1
|
Xu Q, Yan T, Guo S, Zhai L, Lei Q, Zhang T, Du X, Liu H. Integrating stable isotopes and hydrological models to track nitrogen sources and transport pathways in plateau watersheds: a case study in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126292. [PMID: 40274212 DOI: 10.1016/j.envpol.2025.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Exogenous nitrogen inputs from agriculture and anthropogenic activities have dramatically altered the material cycling processes in the Plateau watershed, leading to a range of water pollution issues. Effective management of nitrogen pollution in water bodies is predicated on clarifying N export loads under different pathways in the watershed, as well as the contributions of different sources. Here, this study proposes an integrated framework that introduces multiple stable isotope techniques (δD-H2O, δ18O-H2O, δ15N-NO3- and δ18O-NO3-) based on the coupled Eckhardt's digital baseflow filter (ECK) and load estimation model (LOADEST). The integrated approach was applied for the first time in a typical plateau watershed in southwest China. Results showed that baseflow as the Fengyu River watershed (FRW) major hydrologic pathway, provides 69.6 % of the mean annual stream flow and 59.1 % of the mean annual NO3--N load. Furthermore, the FRW average annual TN and NO3--N export is 94.0 t and 55.1 t, respectively. The NO3--N was the primary form of N pollutant, with its average concentration in groundwater being 7 times that in river water. In groundwater, manure and sewage (M&S) and soil nitrogen (SN) contribution rates to NO3--N 53.6 %, and 37.2 %, respectively. While the river water shows low M&S (26.8 %) and high SN (61.5 %) characteristics. It can be seen that the baseflow is a key pathway for coupled water-nitrogen export from plateau agricultural watersheds. Blocking the migration of nitrogen-containing pollutants to groundwater is an important measure to control the degradation of the water environment in plateau watersheds from the root cause.
Collapse
Affiliation(s)
- Qiyu Xu
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Yan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shufang Guo
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiuliang Lei
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianpeng Zhang
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinzhong Du
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Yang M, Yang H, Wang W, Fang H, Huang L, Li D, Fu L, Ding S, Li XD, Liu CQ, Wei G, Li D, Cui G, Fan Z, Zeng F. Impact of particle-attached microbial denitrification on N 2O production in an agricultural-urban watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125223. [PMID: 40185016 DOI: 10.1016/j.jenvman.2025.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Anthropogenically influenced rivers are key hotspots for nitrous oxide (N2O) emissions. However, the seasonal and spatial heterogeneity of N2O emissions in subtropical riverine systems, particularly the role of particle-attached microbes (PAM) in regulating N2O production, remains poorly understood, contributing to uncertainties in global N2O estimates. This study investigates the potential impacts of PAM-driven nitrogen transformations on N2O production in the Dongjiang River under agricultural and urban influences. Water samples collected during the wet and dry seasons were analyzed for N2O concentrations, dual nitrogen-oxygen isotopes (δ15N-NO3-, δ18O-NO3-), and metagenomic sequencing of PAM. All samples exhibited N2O supersaturation, with emissions significantly higher in the dry season than in the wet season. A linearly positive δ15N-δ18O correlation, accompanied by lower NO3- in the bottom layers than the surface layers in the dry season indicates active denitrification, leading to elevated N2O concentrations. PAM-driven denitrification was identified as the dominant nitrogen transformation process, supported by higher abundances of denitrification genes (nirKS, norBC, nosZ) relative to nitrification genes (amoABC). Despite aerobic water column conditions, low-oxygen microhabitats around suspended particles facilitated N2O production. A significantly positive correlation (p < 0.05, R2 = 0.42) between N2O concentrations and the nirK/nosZ gene ratio suggests that gene expression imbalances contributed to net N2O accumulation. Additionally, the downstream urban area exhibited lower DO and higher DOC levels, enhancing denitrification and increasing N2O production by 4.7 % compared to the upstream agricultural region. Seasonal differences further influenced N2O dynamics: higher DOC/NO3- ratios in the dry season promoted heterotrophic denitrification, while elevated temperatures in the wet season favored complete denitrification, reducing N2O emissions. These findings provide critical insights into PAM-driven nitrogen cycling, informing strategies for mitigating N2O emissions and managing nitrogen pollution in subtropical riverine systems.
Collapse
Affiliation(s)
- Mengdi Yang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Hanjie Yang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wencai Wang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Huaiyang Fang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Lingfang Fu
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Gangjian Wei
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dongli Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang, 550081, China
| | - Gaoyang Cui
- The College of Geography and Environmental Science, Henan University Kaifeng, 475004, Henan, China
| | - Zhongya Fan
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| | - Fantang Zeng
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| |
Collapse
|
3
|
Wang S, Huang J, Wu Z, Li S, Zhu X, Liu Y, Ji G. Global mapping of flux and microbial sources for oceanic N 2O. Nat Commun 2025; 16:3341. [PMID: 40199896 PMCID: PMC11978886 DOI: 10.1038/s41467-025-58715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
The ocean is the largest source of N2O emissions from global aquatic ecosystems. However, the N2O production-consumption mechanism and microbial spatial distribution are still unclear. Our study established a bottom-up model based on the source‒sink boundary and the microbial sources of N2O. A high-resolution (0.1°) global distribution of oceanic N2O was depicted, confirmed by approximately 150,000 surface measurements. The microbial N2O flux is 2.9 Tg/yr N-N2O, with the oxygen-deficient zones (ODZs) disproportionately accounting for more than half of the total emission. High primary productivity, sharp oxyclines, and shallow emission depths caused the ODZs to be N2O hotspots. Geographically, ammonia-oxidizing archaea (AOA, 1.0 Tg) are the most widely distributed contributors to N2O emissions in the ocean, completely overtaking ammonia-oxidizing bacteria (AOB). Heterotrophic denitrification, mainly occurring in ODZs, contributes the most (1.6 Tg) to N2O emissions. Overall, this study offers a bottom-up framework for understanding microbial source-sink mechanism in the ocean.
Collapse
Affiliation(s)
- Shuo Wang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Jilin Huang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Zhen Wu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Xianfang Zhu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Guodong Ji
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| |
Collapse
|
4
|
Zhang Y, Chen Q, Yang X, Hao L, Lu L, Kleindienst S, Lin J, Li S. Unravelling the Activity and Presence of N 2O Reducers on Urban Greening Tree Leaves. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40079375 DOI: 10.1111/pce.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and can be biotically emitted from soils, water, and the less recognised plant leaves. Leaves can produce N2O and may host N2O-reducing microbes that use it as a respiratory substrate, potentially mitigating climate warming. This study examines the ecophysiology of N2O reducers in the plant phyllosphere. Anoxic microcosm experiments, quantification of N2O reduction kinetics, and analysis of nosZ gene governing N2O reduction were conducted to assess the activity and presence of N2O reducers in leaf epiphytes from various canopy positions of Photinia fraseri, an urban greenery plant. Results revealed canopy position-dependent N2O reduction activity in the leaf microbiota. We identified previously unrecognised atypical Clade II nosZ gene in the phyllosphere microbiome, with its absolute abundance positively correlated with N2O reduction activity, highlighting its significance in this process. Sequencing of bacterial and archaeal 16S rRNA genes revealed keystone taxa as primary drivers of N2O reduction activity. These findings underscore the functional potential for N2O reduction and the presence of the Clade II nosZ group within epiphytic microbes. This work provides insights into the ecophysiology of epiphytic N2O reducers and underpins the development of leaf-based microbial solutions for N2O mitigation under future warming.
Collapse
Affiliation(s)
- Yifang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinglin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Xiaoru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Sara Kleindienst
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| |
Collapse
|
5
|
Wang S, Zhi W, Li S, Lyu T, Ji G. Sustainable management of riverine N 2O emission baselines. Natl Sci Rev 2025; 12:nwae458. [PMID: 39834561 PMCID: PMC11745158 DOI: 10.1093/nsr/nwae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The riverine N2O fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF5r is poorly constrained, which impedes the N2O estimation and mitigation. Our meta-analysis discovered a universal N2O emission baseline (EF5r = k/[NO3 -], k = 0.02) for natural rivers. Anthropogenic impacts caused an overall increase in baselines and the emergence of hotspots, which constitute two typical patterns of anthropogenic sources. The k values of agricultural and urban rivers increased to 0.09 and 0.05, respectively, with 11% and 14% of points becoming N2O hotspots. Priority control of organic and NH4 + pollution could eliminate hotspots and reduce emissions by 51.6% and 63.7%, respectively. Further restoration of baseline emissions on nitrate removal is a long-term challenge considering population growth and declining unit benefits (ΔN-N2O/N-NO3 -). The discovery of EF lines emphasized the importance of targeting hotspots and managing baseline emissions sustainably to balance social and environmental benefits.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Li Q, Yu H, Yuan P, Liu R, Jing Z, Wei Y, Tu S, Gao H, Song Y. Mitigated N 2O emissions from submerged-plant-covered aquatic ecosystems on the Changjiang River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172592. [PMID: 38642768 DOI: 10.1016/j.scitotenv.2024.172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.
Collapse
Affiliation(s)
- Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
8
|
Zhang S, Xia X, Yu L, Liu S, Li X, Wang J, Zheng Y, Han L, Tan Q, Yang Z. Biogeography and impact of nitrous oxide reducers in rivers across a broad environmental gradient on emission rates. Environ Microbiol 2024; 26:e16622. [PMID: 38757466 DOI: 10.1111/1462-2920.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Leilei Yu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qian Tan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
9
|
Xiang F, Han L, Jiang S, Xu X, Zhang Z. Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33347-33359. [PMID: 38676863 DOI: 10.1007/s11356-024-33308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- JiaXing FuKang Biotechnology Company Limited, TongXiang Economic HiTech Zone, Building 1-19#, Development Ave 133, Tongxiang, 314515, People's Republic of China
| | - LuYing Han
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ShuoYun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, Hangzhou, 311121, People's Republic of China
| | - XinHua Xu
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
- China Academy of West Region Development, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
10
|
Shu W, Zhang Q, Audet J, Li Z, Leng P, Qiao Y, Tian C, Chen G, Zhao J, Cheng H, Li F. Non-negligible N 2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. WATER RESEARCH 2024; 251:121124. [PMID: 38237464 DOI: 10.1016/j.watres.2024.121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, Aarhus 8000, Denmark
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifang Leng
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Tian
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
11
|
Li M, Shi G, Li Y, Yan X, Sun X, Yangzong D, Li S, Dong H, Zhou Y, Wang X, Kang S, Zhang Q. Isotopic Constraints on Sources and Transformations of Nitrate in the Mount Everest Proglacial Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20844-20853. [PMID: 38019560 DOI: 10.1021/acs.est.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (δ15NNO3, δ18ONO3, and Δ17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 ± 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Δ17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guitao Shi
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yilan Li
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao Yan
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xuejun Sun
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Deji Yangzong
- Tibetan Ecology and Environment Monitoring Center, Lhasa 850000, China
| | - Shengnan Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ho L, Barthel M, Harris S, Vermeulen K, Six J, Bodé S, Boeckx P, Goethals P. Unravelling spatiotemporal N 2O dynamics in an urbanized estuary system using natural abundance isotopes. WATER RESEARCH 2023; 247:120771. [PMID: 39492361 DOI: 10.1016/j.watres.2023.120771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Estuaries are strong sources of N2O to the atmosphere; yet we still lack insights into the impact of their biogeochemical dynamics on the emissions of this powerful greenhouse gas. Here, we investigated the spatiotemporal dynamics of the N cycle in an estuary with a focus on the emission mechanisms and pathways of N2O. By coupling N2O isotopocule analysis and substrate NO3- isotope analysis, we found that nutrient availability, oxygen level, salinity gradient and temperature variation were major drivers of the N2O emissions from the Scheldt Estuary. In winter, lower temperature and higher O2 concentration diminished denitrification rates and reduction of N2O to N2, while both were enhanced in warmer summer, causing higher fraction of reduced N2O. As a result, we found comparable N2O fluxes and dissolved concentrations between the two seasons. Decrease in salinity level and increase in NO3- concentration accelerated N2O production when moving upstream of the estuary where more urbanization and higher NO3- from wastewater discharges were found. However, these drivers had no significant effect on the fraction of N2O derived by either denitrification or nitrification and/or fungal denitrification since the fractional proportion of these pathways showed no spatiotemporal variations, remaining around 89 % and 11 %, respectively. These findings challenge the conventional notion that N2O fluxes are generally higher in summer because of higher denitrification rates while confirming that denitrification is the most important pathway of N2O production in the estuaries. Furthermore, our study highlight the importance of combining various isotope analyses to gain in-depth understanding about N2O emission pathways and N cycling in dynamic systems like estuaries.
Collapse
Affiliation(s)
- Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
| | - Matti Barthel
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Stephen Harris
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia; Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Kaat Vermeulen
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Johan Six
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Samuel Bodé
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Gent University, Gent, Belgium
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Gent University, Gent, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|