1
|
Chen J, Zhang F, Li Y, Tan W, Yuan Y, Jiang Y. Influence of landfill leachate microenvironment on the occurrence of microplastics: TOC changes are the main driving factor. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138080. [PMID: 40157182 DOI: 10.1016/j.jhazmat.2025.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Factors such as inorganic salts, heavy metals and organics in landfill leachate can affect the environmental behavior and transport properties of microplastics. However, the influence of the microenvironment on the behavioral effects of microplastics in landfill leachate is still limited. In this study, the abundance characteristics of microplastics in leachate from 15 landfills in the North China Plain were investigated. The results showed that the abundance of microplastics in the leachate in this region was 712.0 items/L, which was mainly composed of small particle size and long fibrous microplastics. The relationships between leachate physicochemical factors and microplastic accumulation patterns were explored using models such as structural equations. Among them, TOC (Total Organic Carbon) had the strongest driving effect on 50-100 μm microplastics. And it had different effects on different microplastics: it promoted the degradation of PET (Polyethylene terephthalate), while it inhibited the degradation of PVC (Polyvinyl chloride), FVMQ (Fluorosilicone rubber) and PSU (Polysulfone). The ridge regression model indicated that the interaction of landfill age with Cr (Chromium) and the interaction of redox potential with Cr were the key factors influencing the behavioral characteristics of microplastics in leachate. These results provide a scientific basis for the treating waste leachate and the controlling the emerging pollutants.
Collapse
Affiliation(s)
- Jiabao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Zhu R, Tan X, Ali I, Duan Z, Wei Y, Huang J, Liang J, Sun K. Eco-corona formation on aminated nanoplastics interacted with extracellular polymeric substances from bloom-forming cyanobacteria: Insightful mechanisms with DFT study. WATER RESEARCH 2025; 278:123394. [PMID: 40037098 DOI: 10.1016/j.watres.2025.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Nanoplastics (NPs) with amino functional groups have wide distribution and high toxicity; however, their environmental behaviors remain inadequately understood. This study investigated the mechanisms of eco-corona formation on pristine polystyrene NPs (PSNPs) and aminated PSNPs (PSNPs-NH2) by extracellular polymeric substances (EPS) from a bloom-forming cyanobacterium, Microcystis aeruginosa. Our results revealed that at the two tested concentrations of EPS (5.0 and 30.0 mg/L), the pristine PSNPs initially aggregated and subsequently repelled. In contrast, PSNPs-NH2 showed a more pronounced aggregation at the elevated EPS concentration of 30 mg/L. In addition, the elemental compositions and functional groups on both types of PSNPs were markedly altered after eco-corona formation. Combining with density functional theory, our findings indicated that electrostatic interaction, hydrogen bonding, and Van der Waals force served as the main binding forces between model EPS (polysaccharide) and PSNPs units. Furthermore, the binding energies of pristine PSNPs-, and PSNPs-NH2-polysaccharide were calculated to be -63.25 and -179.43 kJ/mol, respectively, suggesting a greater affinity of PSNPs-NH2 for polysaccharide. This outcome aligned with our experimental observation. Specifically, the xylose branch within polysaccharide was identified as an optimized binding site for interaction with PSNPs. Our research contributes to a deeper understanding of the environmental behaviors of aminated NPs in freshwater systems, particularly during periods of cyanobacterial blooms.
Collapse
Affiliation(s)
- Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yijia Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
3
|
Lu X, Wang L, Li J, Li W, Yan R, Duan X, Tang Y. Microplastics inhibit lead binding to sediment components: Influence of surface functional groups and charge environment. WATER RESEARCH 2025; 281:123661. [PMID: 40280004 DOI: 10.1016/j.watres.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
The coexistence of heavy metals and microplastics in sediments is well recognized, yet the interactions within ternary systems remain underexplored, and comprehensive studies addressing the diverse sequences of sediment-microplastic-heavy metal coexistence are lacking. In this study, we systematically investigated the interactions among lead (Pb), polystyrene (PS) microplastics, and sediments (using goethite (Goe) and goethite-humic acid composite (GH) as examples) under different coexistence orders. The presence of PS significantly inhibited Pb adsorption by both Goe and GH. For Goe, adsorption kinetics and hydrochemical condition effects showed that PS reduced the electrostatic repulsion between Goe and Pb, leading to a fourfold increase in the mass transfer rate of Pb to the Goe surface. However, Pb 4f deconvolution indicated competition between PS and Pb for hydroxyl groups on Goe, resulting in a 7.4% reduction in Pb adsorption. In the GH system, hydrophobic interactions and coordination complexes between PS and humic acid on GH inhibited the electrostatic adsorption and mass transfer processes between Pb and GH. Pb adsorption behavior and changes in Pb-O content under different coexistence orders further verified that competition between PS and Pb for carboxyl and hydroxyl groups on GH led to a 28.0% reduction in Pb adsorption. This study highlights the inhibitory effect of PS on Pb adsorption by Goe and GH, providing a theoretical basis for understanding the migration and transformation patterns of microplastics and heavy metals in sediments.
Collapse
Affiliation(s)
- Xiao Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Lijuan Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenqiu Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ruoqun Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Qiu Y, Zhang T, Zhang P. Micro/nano plastics inhibit the formation of barium sulfate scale on metal surface. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136151. [PMID: 39426152 DOI: 10.1016/j.jhazmat.2024.136151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mineral scale (scale) is the crystalline inorganic precipitate from aqueous solution. Scale formation in pipelines has long been a challenge in various industrial systems. Micro/nano plastics (MNPs) have the potential to strongly influence scale formation process. However, comprehensive studies and mechanistic understanding of the interactions between MNPs and scales remain significantly underexplored. To fill this gap, we firstly adopted quartz crystal microbalance with dissipation (QCM-D) technology to monitor the in situ formation of barium sulfate (BaSO4) (0.001 M, saturation index 2.5) scale influenced by MNPs on metal surfaces. Microplastic (MP) (5 µm)-loaded surface exhibits hydrophobicity (contact angle > 123.1º), which reduces the rate of scale formation (90.86 ± 11.01 (ng cm-2 min-1)). Electrostatic repulsion impeded crystal growth while ion adsorption has a limited effect. Experiments on BaSO4 formation on metal pipes loaded with foam packaging debris were conducted over 30 days, and similar inhibition results were obtained. This study highlights the important role of MNPs in controlling heterogeneous nucleation and crystal growth of scale on metal surfaces, providing valuable insights for both MNPs and scale research.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao.
| |
Collapse
|
5
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The selective occurrence of ripening effect makes the cotransport of various sized nanoplastics in seawater-saturated and freshwater-saturated porous media significantly different. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136189. [PMID: 39423641 DOI: 10.1016/j.jhazmat.2024.136189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
We explored the coadsorption and cotransport (single, binary, and ternary systems) of varying sized (50, 200, and 500 nm) Polymethylmethacrylate (PMMA) nanoplastics (NPs) with different concentration ratios in freshwater-saturated and seawater-saturated porous media. It was found that ripening effect occurred selectively, with ripening more likely to occur in seawater relative to freshwater, resulting in significantly different cotransport and coadsorption of varying sized NPs in freshwater-saturated and seawater-saturated porous media. In freshwater, there was no obvious ripening effect happening. In both binary and ternary systems, as the concentration of coexisting PMMA NPs increased, the adsorption and retention of coexisting other sized PMMA NPs were inhibited due to competition for adsorption sites. In seawater, coexisting varying sized NPs promoted adsorption and retention of each other in saturated porous media due to increased roughness and ripening effect. The NP aggregate size and the increase in surface roughness of media grains brought about by the increase in size variety of NPs dominated the cotransport of varying sized NPs in seawater-saturated porous media. The findings of this study provide help for clarifying the fate of NPs presented in real environments in porous media of freshwater and seawater systems.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Zi S, Wu D, Zhang Y, Jiang X, Liu J. Insights into the controlling factors of the transport of tire wear particles in saturated porous media: The facilitative role of aging and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175665. [PMID: 39181254 DOI: 10.1016/j.scitotenv.2024.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The widespread distribution and potential adverse effects of tire wear particles (TWPs) on soil and groundwater quality pose a growing environmental concern. This study investigated the transport behavior of TWPs in saturated porous media and elucidated the underlying mechanisms influenced by environmental factors. Additionally, the effects of key environmental factors, such as aging, ionic strength, cation species, medium type, and natural organic matter (NOM), on the transport of TWPs were evaluated. The results showed that aging processes simulated through O3 and UV irradiation altered the physicochemical properties of TWPs, increased the mobility of TWPs at low ionic strengths. However, the high ionic strengths and the presence of Ca2+ significantly inhibited the mobility of TWPs due to enhanced aggregation. The transport mechanism of the original and aged TWPs shifted from blocking to ripening under favorable retention conditions (i.e., high ionic strengths, divalent cations, and fine sands). Interestingly, the presence of fulvic acid (FA) inhibited the ripening of the three TWPs, significantly promoting their transport through a spatial site resistance mechanism. The two-site kinetic attachment model (TSKAM), extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and colloid filtration theory (CFT) were applied to describe the transport behavior of the TWPs. The study provided a comprehensive understanding of the transport behavior of TWPs in groundwater environments, highlighting the environmental risks associated with their widespread distribution.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiangtao Jiang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Li L, Luo D, Luo S, Yue J, Li X, Chen L, Chen X, Wen B, Luo X, Li Y, Huang W, Chen C. Heteroaggregation, disaggregation, and migration of nanoplastics with nanosized activated carbon in aquatic environments: Effects of particle property, water chemistry, and hydrodynamic condition. WATER RESEARCH 2024; 266:122399. [PMID: 39276480 DOI: 10.1016/j.watres.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Nanosized activated carbon (NAC) as emerging engineered nanomaterials may interact with nanoplastics prevalent in aquatic environments to affect their fate and transport. This study investigated the effects of particle property (charge and concentration), water chemistry [electrolytes, pH, humic acid (HA), and sodium alginate (SA)], and hydrodynamic condition [wave (i.e., sonication) and turbulence (i.e., stirring)] on the heteroaggregation, disaggregation, and migration of NAC with positively charged amino-modified polystyrene (APS) or negatively charged bare polystyrene (BPS) nanoplastics. The homoaggregation rate of APS was slower than its heteroaggregation rate with NAC, with critical coagulation concentrations (CCC) decreasing at higher NAC concentrations. However, the homoaggregation rate of BPS was intermediate between its heteroaggregation rates under low (10 mg/L) and high (40 mg/L) NAC concentrations. The heteroaggregation rate of APS+NAC enhanced as pH increasing from 3 to 10, whereas the opposite trend was observed for BPS+NAC. In NaCl solution or at CaCl2 concentration below 2.5 mM, HA stabilized APS+NAC and BPS+NAC via steric hindrance more effectively than SA. Above 2.5 mM CaCl2, SA destabilized APS+NAC and BPS+NAC by calcium bridging more strongly than HA. The migration process of heteroaggregates was simulated in nearshore environments. The simulation suggests that without hydrodynamic disturbance, APS+NAC (971 m) may travel farther than BPS+NAC (901 m). Mild wave (30-s sonication) and intense turbulence (1500-rpm stirring) could induce disaggregation of heteroaggregates, thus potentially extending the migration distances of APS+NAC and BPS+NAC to 1611 and 2160 m, respectively. Conversely, intense wave (20-min sonication) and mild turbulence (150-rpm stirring) may further promote aggregation of heteroaggregates, shortening the migration distances of APS+NAC and BPS+NAC to 262 and 552 m, respectively. Particle interactions mainly involved van der Waals attraction, electrostatic repulsion, steric hindrance, calcium bridging, π-π interactions, hydrogen bonding, and hydrophobic interactions. These findings highlight the important influence of NAC on the fate, transport, and risks of nanoplastics in aquatic environments.
Collapse
Affiliation(s)
- Lihua Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Dan Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Shijie Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiale Yue
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xinzhi Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lianrong Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Bowen Wen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xitian Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Zeng D, Chen C, Huang Z, Gu J, Zhang Z, Cai T, Peng J, Huang W, Dang Z, Yang C. Influence of macromolecules and electrolytes on heteroaggregation kinetics of polystyrene nanoplastics and goethite nanoparticles in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135257. [PMID: 39047557 DOI: 10.1016/j.jhazmat.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Fate and transport of nanoplastics in aquatic environments are affected by their heteroaggregation with minerals in the presence of macromolecules. This study investigated the heteroaggregation of polystyrene nanoplastics (PSNPs) with goethite nanoparticles (GNPs) under the influence of macromolecules [humic acid (HA), bovine serum albumin (BSA), and DNA] and electrolytes. Under 1 mg C/L macromolecule, raising electrolyte concentration promoted heteroaggregation via charge screening, except that calcium bridging with HA also enhanced heteroaggregation at CaCl2 concentration above 5 mM. At all NaCl concentrations and CaCl2 concentration below 5 mM, 1 mg C/L macromolecules strongly retarded heteroaggregation, ranking BSA > DNA > HA. Raising macromolecule concentration strengthened such stabilization effect of all macromolecules in NaCl solution and that of DNA and BSA in CaCl2 solution by enhancing steric hindrance. However, 0.1 mg C/L BSA slightly promoted heteroaggregation in CaCl2 solution due to stronger electrostatic attraction than steric hindrance. In CaCl2 solution, raising HA concentration strengthened its destabilization effect via calcium bridging. Macromolecules having more compact globular structure and higher molecular weight may exert greater steric hindrance to inhibit heteroaggregation more effectively. This study provides new insights on the effects of macromolecules and electrolytes on heteroaggregation between nanoplastics and iron minerals in aquatic environments.
Collapse
Affiliation(s)
- Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiamin Peng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
9
|
Liang Y, Liu X, Zhai W, Guo Q, Guo H, Lv S, Wang Z, Zhao F, Zheng L, Zhou Z, Liu D, Wang P. Agricultural film-derived microplastics elevate the potential risk of pesticides in soil ecosystem: The inhibited leaching by altering soil pore. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135210. [PMID: 39047559 DOI: 10.1016/j.jhazmat.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The residue of mulch film is a crucial source of microplastics (MPs) in agricultural fields. The effects of mulch film-derived MPs on the environmental behavior of pesticides in agriculture remain unclear. In the present study, the effects of MPs of different sizes (5 mm, 1 mm, 30 µm, and 0.3 µm) at environmentally relevant concentrations on pesticide transport were evaluated, and the mechanism was explored with respect to adsorption and pore structure using fluorescence visualization, the extended Derjaguin-Landau-Verwey-Overbeek model, and microcomputed tomography. MPs were found to be retained in the soil due to size limitation, pore capture, and surface adhesion. The presence of mm-sized MPs (5 and 1 mm) at a concentration of 0.25 % inhibited the leaching behavior of atrazine, metolachlor, and tebuconazole. MPs did not significantly alter the pesticide adsorption ability of the soil. The reduced leaching originated from the impact of MPs on soil pore structure. Specifically, the porosity increased by 16.2-25.0 %, and the connectivity decreased by 34.5 %. These results demonstrate that mm-sized MPs inhibit pesticide leaching by obstructing the pores and altering the transport pathways, thereby potentially elevating environmental risks, particularly to the soil ecosystem.
Collapse
Affiliation(s)
- Yabo Liang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haoming Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shengchen Lv
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
10
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Ranasinghe M, Breadmore MC, Maya F. Nanoplastic Sample Cleanup by Micro-Electromembrane Extraction across Free Liquid Membranes. Anal Chem 2024; 96:11734-11741. [PMID: 38987907 DOI: 10.1021/acs.analchem.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sample preparation techniques enabling the separation and cleanup of nanoplastics removing other components present in complex sample matrices are scarce. Herein, micro-electromembrane extraction (μ-EME) has been explored for this purpose based on the extraction of nanoplastic particles across a free liquid membrane (FLM). The extraction unit is based on a perfluoroalkoxy tube sequentially filled with the acceptor solution (20 μL 5 mM phosphate buffer, pH 10.7), FLM (10 μL 1-pentanol), and donor solution (20 μL sample/standard solution). Sulfonated polystyrene beads (200 nm particle size) were selected as a model mimicking negatively charged nanoplastics. At 700 V, nanoplastics transferred from the donor solution into the FLM before moving across the FLM into the acceptor solution. Quantitative nanoplastic measurements after μ-EME were performed by injecting the acceptor solution into a capillary electrophoresis system with diode array detection. μ-EME allowed the rapid nanoplastic sample cleanup, requiring an extraction time of just 90 s and obtaining a nanoplastic transfer yield through the FLM of 60% with RSD values below 9%. The μ-EME technique enabled the efficient sample matrix cleanup of nanoplastics spiked in different tea matrices. Nanoplastic transfer yield through the FLM for black tea and flavored tea matrices were 56% and 47%, respectively, with complete sample matrix removal of UV-absorbing compounds.
Collapse
Affiliation(s)
- Muhandiramge Ranasinghe
- Australian Centre for Research on Separation Science, School of Natural Sciences University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science, School of Natural Sciences University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
12
|
Kang M, Bai X, Liu Y, Weng Y, Wang H, Ye Z. Driving Role of Zinc Oxide Nanoparticles with Different Sizes and Hydrophobicity in Metabolic Response and Eco-Corona Formation in Sprouts ( Vigna radiata). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9875-9886. [PMID: 38722770 DOI: 10.1021/acs.est.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/β-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
13
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
14
|
Ompala C, Renault JP, Taché O, Cournède É, Devineau S, Chivas-Joly C. Stability and dispersibility of microplastics in experimental exposure medium and their dimensional characterization by SMLS, SAXS, Raman microscopy, and SEM. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134083. [PMID: 38513443 DOI: 10.1016/j.jhazmat.2024.134083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The plastic production that contributes to the global plastic reservoir presents a major challenge for society in managing plastic waste and mitigating the environmental damage of microplastic (MP) pollution. In the environment, the formation of biomolecular corona around MPs enhance the stability of MP suspensions, influencing the bioavailability and toxicity of MPs. Essential physical properties including MP stability, dispersibility, agglomeration, and dimensional size must be precisely defined and measured in complex media taking into account the formation of a protein corona. Using static multiple light scattering (SMLS), small angle X-ray scattering (SAXS), Raman microscopy, and scanning electron microscopy (SEM), we measured the particle size, density, stability, and agglomeration state of polyethylene and polypropylene MPs stabilized in aqueous suspension by BSA. SEM analysis revealed the formation of nanoplastic debris as MP suspensions aged. Our results suggest that protein adsorption favors the formation of secondary nanoplastics, potentially posing an additional threat to ecosystems. This approach provides analytical methodologies by integrating SEM, SMLS, and SAXS, for characterizing MP suspensions and highlights the effect of the protein corona on size measurements of micro/nanoplastics. Our analysis demonstrates the detectability of secondary nanoplastics by SEM, paving the way for monitoring and controlling human exposure.
Collapse
Affiliation(s)
- Chardel Ompala
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif Sur Yvette, France; Laboratoire National de métrologie et d'Essais, Nanometrology, CARMEN Platform, 29 avenue Roger Hennequin, 78197 Trappes Cedex, France
| | | | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif Sur Yvette, France
| | - Émeline Cournède
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif Sur Yvette, France
| | - Stéphanie Devineau
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif Sur Yvette, France; Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France.
| | - Carine Chivas-Joly
- Laboratoire National de métrologie et d'Essais, Nanometrology, CARMEN Platform, 29 avenue Roger Hennequin, 78197 Trappes Cedex, France.
| |
Collapse
|
15
|
Shi K, Zhang H, Yang Y, Huang Y, Gao J, Zhang J, Kan G, Jiang Y, Jiang J. Efficient Extraction and Analysis of Nanoplastics by Ionic Liquid-Assisted Cloud-Point Extraction Coupled with Electromagnetic Heating Pyrolysis Mass Spectrometry. Anal Chem 2024; 96:4514-4520. [PMID: 38447135 DOI: 10.1021/acs.analchem.3c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Nanoplastics have attracted much attention due to their potential hazards. However, analysis of nanoplastics remains challenging. In this study, ionic liquid-assisted cloud-point extraction (IL-assisted CPE) was developed to enrich nanoplastics in the aqueous environment and further coupled with electromagnetic heating pyrolysis mass spectrometry. The use of trace ILs improves the extraction efficiency of CPE for nanoplastics. The effects of ILs (types, contents), nanoplastic properties (type, size), and environmental factors (aging time, humic acid content) were systematically investigated to evaluate the applicability. The limits of detection of poly(methyl methacrylate) (PMMA) and polystyrene (PS) were determined to be 1.78 and 2.67 μg/L, respectively. Real environmental samples including lake water, rainwater, and influent and effluent from wastewater treatment plant were analyzed with good accuracy (79.58-116.87%) and satisfactory precision (RSD ≤ 11.99%). A possible mechanism for ILs being absorbed into the ordered surfactant micellar and generating larger micelles to synergically enclose hydrophobic nanoplastics was proposed. This work provides a simple and efficient approach to the extraction and analysis of nanoplastics in aqueous environments.
Collapse
Affiliation(s)
- Ke Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | | | - Yuelin Huang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Jikun Gao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Jiaqian Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
16
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
17
|
Du T, Meng R, Qian L, Wang Z, Li T, Wu L. Formation of extracellular polymeric substances corona on TiO 2 nanoparticles: Roles of crystalline phase and exposed facets. WATER RESEARCH 2024; 249:120990. [PMID: 38086209 DOI: 10.1016/j.watres.2023.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) in the environment can interact with macromolecules in the surrounding environment to form eco-corona on their surfaces, which in turn affects the environmental fate and toxicity of nanoparticles. Wastewater treatment plants containing large amounts of microbial extracellular polymeric substances (EPS) are an important source of NPs into the environment, where the formation of EPS coronas on NPs is critical. However, it remains unclear how the crystalline phase and exposed facets, which are intrinsic properties of NPs, affect the formation of EPS coronas on NPs. This study investigated the formation of EPS corona on three TiO2 NPs (representing the most widely used engineered NPs) with different crystalline phases and exposed facets. The protein type and abundance in EPS coronas on TiO2 NPs varied depending on the crystalline phase and exposed facets. Anatase with {101} facets and {001} facets preferred to adsorb proteins with lower molecular weights and higher H-bonding relevant amino acids, respectively, while EPS corona on rutile with {110} facets had proteins with higher hydrophobicity. In addition, the selective adsorption of proteins was primarily determined by steric hindrance, hydrogen bonding, and hydrophobic interaction between TiO2 NPs and proteins, which were affected by changes in aggregation state, surface hydroxyl density, and hydrophobicity of TiO2 NPs induced by crystalline phase and exposed facets. Moreover, crystalline phase and exposed facets-induced EPS corona changes altered the aggregation state and oxidation potential of TiO2-EPS corona complexes. These findings emphasize the important role of crystalline phase and exposed facets in the environmental behavior of nanoparticles and may provide insights into the safe design of nanoparticles.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Ru Meng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ziyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
18
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
19
|
Duan L, Qin Y, Meng X, Liu Y, Zhang T, Chen W. Sulfide- and UV-induced aging differentially affect contaminant-binding properties of microplastics derived from commercial plastic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161800. [PMID: 36708829 DOI: 10.1016/j.scitotenv.2023.161800] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics in the environments can undergo various aging processes that alter their physicochemical properties and consequently their affinities for environmental contaminants. Here, we compare the effects of sulfide-induced aging (a common process in anoxic environments) and UV-induced aging on contaminant binding of polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) microplastics derived from commercial plastic products. The two aging processes differentially affect adsorption of pyrene (a model nonionic, nonpolar organic) and ciprofloxacin (CIP, a zwitterion under the conditions tested) by modulating the hydrophobicity, surface charges and polarity of the microplastics to different extents. The effects of the two treatments on Cd(II) adsorption correlate well with their modulation on ζ potential and surface (O + S)/C ratio of the microplastics. For all three microplastics sulfide treatment results in stronger adsorption of Cr(VI) and its subsequent conversion to Cr(III) than does UV treatment, as the thiol groups formed during sulfide treatment strongly regulate the complexation and reduction of Cr(VI). Notably, both sulfide and UV treatments result in the flattening of the PET microplastics, significantly enhancing the adsorption of all four contaminants, by increasing surface area for adsorption. The findings of this study further underline the importance of understanding environmental aging/weathering processes of microplastics, particularly, those readily occur in anoxic environments but were previously not well studied.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yiyuan Qin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xin Meng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| |
Collapse
|
20
|
Zhao Z, Li H, Yao J, Lan J, Bao Y, Zhao L, Zong W, Zhang Q, Hollert H, Zhao X. Binding of Tetrabromobisphenol A and S to Human Serum Albumin Is Weakened by Coexisting Nanoplastics and Environmental Kosmotropes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4464-4470. [PMID: 36893289 DOI: 10.1021/acs.est.2c09090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human serum albumin (HSA) was used as a model protein to explore the effects of brominated flame retardant (BFR) binding and the corona formation on polystyrene nanoplastics (PNs). Under physiological conditions, HSA helped to disperse PNs but promoted the formation of aggregates in the presence of tetrabromobisphenol A (TBBPA, ΔDh = 135 nm) and S (TBBPS, ΔDh = 256 nm) at pH 7. At pH 4, these aggregates became larger with fewer electrostatic repulsion effects (ΔDh = 920 and 691 nm for TBBPA and TBBPS, respectively). However, such promotion effects as well as BFR binding are different due to structural differences of tetrabromobisphenol A and S. Environmental kosmotropes efficiently stabilized the structure of HSA and inhibited BFR binding, while the chaotropes favored bioconjugated aggregate formation. Such effects were also verified in natural seawater. The newly gained knowledge may help us anticipate the behavior and fate of plastic particles and small molecular pollutants in both physiological and natural aqueous systems.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haimei Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaqiang Yao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lining Zhao
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qing Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| |
Collapse
|