1
|
Yang X, Niu S, Li M, Niu Y, Shen K, Dong B, Hur J, Li X. Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge. WATER RESEARCH 2024; 266:122395. [PMID: 39255567 DOI: 10.1016/j.watres.2024.122395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2-25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.
Collapse
Affiliation(s)
- Xingfeng Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Man Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yulong Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kailiang Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Zahra SA, Persiani R, Dueholm MK, van Loosdrecht M, Nielsen PH, Seviour TW, Lin Y. Rethinking characterization, application, and importance of extracellular polymeric substances in water technologies. Curr Opin Biotechnol 2024; 89:103192. [PMID: 39216163 DOI: 10.1016/j.copbio.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps. EPS are produced by many different microorganisms and span multiple biopolymer classes, which each require distinct strategies for characterization. The biopolymers additionally associate with each other to form insoluble complexes. Here, we explore recent progress toward resolving the structures and functions of EPS, where a shift towards direct functional assessments and advanced characterization techniques is necessary. This will enable integration with better microbial community and omics analyses to understand EPS biosynthesis pathways and create further opportunities for EPS control and valorization.
Collapse
Affiliation(s)
- Sasmitha A Zahra
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Rozalia Persiani
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Morten Kd Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Thomas W Seviour
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands.
| |
Collapse
|
3
|
Páez-Watson T, Tomás-Martínez S, de Wit R, Keisham S, Tateno H, van Loosdrecht MCM, Lin Y. Sweet Secrets: Exploring Novel Glycans and Glycoconjugates in the Extracellular Polymeric Substances of " Candidatus Accumulibacter". ACS ES&T WATER 2024; 4:3391-3399. [PMID: 39144681 PMCID: PMC11320575 DOI: 10.1021/acsestwater.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Biological wastewater treatment relies on microorganisms that grow as flocs, biofilms, or granules for efficient separation of biomass from cleaned water. This biofilm structure emerges from the interactions between microbes that produce, and are embedded in, extracellular polymeric substances (EPS). The true composition and structure of the EPS responsible for dense biofilm formation are still obscure. We conducted a bottom-up approach utilizing advanced glycomic techniques to explore the glycan diversity in the EPS from a highly enriched "Candidatus Accumulibacter" granular sludge. Rare novel sugar monomers such as N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha) were identified to be present in the EPS of both enrichments. Further, a high diversity in the glycoprotein structures of said EPS was identified by means of lectin based microarrays. We explored the genetic potential of "Ca. Accumulibacter" high quality metagenome assembled genomes (MAGs) to showcase the shortcoming of top-down bioinformatics based approaches at predicting EPS composition and structure, especially when dealing with glycans and glycoconjugates. This work suggests that more bottom-up research is necessary to understand the composition and complex structure of EPS in biofilms since genome based inference cannot directly predict glycan structures and glycoconjugate diversity.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sergio Tomás-Martínez
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Roeland de Wit
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
4
|
Chen LM, Erol Ö, Choi YH, Pronk M, van Loosdrecht M, Lin Y. The water-soluble fraction of extracellular polymeric substances from a resource recovery demonstration plant: characterization and potential application as an adhesive. Front Microbiol 2024; 15:1331120. [PMID: 38468850 PMCID: PMC10925790 DOI: 10.3389/fmicb.2024.1331120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Currently, there is a growing interest in transforming wastewater treatment plants (WWTPs) into resource recovery plants. Microorganisms in aerobic granular sludge produce extracellular polymeric substances (EPS), which are considered sustainable resources to be extracted and can be used in diverse applications. Exploring applications in other high-value materials, such as adhesives, will not only enhance the valorization potential of the EPS but also promote resource recovery. This study aimed to characterize a water-soluble fraction extracted from the EPS collected at the demonstration plant in the Netherlands based on its chemical composition (amino acids, sugar, and fatty acids) and propose a proof-of-concept for its use as an adhesive. This fraction comprises a mixture of biomolecules, such as proteins (26.6 ± 0.3%), sugars (21.8 ± 0.2%), and fatty acids (0.9%). The water-soluble fraction exhibited shear strength reaching 36-51 kPa across a pH range of 2-10 without additional chemical treatment, suggesting a potential application as an adhesive. The findings from this study provide insights into the concept of resource recovery and the valorization of excess sludge at WWTPs.
Collapse
Affiliation(s)
- Le Min Chen
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Özlem Erol
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Royal HaskoningDHV, Amersfoort, Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
6
|
Chen LM, Keisham S, Tateno H, van Ede J, Pronk M, van Loosdrecht MCM, Lin Y. Alterations of Glycan Composition in Aerobic Granular Sludge during the Adaptation to Seawater Conditions. ACS ES&T WATER 2024; 4:279-286. [PMID: 38229592 PMCID: PMC10788855 DOI: 10.1021/acsestwater.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Bacteria can synthesize a diverse array of glycans, being found attached to proteins and lipids or as loosely associated polysaccharides to the cells. The major challenge in glycan analysis in environmental samples lies in developing high-throughput and comprehensive characterization methodologies to elucidate the structure and monitor the change of the glycan profile, especially in protein glycosylation. To this end, in the current research, the dynamic change of the glycan profile of a few extracellular polymeric substance (EPS) samples was investigated by high-throughput lectin microarray and mass spectrometry, as well as sialylation and sulfation analysis. Those EPS were extracted from aerobic granular sludge collected at different stages during its adaptation to the seawater condition. It was found that there were glycoproteins in all of the EPS samples. In response to the exposure to seawater, the amount of glycoproteins and their glycan diversity displayed an increase during adaptation, followed by a decrease once the granules reached a stable state of adaptation. Information generated sheds light on the approaches to identify and monitor the diversity and dynamic alteration of the glycan profile of the EPS in response to environmental stimuli.
Collapse
Affiliation(s)
- Le Min Chen
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Jitske van Ede
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mario Pronk
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Royal
HaskoningDHV, Laan 1914
35, Amersfoort 3800 AL, The Netherlands
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|