1
|
Li Y, Pritchard JC, Wessel C, Andersen Y, Duan Y, Wang Y, Luthy RG. Combined UV/H 2O 2 and biochar processes for enhanced removal of contaminants of emerging concern in dry wells. WATER RESEARCH 2025; 274:123159. [PMID: 39847905 DOI: 10.1016/j.watres.2025.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Dry wells are neighborhood-scale stormwater infiltration systems increasingly used in drought-prone areas for stormwater capture and groundwater recharge. These systems bypass the low permeability surface soil to maximize infiltration rates. However, hydrophilic contaminants of emerging concern (CECs) in urban runoff pose potential groundwater contamination risks. Field monitoring in this study confirmed the presence of CECs and the inability of current dry wells to remove these compounds. To address this, we explored stormwater treatment systems that: (1) can be easily operated in dry wells; (2) effectively remove hydrophilic CECs under realistic infiltration rates; and (3) offer multi-year field lifespan. Batch isotherm and kinetic studies were conducted on a large-grain biochar (d50 = 2.24 mm) to assess removal efficiency for seven hydrophilic CECs (logKow ≤ 4). Two column experiments evaluated biochar filters (5 wt%) with and without UV/H2O2 pre-treatment under continuous high-throughput conditions. Results showed that biochar filters effectively removed five of seven CECs, with reduced efficiency for anionic compounds. The UV/H2O2 process with approximately 1500 mJ/cm2 UV dose degraded all CECs by >50 %, except dicamba, with direct photolysis as the dominant mechanism due to strong hydroxyl radical scavenging by dissolved organic carbon (DOC). Combining UV and biochar reduced CEC breakthrough concentration by 4 - 92 %. Based on the results, a contaminant transport model was calibrated and used to estimate the system lifespan in dry wells in Los Angeles. Findings showed that the insecticide, imidacloprid, is the limiting contaminant for the system's lifespan. Without UV/H₂O₂ pre-treatment, the system could last about four years with 10 wt% biochar in the filter. With pre-treatment, the lifespan will be determined by other operational factors rather than CEC removal. This study developed effective stormwater treatment systems for dry wells, supporting future local stormwater capture projects while safeguarding groundwater quality.
Collapse
Affiliation(s)
- Yiran Li
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - James Conrad Pritchard
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | - Yanghua Duan
- Department of Civil and Environmental Engineering, University of California-Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Yifeng Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Richard G Luthy
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Pervez MN, Jiang T, Mahato JK, Ilango AK, Kumaran Y, Zuo Y, Zhang W, Efstathiadis H, Feldblyum JI, Yigit MV, Liang Y. Surface Modification of Graphene Oxide for Fast Removal of Per- and Polyfluoroalkyl Substances (PFAS) Mixtures from River Water. ACS ES&T WATER 2024; 4:2968-2980. [PMID: 39021580 PMCID: PMC11249979 DOI: 10.1021/acsestwater.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a diverse group of industrially derived organic chemicals that are of significant concern due to their detrimental effects on human health and ecosystems. Although other technologies are available for removing PFAS, adsorption remains a viable and effective method. Accordingly, the current study reported a novel type of graphene oxide (GO)-based adsorbent and tested their removal performance toward removing PFAS from water. Among the eight adsorbents tested, GO modified by a cationic surfactant, cetyltrimethylammonium chloride (CTAC), GO-CTAC was found to be the best, showing an almost 100% removal for all 11 PFAS tested. The adsorption kinetics were best described by the pseudo-second-order model, indicating rapid adsorption. The isotherm data were well supported by the Toth model, suggesting that PFAS adsorption onto GO-CTAC involved complex interactions. Detailed characterization using scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed the proposed adsorption mechanisms, including electrostatic and hydrophobic interactions. Interestingly, the performance of GO-CTAC was not influenced by the solution pH, ionic strength, or natural organic matter. Furthermore, the removal efficiency of PFAS at almost 100% in river water demonstrated that GO-CTAC could be a suitable adsorbent for capturing PFAS in real surface water.
Collapse
Affiliation(s)
- Md. Nahid Pervez
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Tao Jiang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jaydev Kumar Mahato
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Aswin Kumar Ilango
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yamini Kumaran
- Department
of Nanoscale Science and Engineering, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Yuwei Zuo
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Weilan Zhang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haralabos Efstathiadis
- Department
of Nanoscale Science and Engineering, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Jeremy I. Feldblyum
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Mehmet V. Yigit
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Yanna Liang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
3
|
Pritchard JC, Hawkins KM, Cho YM, Spahr S, Higgins CP, Luthy RG. Flow rate and kinetics of trace organic contaminants removal in black carbon-amended engineered media filters for improved stormwater runoff treatment. WATER RESEARCH 2024; 258:121811. [PMID: 38833811 DOI: 10.1016/j.watres.2024.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.
Collapse
Affiliation(s)
- James Conrad Pritchard
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Kathleen Mills Hawkins
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Yeo-Myoung Cho
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Stephanie Spahr
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Christopher P Higgins
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Richard G Luthy
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Jiang T, Pervez MN, Ilango AK, Ravi YK, Zhang W, Feldblyum JI, Yigit MV, Efstathiadis H, Liang Y. Magnetic surfactant-modified clay for enhanced adsorption of mixtures of per- and polyfluoroalkyl substances (PFAS) in snowmelt: Improving practical applicability and efficiency. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134390. [PMID: 38678712 DOI: 10.1016/j.jhazmat.2024.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFAS) in many industrial and consumer contexts, along with their persistent nature and possible health hazards, has led to their recognition as a prevalent environmental issue. While various PFAS removal methods exist, adsorption remains a promising, cost-effective approach. This study evaluated the PFAS adsorption performance of a surfactant-modified clay by comparing it with commercial clay-based adsorbents. Furthermore, the impact of environmental factors, including pH, ionic strength, and natural organic matter, on PFAS adsorption by the modified clay (MC) was evaluated. After proving that the MC was regenerable and reusable, magnetic modified clay (MMC) was synthesized, characterized, and tested for removing a wide range of PFAS in pure water and snowmelt. The MMC was found to have similar adsorption performance as the MC and was able to remove > 90% of the PFAS spiked to the snowmelt. The superior and much better performance of the MMC than powdered activated carbon points to its potential use in removing PFAS from real water matrices at an industrial scale.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States.
| | - Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haralabos Efstathiadis
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
5
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|