1016/j.watres.2025.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Single cell protein (SCP, or microbial protein) is a promising alternative food source that could sustainably address the growing demand for proteins. Recently, methane, as the main component of biogas, has been explored as a carbon and energy source for SCP production due to its lower cost and renewability compared to traditional substrates such as carbohydrates. However, a major challenge is how to safely deliver methane and oxygen, and the explosion risk impedes the CH4-based SCP production. This study designed a dual-membrane biofilm reactor (dMBfR) for SCP production from methane, incorporating hollow fiber membranes to enhance the delivery of methane and oxygen. Over a 240-day operation, methane utilization efficiency reached 100 %, achieving the SCP yield of up to 0.49 g SCP/g CH4. The reactor also exhibited competitive protein content of 50.2 % and biomass productivity of 506 mg/L/d. Additionally, we evaluated the reactor performance in response to varying aeration modes (open-end versus dead-end) and weekly protein harvest ratios (20 % versus 50 %). Compared to the dead-end aeration mode, the open-end mode led to 1.5-fold higher SCP production rates, 3.5-fold higher nitrogen-based SCP yields, 3.7-fold higher carbon-based SCP yields, and 1.1-fold higher protein content. Moreover, we applied the freeze-drying approach to produce dry SCP products in the reactor. The final SCP products exhibited higher solubility (17.4 %), water holding capacity (5.0 %), and emulsifying stability (93.3 %, after 24 h incubation) compared to typical fish meals, jointly indicative of the high quality of the produced SCP. This work offers valuable insights into CH4-based SCP production, offering a promising avenue for efficient microbial protein synthesis.
Collapse
Affiliation(s)
- Yicheng Ma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Zhang X, Nie WB, Tan X, Wu H, Dai J, Xian Z, Yang C, Chen Y. Harvesting of dissolved methane from anaerobic effluents for enhanced nitrogen removal in mainstream wastewater. BIORESOURCE TECHNOLOGY 2025; 424:132293. [PMID: 39993663 DOI: 10.1016/j.biortech.2025.132293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/21/2025] [Accepted: 02/22/2025] [Indexed: 02/26/2025]
Abstract
The presence of dissolved methane in anaerobic effluents from wastewater treatment plants (WWTPs) significantly contributes to methane emissions. To mitigate this issue, this study introduced the Self-breathing Biofilm Reactor (SbBfR), which achieved a 94 % retention rate of dissolved methane during the aeration stage. Counter-diffusion and co-diffusion systems were established to enhance microbial interactions for both dissolved methane oxidation and nitrogen removal. These systems varied based on alignment or opposition of substrates with externally supplied oxygen. Specifically, the counter-diffusion system isolated oxygen and methane, favoring denitrifying anaerobic methane oxidizing microorganisms, achieving nitrogen removal rate of 175 mg N/L/d with an efficiency of up to 88 %. The spatial distribution patterns of aerobic and anaerobic microbes within the biofilms were characterized using 16S rRNA gene amplicon sequencing combined with cryosection and qPCR analysis. This approach provides a promising solution for reducing dissolved methane emissions from WWTPs while simultaneously achieving efficient nitrogen removal, offering valuable insights for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Xin Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xin Tan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Wu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingyi Dai
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhihao Xian
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Zheng Y, Wei Y, Ma B. Unravelling depth layers of microbial communities, nitrogen transformation rate, and extracellular polymeric substances in anammox granules. BIORESOURCE TECHNOLOGY 2025; 418:131896. [PMID: 39608421 DOI: 10.1016/j.biortech.2024.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Anammox granules harbor a variety of bacteria, with each granule layer providing a niche for bacteria with specific metabolic functions. To investigate microbial distribution, nitrogen transformation rates, and extracellular polymeric substance (EPS) content across the depth layers of anammox granules, granules sized 0.9-2.0 mm were sheared into seven layers. The outer layers exhibited higher anammox bacterial abundance (9.9 %) than the inner layers (8.1 %). In contrast, the abundance of denitrifying bacteria increased from 25.0 % in outer layers to 34.9 % in inner layers. Nitrifying bacteria, along with heterotrophic nitrifying and aerobic denitrifying bacteria, were predominantly found in outer layers. Despite the higher EPS content in inner layers, denitrification rates remained low across all layers, likely due to limited carbon availability from microbial lysis or EPS. These findings offer valuable insights into the niche distribution of microbial communities within anammox granules.
Collapse
Affiliation(s)
- Yufeng Zheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Chen H, You H, Cheng J, Wang S, Chong W, Lou X, Kuang S, Liu S, Zheng M, Liu T. Response of denitrifying anaerobic methane oxidation processes in freshwater and marine sediments to polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176988. [PMID: 39427908 DOI: 10.1016/j.scitotenv.2024.176988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in mitigating methane (CH4) in natural environments. The increasing presence of microplastics (MPs) in these environments due to human activities is a growing concern. However, the impact of MPs on n-DAMO microorganisms and their role in greenhouse gas regulation, particularly CH4 reduction, remains unclear. This study investigates the effects of polyvinyl chloride (PVC) MPs on n-DAMO activity and the associated microbial communities in freshwater and marine sediments at varying concentrations of (R0/M0-no addition, R1/M1-0.5 %, R2/M2-2%). The results showed that the presence of MPs significantly increased the n-DAMO rate (2.89-3.58 nmol 13CO2 g-1 d-1) compared to the control groups (R0: 1.29 nmol 13CO2 g-1 d-1, M0: 0.11 nmol 13CO2 g-1 d-1), with marine sediments showing a more pronounced response. Additionally, the proportional contribution of nitrate-DAMO processes increased following MP exposure. The presence of PVC MPs also altered the microbial diversity of n-DAMO. Upon the addition of MPs, the microbial community composition of n-DAMO in marine sediments changed more significantly. This study provides the first evidence of a positive impact of PVC MPs on n-DAMO processes, suggesting that the presence of PVC MPs in sediments could potentially contribute to the reduction of CH4 emissions.
Collapse
Affiliation(s)
- Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hairong You
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiaxin Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaohua Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Chong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xue Lou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Minggang Zheng
- Research Center for Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China.
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
| |
Collapse
|
6
|
Wang D, Meng Y, Huang LN, Zhang XX, Luo X, Meng F. A comprehensive catalog encompassing 1376 species-level genomes reveals the core community and functional diversity of anammox microbiota. WATER RESEARCH 2024; 266:122356. [PMID: 39236503 DOI: 10.1016/j.watres.2024.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Research on the microbial community and function of the anammox process for environmentally friendly wastewater treatment has achieved certain success, which may mean more universal insights are needed. However, the comprehensive understanding of the anammox process is constrained by the limited taxonomic assignment and functional characterization of anammox microbiota, primarily due to the scarcity of high-quality genomes for most organisms. This study reported a global genome catalog of anammox microbiotas based on numerous metagenomes obtained from both lab- and full-scale systems. A total of 1376 candidate species from 7474 metagenome-assembled genomes were used to construct the genome catalog, providing extensive microbial coverage (averaged of 92.40 %) of anammox microbiota. Moreover, a total of 64 core genera and 44 core species were identified, accounting for approximately 64.25 % and 43.97 %, respectively, of anammox microbiota. The strict core genera encompassed not only functional bacteria (e.g., Brocadia, Desulfobacillus, Zeimonas, and Nitrosomonas) but also two candidate genera (UBA12294 and OLB14) affiliated with the order Anaerolineales. In particular, core denitrifying bacteria with observably taxonomic diversity exhibited diverse functional profiles; for instance, the potential of carbohydrate metabolism in Desulfobacillus and Zeimonas likely improves the mixotrophic lifestyle of anammox microbiota. Besides, a noteworthy association was detected between anammox microbiota and system type. Microbiota in coupling system exhibited complex diversity and interspecies interactions by limiting numerous core denitrifying bacteria. In summary, the constructed catalog substantially expands our understanding of the core community and their functions of anammox microbiota, providing a valuable resource for future studies on anammox systems.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaonan Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Lu Y, Liu T, Wang H, Zuo L, Hu S, Yuan Z, Bagg W, Guo J. Gas-delivery membrane as an alternative aeration method to remove dissolved methane from anaerobically treated wastewater. WATER RESEARCH 2024; 268:122760. [PMID: 39536642 DOI: 10.1016/j.watres.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Dissolved methane is a hurdle for anaerobic wastewater treatment, which would be stripped into the atmosphere by conventional bubble aeration and increase the release of greenhouse gases into the environment. The high oxygen transfer efficiency and less turbulence in membrane aerated biofilm reactor (MABR) could prevent the stripping of dissolved methane. In this study, an MABR was established to remove dissolved methane aerobically in parallel to the nitrogen removal driven by the anammox process. The long-term results demonstrated that aerobic methane oxidation has a short start-up period, in which a high level (>90 %) of dissolved methane removal was achieved in 20 days. Meanwhile, the anammox-based nitrogen removal process reached a total nitrogen removal rate of ∼150 mg N/L/d (0.27 g N/m2/d). In situ batch tests confirmed the active bioreactions of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, anammox bacteria and aerobic methanotrophs, while 16S rRNA gene amplicon sequencing further validated their existence. Moreover, nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) bacteria were enriched to a relative abundance of 2.5 % on Day 372, suggesting their potential role in removing nitrogen and dissolved methane in the MABR. This study provides an alternative technology for removing dissolved methane and nitrogen in parallel from anaerobically treated wastewater.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Lukun Zuo
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Wayne Bagg
- Water Corporation, 629 Newcastle St, Leederville, WA 6007, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
8
|
Zhou M, Han Y, Zhuo Y, Yu F, Hu G, Peng D. Effect of initial ammonium concentration on a one-stage partial nitrification/anammox biofilm system: Nitrogen removal performance and the microbial community. J Environ Sci (China) 2024; 143:176-188. [PMID: 38644015 DOI: 10.1016/j.jes.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 04/23/2024]
Abstract
One-stage partial nitrification coupled with anammox (PN/A) technology effectively reduces the energy consumption of a biological nitrogen removal system. Inhibiting nitrite-oxidizing bacteria (NOB) is essential for this technology to maintain efficient nitrogen removal performance. Initial ammonium concentration (IAC) affects the degree of inhibited NOB. In this study, the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor. The results showed that nitrogen removal efficiency decreased from 82.49% ± 1.90% to 64.57% ± 3.96% after the IAC was reduced from 60 to 20 mg N/L, while the nitrate production ratio increased from 13.87% ± 0.90% to 26.50% ± 3.76%. NOB activity increased to 1,133.86 mg N/m2/day after the IAC decreased, approximately 4-fold, indicating that the IAC plays an important inhibitory role in NOB. The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC. The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure. Ca. Brocadia and Ca. Jettenia were the main anammox bacteria, and Nitrosomonas and Nitrospira were the main AOB and NOB, respectively. IAC did not affect the difference in growth between Ca. Brocadia and Ca. Jettenia. Thus, modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fen Yu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gaoyuan Hu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Shaw DR, Tobon Gonzalez J, Bibiano Guadarrama C, Saikaly PE. Emerging biotechnological applications of anaerobic ammonium oxidation. Trends Biotechnol 2024; 42:1128-1143. [PMID: 38519307 DOI: 10.1016/j.tibtech.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Collapse
Affiliation(s)
- Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Julian Tobon Gonzalez
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Bibiano Guadarrama
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Zhang X, Zhao J, Erler DV, Rabiee H, Kong Z, Wang S, Wang Z, Virdis B, Yuan Z, Hu S. Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121523. [PMID: 38901321 DOI: 10.1016/j.jenvman.2024.121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Anaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a 'Candidatus Methanoperedens nitroreducens'-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of 'Ca. M. nitroreducens' for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dirk V Erler
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, Australia
| | - Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Suicao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Zhu Y, Hou J, Meng F, Lu H, Zhang Y, Ni BJ, Chen X. Role of comammox bacteria in granular bioreactor for nitrogen removal via partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2024; 406:131070. [PMID: 38971392 DOI: 10.1016/j.biortech.2024.131070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.
Collapse
Affiliation(s)
- Ying Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaying Hou
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
12
|
Shaw DR, Terada A, Saikaly PE. Future directions in microbial nitrogen cycling in wastewater treatment. Curr Opin Biotechnol 2024; 88:103163. [PMID: 38897092 DOI: 10.1016/j.copbio.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Discoveries in the past decade of novel reactions, processes, and micro-organisms have altered our understanding of microbial nitrogen cycling in wastewater treatment systems. These advancements pave the way for a transition toward more sustainable and energy-efficient wastewater treatment systems that also minimize greenhouse gas emissions. This review highlights these innovative directions in microbial nitrogen cycling within the context of wastewater treatment. Processes such as comammox, Feammox, electro-anammox, and nitrous oxide mitigation offer innovative approaches for sustainable, energy-efficient nitrogen removal. However, while these emerging processes show promise, advancing from laboratory research to practical applications, particularly in decentralized systems, remains a critical next step toward a sustainable and efficient wastewater management.
Collapse
Affiliation(s)
- Dario R Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Department of Industrial Technology and Innovation, Tokyo University of Agriculture and Technology, 2-24-16 Building 4-320 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science & Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Ma Y, Liu T, Yuan Z, Guo J. Single cell protein production from methane in a gas-delivery membrane bioreactor. WATER RESEARCH 2024; 259:121820. [PMID: 38815339 DOI: 10.1016/j.watres.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Single cell protein (SCP, or microbial protein) is one of the emerging alternative protein sources to address the global challenge of food insecurity. Recently, the SCP produced from methane has attracted substantial attention since methane is a renewable resource attainable from anaerobic digestion. However, the supply of methane, an insoluble gas in water, is one of the major challenges in producing methane-based SCP. This work developed a novel bioreactor configuration, in which hollow fiber membrane was used for efficient methane supply while microorganisms were growing in the suspended form favourable for the biomass harvest. Over a 312-day operation, the impacts of three critical parameters on the SCP production were investigated, including the ratio of methane loading to ammonium loading, the ratio of methane loading to oxygen loading, and the sludge retention time (SRT). Under the condition of 4 g CH4/g NH4+, 4 g O2/g CH4, and SRT of 4 days, the highest SCP production yield was observed and determined to be 1.36 g SCP/g CH4 and 5.05 g SCP/g N, respectively. The protein content was up to 67 %, which is higher than the majority of reported values to date. Moreover, the methane and ammonium utilization efficiencies were both close to 100 %, suggesting the highly efficient utilization of substrates in this new bioreactor configuration. A high relative abundance of essential amino acids (EAA) above 42 % was achieved, representing the highest EAA content reported. These findings provide valuable insights into SCP production using methane as a feedstock.
Collapse
Affiliation(s)
- Yicheng Ma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Han YL, Wu ZC, Rittmann BE, Zhao HP. Achieving Long-Term Stability of Partial Nitrification and Autotrophic Denitrification in an MABR via Sulfide Dosing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12532-12541. [PMID: 38940696 DOI: 10.1021/acs.est.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitrite-oxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH4+-N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.
Collapse
Affiliation(s)
- Yu-Lin Han
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chuan Wu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, United States
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Niu C, Ying Y, Zhao J, Zheng M, Guo J, Yuan Z, Hu S, Liu T. Superior mainstream partial nitritation in an acidic membrane-aerated biofilm reactor. WATER RESEARCH 2024; 257:121692. [PMID: 38713935 DOI: 10.1016/j.watres.2024.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.
Collapse
Affiliation(s)
- Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yifeng Ying
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jing Zhao
- Sustainable Minerals Institute (SMI), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
16
|
Niu C, Zhao X, Shi D, Ying Y, Wu M, Lai CY, Guo J, Hu S, Liu T. Bioreduction of chromate in a syngas-based membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134195. [PMID: 38581872 DOI: 10.1016/j.jhazmat.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.
Collapse
Affiliation(s)
- Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Danting Shi
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
| | - Yifeng Ying
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
17
|
Lu Y, Liu T, Hu S, Yuan Z, Dwyer J, Akker BVD, Lloyd J, Guo J. Coupling Partial Nitritation, Anammox and n-DAMO in a membrane aerated biofilm reactor for simultaneous dissolved methane and nitrogen removal. WATER RESEARCH 2024; 255:121511. [PMID: 38552483 DOI: 10.1016/j.watres.2024.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Anaerobic technologies with downstream autotrophic nitrogen removal have been proposed to enhance bioenergy recovery and transform a wastewater treatment plant from an energy consumer to an energy exporter. However, approximately 20-50 % of the produced methane is dissolved in the anaerobically treated effluent and is easily stripped into the atmosphere in the downstream aerobic process, contributing to the release of greenhouse gas emissions. This study aims to develop a solution to beneficially utilize dissolved methane to support high-level nitrogen removal from anaerobically treated mainstream wastewater. A novel technology, integrating Partial Nitritation, Anammox and Methane-dependent nitrite/nitrate reduction (i.e. PNAM) was demonstrated in a membrane-aerated biofilm reactor (MABR). With the feeding of ∼50 mg NH4+-N/L and ∼20 mg/L dissolved methane at a hydraulic retention time of 15 h, around 90 % of nitrogen and ∼100 % of dissolved methane can be removed together in the MABR. Microbial community characterization revealed that ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), anammox bacteria, nitrite/nitrate-dependent anaerobic methane oxidation microorganisms (n-DAMO bacteria and archaea) and aerobic methanotrophs co-existed in the established biofilm. Batch tests confirmed the active microbial pathways and showed that AOB, anammox bacteria and n-DAMO microbes were jointly responsible for the nitrogen removal, and dissolved methane was mainly removed by the n-DAMO process, with aerobic methane oxidation making a minor contribution. In addition, the established system was robust against dynamic changes in influent composition. The study provides a promising technology for the simultaneous removal of dissolved methane and nitrogen from domestic wastewater, which can support the transformation of wastewater treatment from an energy- and carbon-intensive process, to one that is energy- and carbon-neutral.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jason Dwyer
- Urban Utilities, Brisbane, QLD 4000, Australia
| | - Ben Van Den Akker
- South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia; STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - James Lloyd
- Melbourne Water, 990 La Trobe St, Docklands, VIC 3000, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
18
|
Zuo Z, Niu C, Zhao X, Lai CY, Zheng M, Guo J, Hu S, Liu T. Biological bromate reduction coupled with in situ gas fermentation in H 2/CO 2-based membrane biofilm reactor. WATER RESEARCH 2024; 254:121402. [PMID: 38461600 DOI: 10.1016/j.watres.2024.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
19
|
Lv PL, Jia C, Guo X, Zhao HP, Chen R. Microbial stratification protects denitrifying anaerobic methane oxidation archaea and bacteria from external oxygen shock in membrane biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 391:129966. [PMID: 37918493 DOI: 10.1016/j.biortech.2023.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Different gradients of dissolved oxygen (DO) regulate the microbial community and nitrogen removal pathways of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) coupled process in a batch biofilm reactor. Under completely anaerobic condition, approximately 72 mg NO3--N/L was removed at a daily rate of 6.55 mg N/L, whereas a peak accumulation of 95 mg NO3--N/L was observed during DO reached 0.5 mg/L. There is a decrease in the abundance of Candidatus Methylomirabilis (24.1%), Candidatus Methanoperedens (23.3%), and Candidatus Kuenenia (22.6%) to below 5% when DO levels reached 0.2 mg/L. Moreover, key genes associated with the reverse methanogenesis (mcrA) and anaerobic ammonium oxidase (hzo) decreased. These findings indicate that during oxygen shock, methanotrophs and denitrifiers replace Anammox bacteria on the outer sphere of the biofilm, whereas DAMO bacteria and archaea are protected from external oxygen shock due to the microbial stratification of biofilm.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xu Guo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, PR China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
20
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
21
|
Ding J, Qin F, Li C, Tang M. Long-term effect of acetate and biochar addition on enrichment and activity of denitrifying anaerobic methane oxidation microbes. CHEMOSPHERE 2023; 338:139642. [PMID: 37495044 DOI: 10.1016/j.chemosphere.2023.139642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The denitrifying anaerobic methane oxidation (DAMO) process plays a crucial role in the global carbon/nitrogen cycles and methane emission control, and also has application potential in biological wastewater treatment. However, given that DAMO microbes are susceptible to external conditions such as additional carbon source in the system, it is essential to evaluate the effect of alternative carbon substance on the enrichment efficiency and metabolic activity of DAMO microbes. To this end, this study investigated the effect of acetate (0.1 mmol/L-R2, 0.5 mmol/L-R3) and biochar addition (R4) on the enrichment and activity of DAMO microbes. The long-term operation showed that the NO2--N and CH4 consumption rates in the reactors almost presented the sequence of R4>R2>R3>R1. However, the short-term activity test with isotope labelling showed the sequence of R2>R4>R1>R3. Furthermore, the addition of acetate and biochar improved the electrochemical activity and extracellular polymeric substance (EPS) secretion in the systems. In R4 reactor, the proportion of DAMO bacteria was the highest (7.20%), indicating that the addition of biochar could promote the enrichment of DAMO bacteria, and Thauera was co-enriched with the proportion increasing from 0.26% to 6.73%. While in R1, R2 and R3 reactors, DAMO bacteria were enriched with relatively low abundances (0.10%, 0.23%, 0.15%, respectively), together with methanogens and denitrifiers. This study showed that biochar and acetate with appropriate concentration could enhance the enrichment and activity of DAMO bacteria, the results can provide reference for the enrichment of DAMO microbes and its application in the biological nitrogen removal of wastewater.
Collapse
Affiliation(s)
- Jing Ding
- National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Fan Qin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Changxin Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mingfang Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
22
|
Liu T, Hu S, Yuan Z, Guo J. Simultaneous dissolved methane and nitrogen removal from low-strength wastewater using anaerobic granule-based sequencing batch reactor. WATER RESEARCH 2023; 242:120194. [PMID: 37320879 DOI: 10.1016/j.watres.2023.120194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic treatment of mainstream wastewater has been proposed as a promising solution to enhance bioenergy recovery for wastewater treatment plants (WWTPs). However, the limited organics for downstream nitrogen removal and emissions of dissolved methane into the atmosphere are two major barriers to the broad application of anaerobic wastewater treatment. This study aims to develop a novel technology to overcome these two challenges by achieving simultaneous removal of dissolved methane and nitrogen, and unravel the microbial competitions underpinning the process from the microbial and kinetic perspectives. To this end, a laboratory granule-based sequencing batch reactor (GSBR) coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms was developed to treat wastewater mimicking effluent from mainstream anaerobic treatment. The GSBR achieved high-level nitrogen and dissolved methane removal rates (> 250 mg N/L/d and > 65 mg CH4/L/d) and efficiencies (> 99% total nitrogen removal and > 90% total methane removal) during the long-term demonstration. The availability of different electron acceptors (nitrite or nitrate) imposed significant effects on the removal of ammonium and dissolved methane, as well as on the microbial communities, and the abundance and expression of functional genes. The analysis of apparent microbial kinetics showed that anammox bacteria had a higher nitrite affinity than n-DAMO bacteria, while n-DAMO bacteria had a higher methane affinity than n-DAMO archaea. These kinetics underpin the observation that nitrite is a preferred electron acceptor for removing ammonium and dissolved methane than nitrate. The findings not only extend the applications of novel n-DAMO microorganisms in nitrogen and dissolved methane removal, but also provide insights into microbial cooperation and competition in granular systems.
Collapse
Affiliation(s)
- Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
23
|
Li J, Liu T, McIlroy SJ, Tyson GW, Guo J. Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME COMMUNICATIONS 2023; 3:39. [PMID: 37185621 PMCID: PMC10130057 DOI: 10.1038/s43705-023-00246-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.e., 0.1 vs. 1.0 kg N/m3/d) lead to different combinations of anammox bacteria and anaerobic methanotrophs ("Candidatus Methanoperedens" and "Candidatus Methylomirabilis"), which play primary roles for carbon and nitrogen transformations therein. Despite methane being the only exogenous organic carbon supplied, heterotrophic populations (e.g., Verrucomicrobiota and Bacteroidota) co-exist and actively perform partial denitrification or dissimilatory nitrate reduction to ammonium (DNRA), likely using organic intermediates from the breakdown of methane and biomass as carbon sources. More importantly, two novel genomes belonging to "Ca. Methylomirabilis" are recovered, while one surprisingly expresses nitrate reductases, which we designate as "Ca. Methylomirabilis nitratireducens" representing its inferred capability in performing nitrate-dependent anaerobic methane oxidation. This finding not only suggests a previously neglected possibility of "Ca. Methylomirabilis" bacteria in performing methane-dependent nitrate reduction, and also challenges the previous understanding that the methane-dependent complete denitrification from nitrate to dinitrogen gas is carried out by the consortium of bacteria and archaea.
Collapse
Affiliation(s)
- Jie Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|