1
|
Xuan Y, Zheng Z, Zhang M, Pan D. Development of certified reference materials for measuring perfluorooctanoic acid and perfluorooctane sulfonate concentrations in soil. Talanta 2025; 295:128320. [PMID: 40393238 DOI: 10.1016/j.talanta.2025.128320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
This study developed certified reference materials (CRMs) for measuring perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) concentrations in soil. Three soil candidate CRMs were collected from different fluoride contamination regions and dried, ground, sieved, homogenized, and bottled in 30 g portions. To promote their practicability, underlying concerns about potential factors effect (the particle size of samples, extraction reagents, extraction times, extraction pH, equilibration time, cartridge type, and filters) have been addressed using a pretreatment optimization strategy. The isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) was applied for the homogeneity study, stability assessment and characterization of the PFOA and PFOS concentrations in the soil candidates. The combined uncertainties of the certified values including characterization, homogeneity, and stability were evaluated. In addition, an interlaboratory study involving 11 laboratories was conducted to support characterization. The certified values and expanded uncertainties were 0.82 ± 0.13 μg/kg (ESF1), 6.5 ± 0.8 μg/kg (ESF3) for PFOA and 2.4 ± 0.4 μg/kg (ESF1), 17 ± 2 μg/kg (ESF2), 85 ± 8 μg/kg (ESF3) for PFOS, respectively, which can be used for quality control in environmental monitoring.
Collapse
Affiliation(s)
- Yuzhi Xuan
- Zhejiang Huakun Geological Development Co., Ltd, Wenzhou, 325000, China
| | - Zhihao Zheng
- Zhejiang Huakun Geological Development Co., Ltd, Wenzhou, 325000, China
| | - Menghuan Zhang
- Zhejiang Huakun Geological Development Co., Ltd, Wenzhou, 325000, China
| | - Dajian Pan
- Zhejiang Geology and Mineral Technology Co., Ltd, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Lendewig M, Marquez R, Franco J, Vera RE, Vivas KA, Forfora N, Venditti RA, Gonzalez R. PFAS regulations and economic impact: A review of U.S. pulp & paper and textiles industries. CHEMOSPHERE 2025; 377:144301. [PMID: 40203642 DOI: 10.1016/j.chemosphere.2025.144301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Public concern over per- and polyfluoroalkyl substances (PFAS) continues to grow as evidence highlights their persistence, bioaccumulation potential, and adverse health effects. Increasing detections in drinking water, consumer products, and industrial discharges have intensified regulatory scrutiny. This review examines the evolving PFAS regulatory landscape in the United States, focusing on the pulp, paper, and textiles industries, which contribute significantly to PFAS contamination through wastewater discharges, end-product disposal, and the absence of dedicated removal technologies. PFAS emissions from food packaging alone are estimated at 2,300 kg annually. Addressing contamination presents substantial economic challenges, with wastewater treatment costs projected to reach USD 3 billion annually and growing risks of legal liabilities exemplified by paper mill settlements reaching USD 11.9 million for historical pollution. Large-scale remediation of PFAS remains financially prohibitive, with estimates exceeding the global gross domestic product (GDP) of USD 106 trillion. Additionally, healthcare costs for PFAS-linked diseases exceed USD 62 billion and further emphasize the need for prevention. State-level restrictions on PFAS-containing consumer products are expanding, particularly in food packaging and textiles, which are now the most regulated across the United States. As PFAS-containing products face increasing market limitations and potential loss of sustainability certifications, which have already reduced sales growth by 70% in some cases, transitioning to non-fluorinated alternatives could significantly mitigate economic risks for paper and textiles companies. Within this context, this review highlights the urgency of integrating policy, technological innovation, and economic incentives to accelerate the transition away from PFAS and mitigate long-term environmental and financial liabilities.
Collapse
Affiliation(s)
- Mariana Lendewig
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Jorge Franco
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Ramon E Vera
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Keren A Vivas
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Naycari Forfora
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Richard A Venditti
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC, 27695-8005, USA.
| |
Collapse
|
3
|
Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. Research Progress in Current and Emerging Issues of PFASs' Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025; 14:958. [PMID: 40231978 PMCID: PMC11941069 DOI: 10.3390/foods14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are found everywhere, including food, cosmetics, and pharmaceuticals. This review introduces PFASs comprehensively, discussing their nature and identifying their interconnection with microplastics and their impacts on public health and the environment. The human cost of decades of delay, cover-ups, and mismanagement of PFASs and plastic waste is outlined and briefly explained. Following that, PFASs and long-term health effects are critically assessed. Risk assessment is then critically reviewed, mentioning different tools and models. Scientific research and health impacts in the United States of America are critically analyzed, taking into consideration the Center for Disease Control (CDC)'s PFAS Medical Studies and Guidelines. PFAS impact and activities studies around the world have focused on PFAS levels in food products and dietary intake in different countries such as China, European countries, USA and Australia. Moreover, PFASs in drinking water and food are outlined with regard to risks, mitigation, and regulatory needs, taking into account chemical contaminants in food and their impact on health and safety. Finally, PFAS impact and activities briefings specific to regions around the world are discussed, referring to Australia, Vietnam, Canada, Europe, the United States of America (USA), South America, and Africa. The PFAS crisis is a multifaceted issue, exacerbated by mismanagement, and it is discussed in the context of applying the following problem-solving analytical tools: the Domino Effect Model of accident causation, the Swiss Cheese Theory Model, and the Ishikawa Fish Bone Root Cause Analysis. Last but not least, PFASs' impacts on the Sustainable Development Goals (SDGs) of 2030 are rigorously discussed.
Collapse
Affiliation(s)
- Jocelyn C. Lee
- Independent Researcher—Food Safety Consultant, San Francisco Bay Area, San Francisco, CA 94121, USA;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - John Duffill
- John Crop Development Vietnam Co., Ltd., Landmark 81, 720A Dien Bien Phu St., Binh Thanh Dist., Quận Bình Thạnh, Ho Chi Minh City 718900, Vietnam;
| | - Ben Marandi
- Food Scientist Researcher, Food Policy and Legal Advisor, 26 Lauren Beth Dr., Richmond Hill, ON L4E 4K3, Canada;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
4
|
Li X, Hou M, Zhang F, Ji Z, Cai Y, Shi Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1469-1486. [PMID: 39803974 DOI: 10.1021/acs.est.4c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The deleterious health implications of perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely recognized. Females, in contrast to males, exhibit unique pathways for PFAS exposure and excretion, leading to complex health outcomes. The health status of females is largely influenced by hormone-related processes. PFAS have been reported to be associated with various aspects of female health, including reproductive system disorders and pregnancy-related diseases. In this article, we provide insights into the correlations between PFAS and female-prevalent diseases. Current epidemiological and toxicological evidence has demonstrated that the adverse effects of PFAS on the health of the female reproductive system are primarily attributed to the disruption of the hypothalamic-pituitary-gonadal (HPG) axis and hormonal homeostasis. However, these findings do not sufficiently elucidate the intricate associations between PFAS and specific diseases. Furthermore, autoimmune disorders, another category that is more prevalent in women compared to men, require additional investigation. Immune biomarkers pertinent to autoimmune disorders have been observed to be influenced by PFAS exposure, although epidemiological evidence is insufficient to substantiate these relations. Further thorough exploration encompassing epidemiological and toxicological studies is essential to elucidating the inherent influence of PFAS on human pathologies. Additionally, comprehensive investigations into female health issues beyond their reproductive functions is essential.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao X, Fu M, Zhou S, Han Y, Zhang W, Peng C, Li Q, Zhu Q, Yang J. Targeted investigation of per- and polyfluoroalkyl substances from domestic cosmetics and personal care products in China and its implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176207. [PMID: 39276996 DOI: 10.1016/j.scitotenv.2024.176207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals reported in daily supplies, and skin absorption is one of the routes for human exposure to PFASs. This study aims to evaluate the potential risk of PFASs exposure from cosmetics and personal care products in China. A random sampling of 44 domestic cosmetics and personal care products, summarized into 6 categories, was conducted to investigate the concentrations of 24 target PFASs. PFASs concentrations of 86.4 % products were lower than 100 ng/g, and 34.2 % products were lower than 10 ng/g. PFCAs and PAPs were dominant. Keywords of "wear-resistant" and "long-lasting" may indicate the presence of PFASs in products. Disabled PFOA, PFOS, and PFHxS were not detected. Notably, the presence of PFHxA should be of concern, and its detection frequency reached 59.1 %, with the maximum concentration of 1274.77 ng/g. Further, the daily exposure dose (DED) of ∑PFASs from skin exposure through cosmetics and personal care products was evaluated to be 3.01 ng/kg-bw/day, which wasn't negligible compared to the prescribed acceptable intake value. Conclusively, this study emphasizes that cosmetics and personal care products are important sources leading to the PFASs skin exposure and provides a basis for future regulation of PFASs as product additive.
Collapse
Affiliation(s)
- Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Qinghe Zhu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
6
|
Brassart Olsen C. Addressing the commercial determinants of menstrual health: a call to regulate menstrual product manufacturers. Health Promot Int 2024; 39:daae154. [PMID: 39569804 DOI: 10.1093/heapro/daae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Over the last two decades, menstrual health and hygiene have become increasingly common on the global health agenda. While governments and international organizations are adopting measures to make menstrual products more accessible, corporate actors producing them have only been subject to limited scrutiny. Yet, their products and commercial practices raise environmental, health, equity and societal issues, which warrant attention and regulation. As such, commercial disposable menstrual products are largely made up of plastic, sometimes as much as 90%. Menstrual pads and tampons also contain some chemicals, the health impact of which is still unclear. In addition, these products are often sold with high-profit margins, and marketing campaigns to sell such products tend to reinforce shame and secrecy. So far, no global standards exist to regulate menstrual products and manufacturers, and evidence in the field of menstrual health and hygiene is lagging behind. To fill this gap, countries have started to regulate menstrual products and the International Standards Organization is in the process of developing global standards to better regulate the content and labeling of menstrual products. To support the emergence of regulation in this area, this article conceptualizes for the first time a comprehensive framework for the regulation of menstrual product manufacturers. This framework encompasses five complementary measures to regulate the content; labeling; production and waste management; pricing; advertising and marketing of menstrual products. The article also calls for more research to produce evidence and for increased governmental and inter-governmental attention to menstrual product manufacturers.
Collapse
Affiliation(s)
- Céline Brassart Olsen
- Faculty of Law, Copenhagen University, Karen Blixen Plads 16, 2300 Copenhagen, Denmark
| |
Collapse
|
7
|
Sun M, Wang Z, Cao Z, Dong Z. Infants exposure to chemicals in diapers: A review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176072. [PMID: 39255936 DOI: 10.1016/j.scitotenv.2024.176072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Diapers are a staple care product for infants, yet concerns persist regarding the potential risks posed by dermal exposure to chemicals through their usage. This review provides a comprehensive summary of reported chemicals, highlighting the frequent detection of polychlorodibenzo-p-dioxins (PCDDs), phthalates (PAEs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), bisphenols (BPs), organotins, and heavy metals. Disposable diapers commonly exhibit higher concentrations of VOCs, PAEs, BPs, and heavy metals than other chemicals. Our estimation reveals formaldehyde as posing the highest dermal exposure dose, reaching up to 0.018 mg/kg bw/day. Conversely, perfluorooctanoic acid (PFOA) exhibits lower exposure, but its non-cancer hazard quotient (0.062) is the highest. In most scenarios, the risk of chemical exposure through diapers for infants is deemed acceptable, while the risk is higher under some extreme exposure scenarios. Using the cancer slope factor recently suggested by U.S. EPA, the cancer risk in diapers raised by PFOA is 5.5 × 10-5. It should be noted that our estimation is approximately 1000-10,000 folds lower than some previous estimations. The high uncertainties associated with exposure and risk estimations are primarily raised by unclear parameters related to chemical migration coefficients, absorption factors, concentrations, and toxicity data for skin exposure, which requires research attention in future. Besides that, future research endeavors should prioritize the identification of potential toxic chemicals and the development of hygiene guidelines and standards.
Collapse
Affiliation(s)
- Mengxin Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhaomin Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China; School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Gong H, Hu J, Rui X, Wang Y, Zhu N. Drivers of change behind the spatial distribution and fate of typical trace organic pollutants in fresh waste leachate across China. WATER RESEARCH 2024; 263:122170. [PMID: 39096808 DOI: 10.1016/j.watres.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
There have been growing concerns regarding the health and environmental impacts of trace organic pollutants (TOPs). However, fresh leachate from municipal solid waste (MSW) has been overlooked as a potential reservoir of TOPs. Therefore, we investigated 90 legacy and emerging TOPs in fresh leachate from 14 provinces and municipalities in China. Additionally, the fate and final discharge impacts of TOPs in 14 leachate treatment systems were analyzed. The results revealed that the detection rate of 90 TOPs was over 50 % in all samples. Notably, polychlorinated biphenyls, banned for 40 years, were frequently detected in fresh leachate. The concentration of pseudo-persistent TOPs (105-107 ng/L) is significantly higher than that of persistent TOPs (102-104 ng/L). Spatial distribution patterns of TOPs in fresh leachate suggest that economy, population, climate, and policies impact TOPs discharge from MSW. For example, economically developed and densely populated areas displayed higher TOPs concentrations, whereas warmer climates facilitate TOPs leaching from MSW. We confirmed that waste classification policies were a key driver of the decline in multiple TOPs in leachate. Mass balance analysis shows that the final effluent and sludge from current dominant leachate treatment systems contain refractory TOPs, especially perfluoroalkyl acids, which must be prioritized for control. This paper was the first comprehensive investigation of multiple TOPs in fresh leachate at a large geographic scale. The factors affecting the occurrence, spatial distribution, and fate of TOPs in fresh leachate were revealed. It provides a valuable reference for the establishment of policies for the management of TOPs in MSW and the associated leachate.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Fujitani T, Fujii Y, Harada KH. Correspondence on "Per- and Polyfluoroalkyl Substances in Personal Hygiene Products: The Implications for Human Exposure and Emission to the Environment". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14052-14053. [PMID: 39038256 DOI: 10.1021/acs.est.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Affiliation(s)
- Tomoko Fujitani
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Zhang Y, Sun Q, Mustieles V, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Predictors of Serum Per- and Polyfluoroalkyl Substances Concentrations among U.S. Couples Attending a Fertility Clinic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5685-5694. [PMID: 38502775 DOI: 10.1021/acs.est.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Previous studies have examined the predictors of PFAS concentrations among pregnant women and children. However, no study has explored the predictors of preconception PFAS concentrations among couples in the United States. This study included 572 females and 279 males (249 couples) who attended a U.S. fertility clinic between 2005 and 2019. Questionnaire information on demographics, reproductive history, and lifestyles and serum samples quantified for PFAS concentrations were collected at study enrollment. We examined the PFAS distribution and correlation within couples. We used Ridge regressions to predict the serum concentration of each PFAS in females and males using data of (1) socio-demographic and reproductive history, (2) diet, (3) behavioral factors, and (4) all factors included in (1) to (3) after accounting for temporal exposure trends. We used general linear models for univariate association of each factor with the PFAS concentration. We found moderate to high correlations for PFAS concentrations within couples. Among all examined factors, diet explained more of the variation in PFAS concentrations (1-48%), while behavioral factors explained the least (0-4%). Individuals reporting White race, with a higher body mass index, and nulliparous women had higher PFAS concentrations than others. Fish and shellfish consumption was positively associated with PFAS concentrations among both females and males, while intake of beans (females), peas (male), kale (females), and tortilla (both) was inversely associated with PFAS concentrations. Our findings provide important data for identifying sources of couples' PFAS exposure and informing interventions to reduce PFAS exposure in the preconception period.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012, Spain
- University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| |
Collapse
|
11
|
Chen YF, Liu T, Hu LX, Chen CE, Yang B, Ying GG. Unveiling per- and polyfluoroalkyl substance contamination in Chinese paper products and assessing their exposure risk. ENVIRONMENT INTERNATIONAL 2024; 185:108540. [PMID: 38428191 DOI: 10.1016/j.envint.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The contamination characteristics, migration patterns and health risks of per- and polyfluoroalkyl substances (PFAS) were investigated in 66 Chinese paper products by using target and non-target screening methods. Among 57 target PFASs, 5 and 6 PFASs were found in the hygiene paper products (
Collapse
Affiliation(s)
- Yan-Fei Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Roesch P, Schinnen A, Riedel M, Sommerfeld T, Sawal G, Bandow N, Vogel C, Kalbe U, Simon FG. Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis. CHEMOSPHERE 2024; 351:141200. [PMID: 38228192 DOI: 10.1016/j.chemosphere.2024.141200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (
Collapse
Affiliation(s)
- Philipp Roesch
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany.
| | - Andrea Schinnen
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Maren Riedel
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Thomas Sommerfeld
- Federal Institute for Materials Research and Testing, Division 1.7 - Organic Trace and Food Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - George Sawal
- German Environment Agency, Colditzstr. 34, 12099, Berlin, Germany
| | - Nicole Bandow
- German Environment Agency, Colditzstr. 34, 12099, Berlin, Germany
| | - Christian Vogel
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Ute Kalbe
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Franz-Georg Simon
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
13
|
Ao J, Tang W, Liu X, Ao Y, Zhang Q, Zhang J. Polyfluoroalkyl phosphate esters (PAPs) as PFAS substitutes and precursors: An overview. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133018. [PMID: 37984148 DOI: 10.1016/j.jhazmat.2023.133018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are emerging substitutes for legacy per- and polyfluoroalkyl substances (PFAS), which are widely applied in consumer products and closely related to people's daily lives. Increasing concern has been raised about the safety of PAPs due to their metabolism into perfluorooctanoic acid (PFOA) and other perfluorinated carboxylates (PFCAs) in vivo. This review summarizes the current knowledge on PAPs and highlights the knowledge gaps. PAPs dominated the PFAS profiles in wastewater, sludge, household dust, food-contact materials, paper products, paints, and cosmetics. They exhibit biomagnification due to their higher levels in top predators. PAPs have been detected in human blood worldwide, with the highest mean levels being found in the United States (1.9 ng/mL) and China (0.4 ng/mL). 6:2 diPAP is the predominant PAP among all identified matrices, followed by 8:2 diPAP. Toxicokinetic studies suggest that after entering the body, most PAPs undergo biotransformation, generating phase Ⅰ (i.e., PFCAs), phase II, and intermediate products with toxicity to be verified. Several epidemiological and toxicological studies have reported the antiandrogenic effect, estrogenic effect, thyroid disruption, oxidative damage, and reproductive toxicity of PAPs. More research is urgently needed on the source and fate of PAPs, human exposure pathways, toxicity other than reproductive and endocrine systems, toxic effects of metabolites, and mixed exposure effects.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoning Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Kang H, Kim DH, Choi YH. Elevated levels of serum per- and poly-fluoroalkyl substances (PFAS) in contact lens users of U.S. young adults. CHEMOSPHERE 2024; 350:141134. [PMID: 38184077 DOI: 10.1016/j.chemosphere.2024.141134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Despite evidence indicating the presence of per- and poly-fluoroalkyl substances (PFAS) in contact lenses (CL), it remains unclear whether CL use increases PFAS exposure in the general population. We aimed to determine whether CL users have higher serum concentrations of PFAS than non-users, using data of 1660 adults aged 20-39 years participating in the National Health and Nutrition Examination Survey 1999-2000 and 2003-2008. We classified the individuals into CL users and non-users using the record of vision correction types during a vision test. Serum concentrations of six individual PFAS were measured, and the overall PFAS burden was calculated by item response theory scoring. Survey-weighted linear models were used to compare serum PFAS levels between CL users and non-users after adjusting for covariates. Distributions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) concentrations were compared with reference values (e.g., human biomonitoring [HBM]-II values) indicating potential for adverse health effects. Survey-weighted linear models revealed that covariate-adjusted serum PFOA concentration was higher in CL users (geometric mean [GM]: 3.68 ng/mL; 95% CI: 3.00, 4.50) than in non-users (GM: 3.27 ng/mL; 95% CI: 2.81, 3.80; p = 0.02). Similarly, CL users had a significantly higher serum PFHxS concentration (GM: 1.58 ng/mL; 95% CI: 1.13, 2.20) than non-users (GM: 1.30 ng/mL; 95% CI: 1.10, 1.66; p = 0.03). CL users also had a significantly higher overall burden of PFAS than non-users. The differences in PFAS concentrations between CL users and non-users were more pronounced in females than in males. Moreover, a larger proportion of lens users (4.5%), compared to non-users (3.9%), had PFOA concentrations above the HBM-II, where adverse health effects are expected from PFOA exposure. This study suggests that CL use in general U.S. young adults may contribute significantly to PFAS body burden, which can potentially lead to public health problem.
Collapse
Affiliation(s)
- Habyeong Kang
- Institute of Health Sciences, Korea University College of Health Science, Seoul, South Korea; School of Health and Environmental Science, Korea University College of Health Science, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
| | - Yoon-Hyeong Choi
- Institute of Health Sciences, Korea University College of Health Science, Seoul, South Korea; School of Health and Environmental Science, Korea University College of Health Science, Seoul, South Korea.
| |
Collapse
|
15
|
Zota AR, Franklin ET, Weaver EB, Shamasunder B, Williams A, Siegel EL, Dodson RE. Examining differences in menstrual and intimate care product use by race/ethnicity and education among menstruating individuals. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1286920. [PMID: 38126001 PMCID: PMC10731462 DOI: 10.3389/frph.2023.1286920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction United States consumers spend over two billion dollars a year on intimate care products. These products, along with scented menstrual products, are marketed for odor control, perceived "freshness," and vaginal/vulvar cleanliness. However, these scent-altering products may increase exposure to carcinogenic and endocrine-disrupting chemicals. Prior research has not adequately characterized demographic differences in product use. The objective of our study is to examine racial/ethnic and educational differences in menstrual and intimate care product use among people who menstruate. Methods We pooled data from two US-based cross sectional studies to examine demographic characteristics and product use in 661 participants aged 18-54 years. Participants reported use of scented and unscented menstrual products (tampons, sanitary pads, and menstrual cups) and intimate care products (vaginal douches, sprays, wipes, and powders). We examined differences by race/ethnicity and education using log-binomial regression and latent class analysis (LCA), which can identify groups based on product use patterns. Results Our sample was 33.4% Black, 30.9% Latina, 18.2% White, and 16.2% another identity. Approximately half the population had a bachelor's degree or more; 1.4% identified as transgender and 1.8% as non-binary. In adjusted models, scent-altering products (i.e., scented menstrual and intimate care products) were more likely to be used by those with less formal education (p < 0.05). Unscented menstrual products were more likely to be used by those with more formal education. Compared to Black participants, White participants were more likely to use unscented tampons and menstrual cups and less likely to use douches and wipes (p < 0.05). Using LCA we identified two groups: one more likely to use scent-altering products, and a second more likely to use unscented menstrual products. Less education and older age, but not race/ethnicity, was significantly associated with membership in the group more likely to use scent-altering products. While sex/gender composition did not statistically vary across groups, all non-binary participants fell in the unscented menstrual product group. Discussion Lower educational attainment was consistently associated with greater use of scent-altering menstrual and intimate care products. Future research should examine associations between body odor stigma, product use, and health risks at intersections of race, class, and gender.
Collapse
Affiliation(s)
- Ami R. Zota
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | | | - Emily B. Weaver
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Bhavna Shamasunder
- Departments of Urban and Environmental Policy and Public Health, Occidental College, Los Angeles, CA, United States
| | | | - Eva L. Siegel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | | |
Collapse
|