1
|
Zhang H, Wang Z, Lin H, Liu Y, Dai H, Deng J. Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts: A review. J Environ Sci (China) 2025; 155:858-888. [PMID: 40246514 DOI: 10.1016/j.jes.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 04/19/2025]
Abstract
Volatile organic compounds (VOCs) exhausted from industrial processes are the major atmospheric pollutants, which could destroy the ecological environment and make hazards to human health seriously. Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs. Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity. To further lower the cost of catalysts, single atom catalysts (SAC) have been fabricated and extensively studied for application in VOCs oxidation due to their 100 % atom-utilization efficiency and unique catalytic performance. In this review, we comprehensively summarize the recent advances in supported noble metal (e.g., Pt, Pd, Au, and Ag) catalysts and SAC for VOCs oxidation since 2015. Firstly, this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts, including particle size, valence state and dispersion of noble metals, properties of the support, metal oxide/ion modification, preparation method, and pretreatment conditions of catalysts. Secondly, we briefly summarize the catalytic performance of SAC for typical VOCs. Finally, we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation.
Collapse
Affiliation(s)
- Honghong Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hongxia Lin
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Chen M, Fu L, Zhu D, Huang Y, Li R, He S, Liu S, Lee SC, Cao J. Promoting Low-Temperature Toluene Oxidation via Pt-O-Fe Interfacial Sites in a Pt/CuO-Fe 3O 4 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40425311 DOI: 10.1021/acs.est.5c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Electronic metal-support interaction (EMSI) has been widely explored in the catalytic degradation of volatile organic compounds (VOCs) owing to the formation of special interfacial sites. Herein, the EMSI effect was engineered by constructing the serial Pt catalysts supported on CuO-Fe3O4 bimetal oxide (Pt/CFO). Among them, the 0.5Pt/CFO catalyst with 0.5 wt % Pt loading exhibited an outstanding catalytic activity, with T90 (the temperature of 90% toluene conversion) lowered to 185 °C, and displayed excellent stability and water resistance. Comprehensive physicochemical characterizations revealed that an evident electron transfer occurred via the interface structure (Pt-O-Fe), producing the positively charged Pt (Ptδ+) and abundant Fe2+ species. Notably, the increased electron density around the Fe species weakened the Fe-O bond and thus activated the surface lattice oxygen (Olatt). Further, temperature-programmed desorption experiments and in situ diffuse reflectance infrared Fourier transform spectroscopy results demonstrated that the electron-deficient Ptδ+ was conducive to the adsorption and activation of toluene at low temperature. Consequently, the deep oxidation of toluene was achieved with the participation of Olatt, benefiting from the Ptδ+-O-Fe2+ interfacial sites with synergistic catalysis for toluene adsorption and oxygen activation. This work provides an interesting idea to explore the relationship between the electron transfer effect and highly efficient VOC abatement.
Collapse
Affiliation(s)
- Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Lijuan Fu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Dandan Zhu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Yu Huang
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Rong Li
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Shu He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Shun-Cheng Lee
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Zhu X, Shi M, Xu C, Xue X, Zhang L, Fan L. 1,2-Dichloroethane as a Gaseous Acetylene Source for the Rapid Assembly of Isoquinolino[1,2- b]quinazolinone Scaffolds. Org Lett 2025; 27:3977-3982. [PMID: 40202225 DOI: 10.1021/acs.orglett.5c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Reported herein is a novel ruthenium(II)-catalyzed [4 + 2] annulation of quinazolinones with 1,2-dichloroethane (DCE), resulting in a myriad of isoquinolino[1,2-b]quinazolinone scaffolds. In this protocol, DCE serves not only as a solvent but also as an acetylene source. The fused quinazolinones undergo versatile transformations and provide a rapid and convenient way to access several important bioactive molecule analogues such as Rutecarpine, Euxylophoricine B and Euxylophoricine E. The potential reaction pathway was elucidated through detailed mechanistic studies and Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Xinxin Zhu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Mengyao Shi
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Cuilian Xu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Xiaoping Xue
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Lijun Zhang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Liangxin Fan
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| |
Collapse
|
4
|
Hu Z, Zhang W, Liu Z, Zhang X, Wang X. Construction of a CuO/TiO 2@C S-scheme heterojunction for phenol removal by activated peroxymonosulfate. ENVIRONMENTAL RESEARCH 2025; 277:121564. [PMID: 40222474 DOI: 10.1016/j.envres.2025.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Phenol is a volatile organic compound whose effective degradation using conventional methods is challenging. Rapid charge-carrier recombination and slow Cu(II)/Cu(I) conversion rate in copper-based photocatalysts hinder their activation efficiency of potassium persulfate (PMS). Herein, an S-scheme heterojunction structure comprising TiO2@C and CuO was successfully constructed using an in situ calcination method, enabling the spatial separation of photogenerated charge carriers and thus enhancing the synergistic effect of PMS in the photocatalytic degradation of phenol. The resulting CuO/TiO2@C nanocomposite exhibited notably higher phenol removal efficiency than CuO or TiO2@C alone, removing an 88 % phenol (40 mg/L) and a 48 % total organic carbon within 25 min. The material maintained high degradation efficiency after four cycles. Liquid chromatography-mass spectrometry was employed to identify intermediates generated during phenol degradation, and a potential charge-transfer mechanism was proposed based on the analysis of catalytic active species and energy band structure. Thus, this study provides new insights for enhancing PMS activation for phenol remediation.
Collapse
Affiliation(s)
- Zichu Hu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wanqi Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhechen Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrub, Hohhot, 010018, China.
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, China.
| |
Collapse
|
5
|
Zhao Y, Yu Y, Li J, Xie J, He C. Hydrodechlorination under O 2 promotes catalytic oxidation of CVOCs over a Pt/TiO 2 catalyst at low temperature. Chem Commun (Camb) 2025; 61:4710-4713. [PMID: 40017438 DOI: 10.1039/d4cc06366j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A novel strategy to promote elimination of CVOCs at low temperature, specifically involving hydrodechlorination under O2, was proposed. Turnover frequency and HCl yield in oxidation of vinyl chloride increased, respectively, by over 22 and 43 times (225 °C) with the assistance of 1000 ppm H2. A new chemical equation (CH2CHCl + H2 + O2 → CO2 + HCl + H2O) was used to describe the reaction.
Collapse
Affiliation(s)
- Yonghua Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Yanke Yu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Jiahang Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Jinmin Xie
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
6
|
Li YY, Ren Y, He J, Xiao H, Li JR. Recent Advances of the Effect of H 2O on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1034-1059. [PMID: 39762185 DOI: 10.1021/acs.est.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of H2O and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of H2O on VOC oxidation. To develop water-resistant catalysts, understanding the mechanistic role of H2O and implementing effective water-resistance strategies with influencing factors are imperative. This Perspective systematically summarizes related research on the impact of H2O on VOC oxidation, drawing from over 390 papers published between 2013 and 2024. Five main influencing factors are proposed to clarify their effects on the role of H2O. Five inhibition/promotion mechanisms of H2O are introduced, elucidating their role in the catalytic oxidation of various VOCs. Additionally, different kinds of water resistance strategies are discussed, including the fabrication of hydrophobic materials, the design of specific structures and morphologies, and the introduction of additional elements for catalyst modification. Finally, scientific challenges and opportunities for enhancing the design of efficient and water-resistant catalysts for practical applications in VOC purification are highlighted.
Collapse
Affiliation(s)
- Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yong Ren
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| |
Collapse
|
7
|
Ding M, Zhang Y, Guo Y, Hua W, Yang J, Wang L, Guo Y, Dai Q, Wang A, Zhan W. Selective Adsorption of Chlorine Species on RuO 2 Sites for Efficient Elimination of Vinyl Chloride on the Ru/SnO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:956-967. [PMID: 39758035 DOI: 10.1021/acs.est.4c09658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO2 (Ru/SnO2) was prepared with the lattice matching principle. As RuO2 and SnO2 are both rutile phases, Ru species were present as highly dispersed RuO2 particles on the Ru/SnO2 catalyst. These particles adsorbed chlorine species with greater efficiency during the CVOCs combustion, thereby protecting the oxygen vacancies. Therefore, the double sites, oxygen vacancy to oxidize and RuO2 to adsorb chlorine species, on the Ru/SnO2 catalyst led to a notable enhancement in activity, stability, and byproduct selectivity. In contrast, the high dispersion of Ru species on the CeO2 support, as the typical catalyst for chlorinated hydrocarbon combustion, gave rise to a predominantly Ru-O-Ce structure. This structure did not prevent the adsorption of chlorine species on the oxygen vacancies, resulting in deactivation at low temperatures and an increased polychlorinated byproduct concentration. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further corroborated the variation in the adsorption sites of chlorine species on the two catalysts. This work provides a new strategy for designing efficient Ru-based catalysts for catalytic CVOCs combustion.
Collapse
Affiliation(s)
- Min Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenchao Hua
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
8
|
Tian M, Xu H, Zhao Y, Jiang Z, Wan J, Jian Y, Chai S, Li L, Ma M, Sun Y, Ren S, Li X, Zheng C, Albilali R, He C. Boosted 1,2-Dichloroethane Deep Destruction over CoRu/Al 2O 3 Bifunctional Catalysts via Surface Oxygen and Water Molecule Synergistic Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19872-19882. [PMID: 39444256 DOI: 10.1021/acs.est.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Developing efficacious catalysts with superior Cl resistance and polychlorinated byproduct inhibition capability is crucial for realizing the environmentally friendly purification of chlorinated volatile organic compounds (CVOCs). Activating CVOC molecules and desorbing Cl species by modulating the metal-oxygen property is a promising strategy to fulfill these. Herein, a bifunctional CoRu/Al2O3 catalyst with synergistic Co and Ru interactions (Ru-O-Co species) was rationally fabricated, which possesses abundant surface Co2+ and Ruδ+ sites and collaboratively facilitates the activation of lattice oxygen (O2-) and molecular oxygen (O2 → O2- → O-), accelerating 1,2-dichloroethane (1,2-DCE) decomposition via the reaction route of enolic species → aldehydes → carboxylate/carbonate. Furthermore, CoRu/Al2O3 stimulates 1,2-DCE oxidation under humid conditions as H2O molecules can be easily activated to active *OH (potential oxidizing agent) over Ru species, accelerating C-Cl dissociation and Cl desorption and promoting the transformation of catecholate-type (C═O) species to easily oxidizable carboxylic acid (COOH) species, remarkably suppressing the formation of hazardous CCl4 and CHCl2CH2Cl. This study provides critical insights into the development of bifunctional catalysts to synergistically activate surface oxygen species and H2O molecules for industrial CVOC stable and efficient elimination.
Collapse
Affiliation(s)
- Mingjiao Tian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Han Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yaruo Zhao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Zeyu Jiang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Jialei Wan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yanfei Jian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Shouning Chai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Lu Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Mudi Ma
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yukun Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
| | - Shan Ren
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Xinzhe Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
9
|
Guo L, Liao H, Wang Z, Han S, Li D, Wang B, Shen J, Dai W, Xu H, Wang X, Zhang Z. Pt position determining efficiency and stability for photocatalytic toluene degradation over Pt decorated TiO 2. CHEMOSPHERE 2024; 368:143773. [PMID: 39566686 DOI: 10.1016/j.chemosphere.2024.143773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Highly durable photocatalytic degradation of gas toluene pollutants is a great challenge due to the easy deactivation of photocatalysts. Herein, we synthesized the Pt embedded at interface of TiO2 nanocomposites (TiO2/Pt/TiO2) and Pt exposed on the surface of TiO2 nanocomposites (Pt/TiO2/TiO2) to investigate the effect of Pt position on the photocatalytic performance of toluene degradation. It was found that the Pt-exposed samples showed inactivation as the reaction progressed because carbonaceous intermediates such as phenol and benzoic acid were observed to be deposited on the exposed Pt to restrain the role of Pt in electron transfer for the production of reactive oxygen species. Whereas, Pt-embedded nanocomposites had excellent activity and stability for toluene degradation and CO2 production more than 60 h. This was attributed to the protective effect of the TiO2 outerlayer. The embedded Pt was not easily poisoned by the degradation intermediates, resulting in a good electron transfer and the continuous production of reactive oxygen species for photocatalytic reaction. Therefore, this work provides an efficient approach for designing of the stability of metal-decorated photocatalyst for the highly durable photocatalytic performance.
Collapse
Affiliation(s)
- Liuhan Guo
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Hehua Liao
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Zhaoliang Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Bing Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Wenxin Dai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou, 362801, PR China.
| | - Hailing Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou, 362801, PR China.
| |
Collapse
|
10
|
Wang G, Wu C, Liu Q, Wan H, Dong L. Enhanced performance of photocatalytic oxidation of indoor toluene over Pd/TiO 2 catalyst by tuning surface defect concentrations. CHEMOSPHERE 2024; 366:143409. [PMID: 39326714 DOI: 10.1016/j.chemosphere.2024.143409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
An effective approach for the elimination of indoor gaseous toluene through photocatalytic oxidation involves the engineering of surface defects on catalysts. In this study, the concentrations of surface oxygen defects in PdTi-xN (x = 10, 30) catalysts were controlled using the sodium borohydride solid-phase reduction method, and their performances in the photocatalytic oxidation of indoor gaseous toluene were evaluated. PdTi-10 N demonstrated high photocatalytic efficiency for toluene oxidation, achieving 84% toluene conversion and approximately 75% CO2 mineralization. Characterization results indicated that surface oxygen defects can enhance the separation of photo-generated electrons and holes, facilitating their interaction with Pd0 species to form Ti3+ species. More reactive oxygen species (·OH-and ·O2-) were generated on PdTi-10 N due to the synergistic effect of surface oxygen defect and Ti3+ species, which played a significant role as the toluene oxidation. This work provides a new insight for the design and development of high-performance Pd/TiO2 catalysts in the field of indoor VOCs treatment.
Collapse
Affiliation(s)
- Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Wu S, Ruan D, Huang Z, Xu H, Shen W. Weakening Mn-O Bond Strength in Mn-Based Perovskite Catalysts to Enhance Propane Catalytic Combustion. Inorg Chem 2024; 63:10264-10277. [PMID: 38761140 DOI: 10.1021/acs.inorgchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Exploring highly efficient and robust non-noble metal catalysts for VOC abatement is crucial but challenging. Mn-based perovskites are a class of redox catalysts with good thermal stability, but their activity in the catalytic combustion of light alkanes is insufficient. In this work, we modulated the Mn-O bond strength in a Mn-based perovskite via defect engineering, over which the catalytic activity of propane combustion was significantly enhanced. It demonstrates that the oxygen vacancy concentration and the Mn-O bond strength can be efficiently modulated by finely tuning the Ni content in SmNixMn1-xO3 perovskite catalysts (SNxM1-x), which in turn can enhance the redox ability and generate more active oxygen species. The SN0.10M0.90 catalyst with the lowest Mn-O bond strength exhibits the lowest apparent activation energy, over which the propane conversion rate increases by 3.6 times compared to that on the SmMnO3 perovskite catalyst (SM). In addition, a SN0.10M0.90/cordierite monolithic catalyst can also exhibit a remarkable catalytic performance and deliver excellent long-term durability (1000 h), indicating broad prospects in industrial applications. Moreover, the promotional effect of Ni substitution was further unveiled by density functional theory (DFT) calculations. This work brings a favorable guidance for the exploration of highly efficient perovskite catalysts for light alkane elimination.
Collapse
Affiliation(s)
- Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Dinghua Ruan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| |
Collapse
|
12
|
Pan T, Bai S, Zhang X, Deng H, Lu Y, Shan W, He H. In-Depth Understanding of the Oxidative Compatibility of Volatile Organic Compounds with Mn 2O 3 and Pt-Loaded Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9381-9392. [PMID: 38747138 DOI: 10.1021/acs.est.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Designing suitable catalysts for efficiently degrading volatile organic compounds (VOCs) is a great challenge due to the distinct variety and nature of VOCs. Herein, the suitability of different typical VOCs (toluene and acetone) over Pt-based catalysts and Mn2O3 was investigated carefully. The activity of Mn2O3 was inferior to Pt-loaded catalysts in toluene oxidation but showed superior ability for destroying acetone, while Pt loading could boost the catalytic activity of Mn2O3 for both acetone and toluene. This suitability could be determined by the physicochemical properties of the catalysts and the structure of the VOC since toluene destruction activity is highly reliant on Pt0 in the metallic state and linearly correlated with the amount of surface reactive oxygen species (Oads), while the crucial factor that affects acetone oxidation is the mobility of lattice oxygen (Olat). The Pt/Mn2O3 catalyst shows highly active Pt-O-Mn interfacial sites, favoring the generation of Oads and promoting Mn-Olat mobility, leading to its excellent performance. Therefore, the design of abundant active sites is an effective means of developing highly adaptive catalysts for the oxidation of different VOCs.
Collapse
Affiliation(s)
- Tingting Pan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijia Bai
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueshan Zhang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Lu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Lv X, Wu S, Shao S, Yan D, Xu W, Jia H, He H. Efficient Catalytic Elimination of Chlorobenzene Based on the Water Vapor-Promoting Effect within Mn-Based Catalysts: Activity Enhancement and Polychlorinated Byproduct Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3985-3996. [PMID: 38357760 DOI: 10.1021/acs.est.3c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.
Collapse
Affiliation(s)
- Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siting Shao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Yan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
15
|
Wu TH, Liu YS, Hong CT, Hou BW. Binary and nanostructured NiMn perovskite fluorides as efficient electrocatalysts for urea oxidation reaction. J Colloid Interface Sci 2024; 653:1094-1102. [PMID: 37783009 DOI: 10.1016/j.jcis.2023.09.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Urea electrolysis holds tremendous promise to provide green and sustainable energy and environmental solutions, because it can simultaneously remedy urea-containing wastewater and provide energy-saving hydrogen. However, the development of this emerging technology remains challenging mainly due to a dearth of high-performance electrocatalysts for efficient urea oxidation reaction (UOR). Perovskite fluorides have the advantages of intrinsic 3D diffusion pathways, robust architecture, and tunable chemical composition, thus receiving increasing attention in many applications. In this work, the UOR performances of a series of ABF3 samples (A = K; B = Ni/Mn, Ni/Co, Co/Mn) with various compositions are investigated in a systematic fashion for the first time. Among the binary samples, KNMF41 (Ni/Mn atomic ratio = 4:1) is the optimal sample with reduced overpotential (reaching 100 mA cm-2 at 1.43 V), low Tafel slope (40 mV dec-1), enhanced reaction rate constant (6.3 × 105 cm3 mol-1 s-1), and high turnover frequency (TOF, 0.19 s-1 at 1.60 V) toward urea oxidation. By comparing with NiCo and CoMn samples, the binary NiMn design is confirmed to endow the perovskite fluoride with higher electrocatalytic activity, thanks to the directed adsorption of urea molecules on the adjacent NiMn active sites. This work presents a targeted synthetic strategy for obtaining efficient electrocatalysts.
Collapse
Affiliation(s)
- Tzu Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
| | - Yong Shan Liu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Chung Ting Hong
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Bo-Wei Hou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
16
|
Li S, Chang F, Yuan Y, Zhu K, Chen W, Zhang Q, Lu Z, Bai Z, Yang L. Co-Fe 3C pair sites catalyst with heterometallic dual active sites for efficient oxygen reduction reaction. J Colloid Interface Sci 2023; 651:734-741. [PMID: 37567117 DOI: 10.1016/j.jcis.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Newly emerging metal-based pair sites catalysts show great potential because they can provide more metal active centers with synergistic effect for green catalysis, compared with single site catalysts. However, both the synthesis and catalytic mechanisms of the pair sites catalyst with new structural features need to be developed vigorously to promote the desired chemical reactions, especially carbon-based metal catalysts for green energy storage and conversion devices. Herein, we constructed highly active Co-Fe3C pair sites on N-doped graphite catalyst (CNCo-Fe3C) by a two-step strategy, which have electron interactions of heterometallic atoms and can play better synergistic effect. X-ray absorption spectra and density functional theory (DFT) calculation further identify the presence of heterometallic active sites in the pair sites catalyst, resulting in electron redistribution and positive d-band center due to the electron interactions. The more positive d-band center model predicts the optimization of the adsorption energy of oxygen-containing intermediates, and reduces the energy barrier of the determining step. This further results in superior oxygen reduction reaction (ORR) performance with a half-wave potential of 0.90 V versus reversible hydrogen electrode (vs.RHE) and superior long-term stability for about 20 h with only 2.3 % decrease at 0.75 V vs.RHE in 0.1 M KOH solution. Additionally, it also shows significant peak power density of 124 mW cm-2 and prominent cycling stability performance exceeding 400 h at 5 mA cm-2 in the Zn-air battery (ZAB) test, which is higher than that of Pt/C catalyst. This work provides a new idea for the regulation of intrinsic activity of non-noble metal ORR catalysts through the synergistic effect of the pair sites.
Collapse
Affiliation(s)
- Shanshan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kai Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wanting Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhansheng Lu
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, 453007, China.
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
17
|
Xie Y, Li Y, Zeng Z, Ning P, Sun X, Wang F, Li K, Wang L. Mechanism Study of Organic Sulfur Hydrogenation over Pt- and Pd-Loaded Alumina-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17553-17565. [PMID: 37917662 DOI: 10.1021/acs.est.3c04245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The hydrogenation of organic sulfur (CS2) present in industrial off-gases to produce sulfur-free hydrocarbons and H2S can be achieved by using noble-metal catalysts. However, there has been a lack of comprehensive investigation into the underlying reaction mechanisms associated with this process. In this study, we have conducted an in-depth examination of the activity and selectivity of Pt- and Pd-loaded alumina-based catalysts, revealing significant disparities between them. Notably, Pd/Al2O3 catalysts exhibit an enhanced performance at low temperatures. Furthermore, we have observed that CS2 displays a higher propensity for conversion to methane when employing Pt/Al2O3 catalysts, while Pd/Al2O3 catalysts demonstrate a greater tendency for coke deposition. By combining experimental observations with theoretical calculations, we revealed that the capability of H2 spillover along with the adsorption capacity of CS2, play pivotal roles in determining the observed differences. Moreover, the key intermediate species involved in the methanation and coke pathways were identified. The intermediate CH2S* is found to be crucial in the methanation pathway, while the intermediate CSH* is identified as significant in the coke pathway.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziruo Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Lidong Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
18
|
Ahmad I, Idrees A, Alatawi NS, Ahmed SB, Shaban M, Ghadi YY. Sn-based materials in photocatalysis: A review. Adv Colloid Interface Sci 2023; 321:103032. [PMID: 37883848 DOI: 10.1016/j.cis.2023.103032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Development and the application of Sn-based materials have become more prevalent in recent years due to concerns regarding the energy crisis, environmental pollution, and the urgent need of constructing inexpensive and highly effective photocatalysis. The recent advancement in Sn-based materials for efficient photocatalysts, such as Sn alloys, Sn oxides, Sn sulfides, Sn selenides, Sn niobates, Sn tantalites, and Sn tungstates, is summarized in this study. Several design ideas for increasing the photoactivity of Sn-based materials in various photocatalytic applications are emphasized. In addition, we considered their present applications in energy generation (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (air purification and wastewater treatment). As a result, the current review will deepen the reader's understanding of the properties and potential uses of Sn-based materials in photocatalysis. Hence, this paper will serve as a guide in promoting the domain of Sn-based materials for future photocatalytic technologies.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Samia Ben Ahmed
- Department of Chemistry College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Nanophotonics and Applications (NPA), Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| |
Collapse
|
19
|
Rathore C, Yadav VK, Gacem A, AbdelRahim SK, Verma RK, Chundawat RS, Gnanamoorthy G, Yadav KK, Choudhary N, Sahoo DK, Patel A. Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review. Front Microbiol 2023; 14:1270245. [PMID: 37908543 PMCID: PMC10613736 DOI: 10.3389/fmicb.2023.1270245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Nanotechnology (NT) and nanoparticles (NPs) have left a huge impact on every field of science today, but they have shown tremendous importance in the fields of cosmetics and environmental cleanup. NPs with photocatalytic effects have shown positive responses in wastewater treatment, cosmetics, and the biomedical field. The chemically synthesized TiO2 nanoparticles (TiO2 NPs) utilize hazardous chemicals to obtain the desired-shaped TiO2. So, microbial-based synthesis of TiO2 NPs has gained popularity due to its eco-friendly nature, biocompatibility, etc. Being NPs, TiO2 NPs have a high surface area-to-volume ratio in addition to their photocatalytic degradation nature. In the present review, the authors have emphasized the microbial (algae, bacterial, fungi, and virus-mediated) synthesis of TiO2 NPs. Furthermore, authors have exhibited the importance of TiO2 NPs in the food sector, automobile, aerospace, medical, and environmental cleanup.
Collapse
Affiliation(s)
- Chandani Rathore
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Siham K. AbdelRahim
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - G. Gnanamoorthy
- Department of Inorganic Chemistry, University of Madras, Chennai, Tamilnadu, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
20
|
Liu H, Yuan C, Wu S, Sun C, Huang Z, Xu H, Shen W. Constructing an oxygen vacancy- and hydroxyl-rich TiO2-supported Pd catalyst with improved Pd dispersion and catalytic stability. J Chem Phys 2023; 159:124701. [PMID: 38127376 DOI: 10.1063/5.0171023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
Surface property modification of catalyst support is a straightforward approach to optimize the performance of supported noble metal catalysts. In particular, oxygen vacancies and hydroxyl groups play significant roles in promoting noble metal dispersion on catalysts as well as catalytic stability. In this study, we developed a nanoflower-like TiO2-supported Pd catalyst that has a higher concentration of oxygen vacancies and surface hydroxyl groups compared to that of commercial anatase and P25 support. Notably, due to the distinctive structure of the nanoflower-like TiO2, our catalyst exhibited improved dispersion and stabilization of Pd species and the formation of abundant reactive oxygen species, thereby facilitating the activation of CO and O2 molecules. As a result, the catalyst showed remarkable efficiency in catalyzing the low-temperature CO oxidation reaction with a complete CO conversion at 80 °C and stability for over 100 h.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chenyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chao Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|