1
|
Liu X, Cui H, Xia W, Liu Z, Jiang X, Liu X, Wang Y, Chen S, Xiao S. Impact of microplastic concentration on soil nematode communities on the Qinghai-Tibet Plateau: Evidence from a field-based microcosms experiment. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137856. [PMID: 40054190 DOI: 10.1016/j.jhazmat.2025.137856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025]
Abstract
Microplastics are an emerging pollutant that poses a threat to local ecosystems. Recent studies have revealed that microplastics have penetrated the Qinghai-Tibetan Plateau. While previous studies have investigated the migration and distribution of microplastics and their effects on soil properties, their effects on soil fauna communities remain underexplored. Here, we conducted a 1-year microplastic addition experiment to evaluate the responses of soil nematode communities and employed piecewise structural equation modeling to disentangle the direct and indirect effects of microplastics on these communities. We found that: (1) nematode abundance, diversity, and metabolic footprints exhibited a hump-shaped response to microplastic treatments, peaking at the 0.1 % treatment; (2) nematode biomass was significantly affected by microplastics, with the lowest biomass observed at the 10 % treatment; (3) the direct effects of microplastics on nematode abundance outweighed indirect effects, particularly influencing fungivores and omnivorous nematodes; (4) although microplastics did not significantly alter energy flow within nematode communities, the relationship between the energy flow of fungivores and omnivorous was stronger than those among other trophic groups. Our study offers insights on microplastics' impact on nematode communities and their varied responses to microplastic concentrations, crucial for understanding ecological effects on soil ecosystems.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Wanyu Xia
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiaoxuan Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xuanchen Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Yajun Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Nie Z, Meng Y, Liu G, Chen Y, Chai G. Influence of meteorological conditions on atmospheric microplastic transport and deposition. ENVIRONMENTAL RESEARCH 2025; 265:120460. [PMID: 39603587 DOI: 10.1016/j.envres.2024.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric microplastics are of great concern because of their potential impact on the environment and human health. Although several studies have shown the presence of large quantities of microplastics in the air, questions about the transport and deposition of microplastics in the atmosphere remain unanswered. Based on these shortcomings, this review provides a comprehensive overview of the influence of meteorological conditions on atmospheric microplastic fate. Dry and wet deposition are the main removal mechanisms for atmospheric microplastic. Furthermore, by exploring how wind facilitates the long-range transport of microplastics between terrestrial and marine ecosystems, establishing a global microplastic cycle. Besides, this review also examines the effects of other meteorological conditions on atmospheric microplastic transport. Characteristics of current atmospheric microplastic models are summarized, particularly with respect to the consideration of meteorological conditions. Finally, we propose future research directions and mitigation measures for atmospheric microplastic pollution, which are necessary for mitigating atmospheric microplastic pollution and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Zhongquan Nie
- Chengdu Industry and Trade College, Chengdu, 611730, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Yu Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Guangming Chai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Dai H, He S, Han J, Xing B. Mask Wearers at Risk of Inhaling Respirable Hazards from Leave-On Facial Cosmetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21464-21474. [PMID: 39602556 DOI: 10.1021/acs.est.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Huang M, Han K, Liu W, Wang Z, Liu X, Guo Q. Advancing microplastic surveillance through photoacoustic imaging and deep learning techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134188. [PMID: 38579587 DOI: 10.1016/j.jhazmat.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microplastic contamination presents a significant global environmental threat, yet scientific understanding of its morphological distribution within ecosystems remains limited. This study introduces a pioneering method for comprehensive microplastic assessment and environmental monitoring, integrating photoacoustic imaging and advanced deep learning techniques. Rigorous curation of diverse microplastic datasets enhances model training, yielding a high-resolution imaging dataset focused on shape-based discrimination. The introduction of the Vector-Quantized Variational Auto Encoder (VQVAE2) deep learning model signifies a substantial advancement, demonstrating exceptional proficiency in image dimensionality reduction and clustering. Furthermore, the utilization of Vector Quantization Microplastic Photoacoustic imaging (VQMPA) with a proxy task before decoding enhances feature extraction, enabling simultaneous microplastic analysis and discrimination. Despite inherent limitations, this study lays a robust foundation for future research, suggesting avenues for enhancing microplastic identification precision through expanded sample sizes and complementary methodologies like spectroscopy. In conclusion, this innovative approach not only advances microplastic monitoring but also provides valuable insights for future environmental investigations, highlighting the potential of photoacoustic imaging and deep learning in bolstering sustainable environmental monitoring efforts.
Collapse
Affiliation(s)
- Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China; School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
6
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
7
|
Martynova A, Genchi L, Laptenok SP, Cusack M, Stenchikov GL, Liberale C, Duarte CM. Atmospheric microfibrous deposition over the Eastern Red Sea coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167902. [PMID: 37858811 DOI: 10.1016/j.scitotenv.2023.167902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The transport of microplastics through the atmosphere has been acknowledged as a significant route for their dispersion across different environments. Microplastics of fibrous shape often prevail in environmental samples, although their composition identification might be challenging and lead to an overestimation of plastic microfibers (MFs). Conversely, MFs of natural origin are rarely reported in microplastics studies despite the lack of consensus on the risks they may pose to the environment. In this study, airborne MFs collected in a sparsely populated residential area on the shore of the Eastern Red Sea were analyzed to investigate their abundance and polymer composition and assess their potential transport and deposition rates. The length of observed fibers ranged from 183 μm to 11,877 μm, with 3 % of fibers being >5 mm. The average length of MFs (< 5 mm) was 1378 ± 934 μm. Plastic MFs comprised 10 % of all identified MFs, with polyester being the most common plastic polymer (81.25 %). The mean abundance of airborne MFs was 0.9 ± 0.8 × 10-2 MFs m-3. The estimated mean atmospheric microfibrous deposition was 70 MFs m-2 d-1, with a component of 8 plastic MFs m-2 d-1. Based on the HYSPLIT backward trajectory analysis, fibers of local origin (estimated to travel approximately 25 km before sampling) were deposited at the sampling location. Air masses of northwestern origin traveling along the coast of the Eastern Red Sea dominated, potentially reducing the abundance of airborne MFs.
Collapse
Affiliation(s)
- Anastasiia Martynova
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia.
| | - Luca Genchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael Cusack
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Georgiy L Stenchikov
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlo Liberale
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlos M Duarte
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
8
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|