1
|
Hu J, Tian J, Liu P, Zhang Q, Li N, Yin J. Pregnane X receptor attenuates gold nanoparticles' toxicity through accelerating zebrafish embryo hatching. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107399. [PMID: 40339275 DOI: 10.1016/j.aquatox.2025.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
It is well known that fish embryos are vulnerable to waterborne nanoparticles (NPs), with delayed hatching being the most common and sensitive endpoint. Up-regulation of hatching enzymes has been believed to be an important detoxification mechanism for NPs, but the inner mechanism for such phenomena has been seldom investigated. This study aimed to investigate the role of pregnane X receptor (Pxr) in maintaining the robustness of embryo hatching after treatment with gold nanoparticles (AuNPs, 4 and 82 nm). For this purpose, embryos from mating of 6-month-old wild-type (WT) AB strain zebrafish (Danio rerio, 3∼4-cm-length) were treated with AuNPs since 4 h post-fertilization (hpf). It was found that both AuNPs significantly inhibited embryo hatching after 52-h treatment, with Au-4 being more toxic at the same mass concentrations. At non-toxic concentrations and median effective concentrations (EC50) of delayed hatching, both AuNPs induced the mRNA expression of HEs and Pxr at 48 hpf, and Au-4 seemed to be more effective. The induction extents of HEs by AuNPs decreased when Pxr was knocked out or inhibited, indicating the role of Pxr in such process. Additionally, knockout/inhibition of Pxr significantly delayed the hatching of embryos at 56 hpf, and activation of Pxr accelerated the process at moderate concentrations. Such phenomena correlated well with the alterations in the mRNA expression and activities of HEs, indicating a fact that AuNPs activated Pxr and up-regulated HEs, which helped the detoxification of AuNPs. RNA-sequencing analysis of WT and pxr-deficient embryos at 24 hpf confirmed the alteration of he1.1&1.2. In addition, Pxr influenced mRNA encoding muscle development (muscle system process and striated muscle tissue development) and energy metabolism (carbohydrate metabolic process and ATP metabolic process), which were related to the motility of embryos and determined the hatching speed. Such function was confirmed by the reduced locomotor activity of pxr-deficient larvae at 120 hpf. Overall, these results suggested a novel role of Pxr in promoting the hatching of zebrafish embryos, which contributed to the detoxification of AuNPs.
Collapse
Affiliation(s)
- Jia Hu
- School of Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Pai Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Qian Zhang
- Hangzhou Science and Technology Information Institute, Hangzhou 310006, PR China
| | - Ningyao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
2
|
Mishra J, Suryawanshi T, Redkar N, Kumar Das R, Saxena S, Majumder A, Kondabagil K, Shukla S. Toxicological Effects of Metal-Doped Carbon Quantum Dots. CHEMSUSCHEM 2025; 18:e202402056. [PMID: 39887930 DOI: 10.1002/cssc.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Multi-domain biological and environmental research highlights the efficacy of carbon quantum dots (CQDs) as a safer alternative to toxic metal-based quantum dots (QDs) and expensive conventional organic dyes, particularly in biomedical applications. CQDs are often functionalized by metal heteroatoms to improve their electron-donating properties and modify charge density, thereby enhancing their physicochemical characteristics. However, metal doping may re-introduce toxicity concerns similar to traditional QDs and further increase environmental risks. Thus, detailed ecotoxicology studies are necessary to understand the environmental impact of these CQDs in different organisms. To address this, we synthesized metal-doped CQDs (Mn, Fe, Cu and Ag) using microwave-assisted technique and conducted in-vitro experiments on diverse biological models belonging to different trophic levels, including bacteria (E. coli and B. subtilis), plants (Vigna radiata) and mammalian cells (mouse myoblast cells- C2C12). Results revealed that among all the CQDs explored, Ag-CQDs exhibited highest toxicity causing ~85% bacterial and 100% mammalian cell death even at 10 μg mL-1 and ~60% radicle growth inhibition after 5 days of exposure at 50 μg mL-1, whereas Mn-CQD showed the least toxicity. These findings contribute significantly to the critical need for determining optimal concentration ranges for metal-doped CQDs and enhance our understanding of their environmental implications.
Collapse
Affiliation(s)
- Jyotsna Mishra
- Center for Research in Nano Technology and Science (CRNTS), Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Tejas Suryawanshi
- Center for Research in Nano Technology and Science (CRNTS), Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Neha Redkar
- Department of Metallurgical Engineering and Materials Science, Nanostructures Engineering and Modeling Laboratory, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Rahul Kumar Das
- Department of Metallurgical Engineering and Materials Science, Nanostructures Engineering and Modeling Laboratory, Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Water Innovation Center: Technology, Research and Education (WICTRE), Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Sumit Saxena
- Center for Research in Nano Technology and Science (CRNTS), Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Department of Metallurgical Engineering and Materials Science, Nanostructures Engineering and Modeling Laboratory, Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Water Innovation Center: Technology, Research and Education (WICTRE), Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Kiran Kondabagil
- Water Innovation Center: Technology, Research and Education (WICTRE), Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Shobha Shukla
- Center for Research in Nano Technology and Science (CRNTS), Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Department of Metallurgical Engineering and Materials Science, Nanostructures Engineering and Modeling Laboratory, Indian Institute of Technology, Bombay, Mumbai, 400076, India
- Water Innovation Center: Technology, Research and Education (WICTRE), Indian Institute of Technology, Bombay, Mumbai, 400076, India
| |
Collapse
|
3
|
Zhang K, Xiao Q, Jia J, Gao Y, Zhou Y, Zhou XX, Yan B. Mechanistic Insights into Cadmium Sulfide Nanoparticles-Induced Digestive Gland Damage in Corbicula fluminea: Comparison with Cadmium Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8451-8460. [PMID: 40165425 DOI: 10.1021/acs.est.5c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The extensive use of cadmium sulfide nanoparticles (CdS-NPs), along with their natural formation through the complex biogeochemical transformation of anthropogenic cadmium ions (Cd2+), poses substantial risks to ecosystems and human health. Despite this, the mechanisms underlying the toxicity of CdS-NPs remain unclear. A key question is whether their toxicity arises from the nanoparticulate form of cadmium (Cd) or from the release of Cd2+. To explore this, we exposed freshwater clams (Corbicula fluminea) to environmentally relevant concentrations (0.01-1 mg/L) of CdS-NPs or Cd2+ for 10 days. Hematoxylin and eosin (HE) staining revealed significant damage to the digestive gland in both cases. Although CdS-NPs released some Cd2+ (≤10.4%), transcriptomic and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses indicated different toxicity mechanisms. CdS-NPs primarily induce ferroptosis, triggered by lysosomal dysfunction that releases Fe2+ into the cytoplasm, disrupting the cellular iron metabolism. In contrast, Cd2+ primarily induces an autophagic response, as evidenced by the upregulation of autophagy-related markers and activation of apoptosis pathways linked to mitochondrial membrane permeabilization. Overall, our findings suggest that the toxicity of CdS-NPs is not solely derived from Cd2+, highlighting the need to evaluate the risks posed by metal sulfide nanoparticles to benthic ecosystems.
Collapse
Affiliation(s)
- Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Quanzhi Xiao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Gao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanfei Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhang J, Bai Y, Meng H, Zhu Y, Yue H, Li B, Wang J, Wang J, Zhu L, Du Z. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169787. [PMID: 38181941 DOI: 10.1016/j.scitotenv.2023.169787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) and polyhalogenated carbazoles (PHCZs) are widely detected in the aquatic environment, and their ecological risks have become a research focus. Although there is an extensive co-distribution of MPs and PHCZs, their combined toxicity to aquatic organisms is still unclear. This study investigated the toxic effects of polystyrene microplastics (PS-MPs) and 3,6-dibromocarbazole (3,6-DBCZ) on zebrafish embryos by individual/combined exposure. This study showed that individual or combined exposure of PS-MPs (10 mg/L) and 3,6-DBCZ (0.5 mg/L) could significantly increase the rate of zebrafish embryo deformity, whereas no significant effect was observed on mortality and hatching rate. Furthermore, exposure to 3,6-DBCZ or PS-MPs increased reactive oxygen species (ROS) levels in zebrafish embryos, and the resulting oxidative stress induced apoptosis. Comparably, the levels of oxidative stress and apoptosis in zebrafish embryos were significantly reduced with the combined exposure of 3,6-DBCZ and PS-MPs. These observations suggest that the combined exposure of 3,6-DBCZ and PS-MPs has an antagonistic effect on oxidative stress and apoptosis. Fluorescence PS-MPs tracing and 3,6-DBCZ enrichment analysis showed that, with the protection of chorion, the entry of PS-MPs (5 and 50 μm) into the embryonic stage (55 hpf) of zebrafish was prevented. Moreover, after exposure for 96-144 hpf, PS-MPs served as a carrier to promote the 3,6-DBCZ accumulation and its dioxin-like toxicity in zebrafish larvae through ingestion. Compared with 5-μm PS-MPs, 50-μm PS-MPs promoted higher accumulation and dioxin-like toxicity of 3,6-DBCZ in zebrafish larvae. These findings provide that MPs can be used as an important carrier of PHCZs, influencing their toxicity and bioaccumulation in the organisms.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yao Bai
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Haoran Meng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yangzhe Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Huizhu Yue
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
5
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|