1
|
Zhao Z, Fu H, Ling L, Westerhoff P. Advancing Light-Driven Reactions with Surface-Modified Optical Fibers. Acc Chem Res 2025; 58:1596-1606. [PMID: 40311088 DOI: 10.1021/acs.accounts.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
ConspectusThe challenge of optimizing decentralized water, wastewater, and reuse treatment systems calls for innovative, efficient technologies. One advancement involves surface-modified side-emitting optical fibers (SEOFs), which enhance biochemical and chemical light-driven reactions. SEOFs are thin glass or polymeric optical fibers with functionalized surfaces that can be used individually or bundled together. They can be attached to various light sources, such as light-emitting diodes (LEDs) or lasers, which launch ultraviolet (UV) or visible light into the fibers. This light is then emitted along the fiber's surface, creating irradiance similar to a glow stick. The resulting SEOFs uniquely deliver light energy to complex environments while maximizing photon utilization and minimizing energy loss, addressing long-standing inefficiencies in photolysis and photocatalysis systems. SEOFs generate and leverage refracted light and evanescent waves to achieve continuous irradiation of their cladding, wherein photocatalysts are embedded. This method contrasts with traditional slurry-based systems, where light energy is often scattered or absorbed before reaching the reaction sites. Such scattering typically reduces quantum yields and reaction kinetics. In contrast, SEOFs create a controlled light delivery system that enhances reaction efficiency and adaptability to diverse applications.Important chemical and physical concepts are explored when scaling up SEOFs for three potential engineered applications. The selection of polymer materials and nanoparticle compositions is crucial for optimizing SEOFs as waveguides for visible to UV-C wavelengths and for embedding surface-accessible photocatalysts within porous polymer coatings on SEOF surfaces. Additionally, understanding how light propagates within SEOFs and emits along their exterior surface and length is essential for influencing the quantum yields of chemical products and enhancing biochemical sensitivity to low UV-C exposure. UV-C SEOFs are employed for germicidal disinfection, inactivating biofilms and pathogens in water systems. By overcoming UV light attenuation issues in traditional methods, SEOFs facilitate uniform distribution of UV-C energy, disrupting biofilm formation at early stages. SEOFs enhance UV-A and visible-light photocatalytic degradation of pollutants. Embedding photocatalysts in porous polymer cladding enables simultaneous improvements in reaction kinetics and quantum yields. SEOFs enable decentralized light-driven production of clean energy resources such as hydrogen, hydrogen peroxide, and formic acid, offering sustainable alternatives for off-grid systems.The design principles of SEOFs emphasize scalability, flexibility, and efficiency. Recent innovations in polymer chemistry, nanoparticle coatings, and surface roughness engineering have further optimized light delivery and side-emission. Tailoring the refractive index and nanoparticle distribution on fiber surfaces ensures precise evanescent wave propagation, enhancing photocatalytic performance. These advancements, coupled with scalable fabrication techniques, have positioned SEOFs as promising platforms for broad photochemical applications.By summarizing recent advances and identifying future needs, this Account positions SEOFs as a transformative approach to light-driven reactions, merging cutting-edge materials science with sustainable water treatment and energy production goals. This emerging technology offers immense potential to reshape photochemical processes for decentralized applications. Despite significant progress, challenges remain. Future research should focus on optimizing catalyst loading, improving uniformity in side emissions, and enhancing polymer durability for long-term operational stability. Additionally, scaling SEOF configurations to multifiber bundles and integrating them into decentralized water systems will be critical for broader adoption.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Han Fu
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
2
|
Zhao Z, Fu H, Ling L, Li T, Brewer A, Delgado AG, Westerhoff P. Control of Fungal Spores on Surfaces with UV-C Exposure Necessitates Complete Inactivation to Prevent Mycorrhizal Network Establishment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8800-8811. [PMID: 40139961 DOI: 10.1021/acs.est.4c12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Mold infestations on surfaces present significant challenges to public health. Germicidal UV-C irradiation effectively inactivates spores suspended in water, yet information on surface spore mitigation is surprisingly absent. We show the effectiveness of 265-275 nm UV-C light to mitigateAspergillus nigeron nutrient-rich surfaces. UV-C mitigation of surface molds differs from inactivating spores suspended in water due to the unique characteristics of mycelial structures. Complete preinactivation of all viable cells during UV-C exposure is crucial to prevent mycelia formation; otherwise, even a single spore can gradually spread, covering surfaces by producing a progressive mycelial structure. A UV-C dose of 144 mJ/cm2 from 265 nm LEDs achieved complete preinactivation at lower concentrations (100-1000 CFU/plate), while higher concentrations required increased UV-C doses. Intermittent duty cycling of light delivery (10 min ON then 50 min OFF) at 275 nm delivered from side-emitting optical fibers achieved comparable mitigation to continuous irradiation. Insufficient UV-C exposure induced more resistant mycelial structures that shielded live spores beneath. This study highlights complete preinactivation of viable molds, or sustained inhibition by UV-C light, is more effective than UV-C posttreatment. Mycelial alteration triggered by sublethal stress helps spores to persist in unfavorable environments, where microbial control is the goal.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Han Fu
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Tingyu Li
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Avery Brewer
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
3
|
Pousty D, Ma B, Mathews C, Halanur M, Mamane H, Linden KG. Biofilm inactivation using LED systems emitting germicidal UV and antimicrobial blue light. WATER RESEARCH 2024; 267:122449. [PMID: 39316962 DOI: 10.1016/j.watres.2024.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Biofilms have been widely detected in water distribution and water storage systems posing potential risks to drinking water safety by harboring and shedding pathogens. Light-based disinfection methods, such as germicidal ultraviolet (UV) and antimicrobial blue light (aBL), could serve as non-chemical alternatives for biofilm control. This study investigated the inactivation of pure-culture Pseudomonas aeruginosa biofilms and mixed-culture biofilms using three distinct light-based disinfection methods: a low-pressure (LP) UV lamp emitting at 254 nm, a UV light emitting diode (LED) at 270 nm, and an aBL LED at 405 nm. The biofilms were developed on three commonly used materials including polycarbonate (PC), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC), to assess the impact of surface characteristics on light-based biofilm inactivation. Our findings show that all selected devices can effectively inactivate pure-culture and mixed-culture biofilms. While both UV devices (LP UV lamp and UV LED) provided significant inactivation at lower fluences (>1 log reduction at 20 mJ/cm2), aBL LED achieved significant inactivation at higher fluences for pure culture (maximum log reduction of 3.8 ± 0.5 at > 200,000 mJ/cm2). Inactivation performance also varied with surface materials, likely attributed to different surface properties including roughness, hydrophobicity, and surface charge. This study provides important information on using light-based technologies for biofilm control and highlights the effect of surface materials on their inactivation performance.
Collapse
Affiliation(s)
- Dana Pousty
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States; Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St. Reno, NV 89557, United States
| | - Christian Mathews
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States
| | - Manohara Halanur
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States.
| |
Collapse
|
4
|
Song Y, Shang C, Westerhoff P, Ling L. Protecting against micropollutants in water storage tanks using in-situ TiO 2 coated quartz optical fibers. WATER RESEARCH 2024; 257:121682. [PMID: 38718654 DOI: 10.1016/j.watres.2024.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems. However, a current limitation of P-OFs is light management, specifically light oversaturation of the coated photocatalysts and short light transmission distances along fibers. This study overcomes this limitation and reveals strategies to improve the light dissipation uniformity along P-OFs, and demonstrates the performance of P-OFs on degrading a model micropollutant, carbamazepine (CBZ). Key tunable variables of fibers and light emission conditions, including photocatalyst coating patchiness (p), minimum light incident angles (θm), radiant flux launched to fibers (Φi), and fiber diameters (D), were modeled to establish their relationships with the light dissipation uniformity in TiO2-coated quartz optical fibers (TiO2-QOFs). We then validated modeling insights by conducting experiments to examine how these variables influence the generation of evanescent waves which are localized energy on fiber surfaces, leading to either photocatalyst activation or the recapture of unused light back into fibers. We observed substantial enhancements in evanescent waves generation by decreasing p and increasing θm, resulting in uniform light dissipation which reduces light oversaturation and improves light transmission distances. Moreover, these optimizations led to a remarkable three-fold improvement in CBZ degradation rates and a 65% reduction in energy consumption. Such improvement substantially reduces the capital and operational cost and enhances practicality of energy-efficient photocatalysis without additional chemical oxidants for micropollutant degradation in water storage tanks.
Collapse
Affiliation(s)
- Yinghao Song
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Chii Shang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, 85287 United States
| | - Li Ling
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
5
|
Mohsin MS, Avdic M, Fitzpatrick K, Lanzarini-Lopes M. UV-C side-emitting optical fiber-based disinfection: a promising approach for infection control in tight channels. Microbiol Spectr 2024; 12:e0004024. [PMID: 38687120 PMCID: PMC11237523 DOI: 10.1128/spectrum.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
The growth of pathogenic bacteria in moist and wet surfaces and tubing of medically relevant devices results in serious infections in immunocompromised patients. In this study, we investigated and demonstrated the successful implementation of a UV-C side-emitting optical fiber in disinfecting medically relevant pathogenic bacteria (Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus [MRSA]) within tight channels of polytetrafluoroethylene (PTFE). PTFE is a commonly used material both in point-of-use (POU) water treatment technologies and medical devices (dental unit water line [DUWL], endoscope). For a 1-m-long PTFE channel, up to ≥6 log inactivation was achieved using a 1-m-long UV side-emitting optical fiber (SEOF) with continuous 16-h exposure of low UV-C radiation ranging from ~0.23 to ~29.30 μW/cm2. Furthermore, a linear model was used to calculate the inhibition zone constant (k`), which enables us to establish a correlation between UV dosage and the extent of inactivated surface area (cm2) for surface-bound Escherichia coli on a nutrient-rich medium. The k` value for an irradiance ranging from ~150 to ~271.50 μW/cm2 was calculated to be 0.564 ± 0.6 cm·cm2/mJ. This study demonstrated the efficacy of SEOFs for disinfection of medically relevant microorganisms present in medically and domestically relevant tight channels. The impact of the results in this study extends to the optimization of operational efficiency in pre-existing UV surface disinfection setups that currently operate at UV dosages exceeding the optimal levels.IMPORTANCEGermicidal UV radiation has gained global recognition for its effectiveness in water and surface disinfection. Recently, various works have illustrated the benefit of using UV-C side-emitting optical fibers (SEOFs) for the disinfection of tight polytetrafluoroethylene (PTFE) channels. This study now demonstrates its impact for disinfection of medically relevant organisms and introduces critical design calculations needed for its implementation. The flexible geometry and controlled emission of light in these UV-SEOFs make them ideal for light distribution in tight channels. Moreover, the results presented in this manuscript provide a novel framework that can be employed in various applications, addressing microbial contamination and the disinfection of tight channels.
Collapse
Affiliation(s)
- Muhammad Salman Mohsin
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Melisa Avdic
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Katrina Fitzpatrick
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Mariana Lanzarini-Lopes
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Li Y, Dai J, Ma Y, Yao Y, Yu D, Shen J, Wu L. The mitigation potential of synergistic quorum quenching and antibacterial properties for biofilm proliferation and membrane biofouling. WATER RESEARCH 2024; 255:121462. [PMID: 38493743 DOI: 10.1016/j.watres.2024.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Biofouling has been a persistent problem hindering the application of membranes in water treatment, and quorum quenching has been identified as an effective method for mitigating biofouling, but surface accumulation of live bacteria still induces biofilm secretion, which poses a significant challenge for sustained prevention of membrane biofouling. In this study, we utilized quercetin, a typical flavonoid with the dual functions of quorum quenching and bacterial inactivation, to evaluate its role in preventing biofilm proliferation and against biofouling. Quercetin exhibited excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the decreased bioactivity was positively correlated with the quercetin concentration, with inhibition rates of 53.1 % and 57.4 %, respectively, at the experimental concentrations. The RT-qPCR results demonstrated that quercetin inhibited AI-2 of E. coli and AGR of S. aureus mediated quorum sensing system, and reduced the expression of genes such as adhesion, virulence, biofilm secretion, and key regulatory proteases. As a result, the bacterial growth cycle was retarded and the biomass and biofilm maturation cycles were alleviated with the synergistic effect of quorum quenching and antibacterial activity. In addition, membrane biofouling was significantly declined in the dynamic operation experiments, dead cells in the biofilm overwhelmingly dominated, and the final normalized water fluxes were increased by more than 49.9 % and 34.5 % for E. coli and S. aureus, respectively. This work demonstrates the potential for mitigating biofouling using protocols that quorum quenching and inactivate bacteria, also provides a unique and long-lasting strategy to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Jixiang Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
He Y, Yun H, Peng L, Ji J, Wang W, Li X. Deciphering the potential role of quorum quenching in efficient aerobic denitrification driven by a synthetic microbial community. WATER RESEARCH 2024; 251:121162. [PMID: 38277828 DOI: 10.1016/j.watres.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Low efficiency is one of the main challenges for the application of aerobic denitrification technology in wastewater treatment. To improve denitrification efficiency, a synthetic microbial community (SMC) composed of denitrifiers Acinetobacter baumannii N1 (AC), Pseudomonas aeruginosa N2 (PA) and Aeromonas hydrophila (AH) were constructed. The nitrate (NO3--N) reduction efficiency of the SMC reached 97 % with little nitrite (NO2--N) accumulation, compared to the single-culture systems and co-culture systems. In the SMC, AH proved to mainly contribute to NO3--N reduction with the assistance of AC, while PA exerted NO2--N reduction. AC and AH secreted N-hexanoyl-DL-homoserine lactone (C6-HSL) to promote the electron transfer from the quinone pool to nitrate reductase. The declined N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL), resulting from quorum quenching (QQ) by AH, stimulated the excretion of pyocyanin, which could improve the electron transfer from complex III to downstream denitrifying enzymes for NO2--N reduction. In addition, C6-HSL mainly secreted by PA led to the up-regulation of TCA cycle-related genes and provided sufficient energy (such as NADH and ATP) for aerobic denitrification. In conclusion, members of the SMC achieved efficient denitrification through the interactions between QQ, electron transfer, and energy metabolism induced by N-acyl-homoserine lactones (AHLs). This study provided a theoretical basis for the engineering application of synthetic microbiome to remove nitrate wastewater.
Collapse
Affiliation(s)
- Yue He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| |
Collapse
|