1
|
Yang D, Fang W. Reduction of antimony bioavailability with the application of stable exogenous organic matter: a comparative study between rice straw and manure compost. ENVIRONMENTAL RESEARCH 2025; 277:121578. [PMID: 40216060 DOI: 10.1016/j.envres.2025.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Considering the widespread use of organic amendments to improve soil quality and enhance soil carbon sequestration, it is crucial to understand their impact on the bioavailability of metalloids in soils. Antimony (Sb), a priority pollutant, is particularly impacted by organic matter, yet the effects of different organic amendments-varying in stability and composition-on Sb bioavailability remain unclear. This study investigates the influence of different organic amendments, rice straw and compost, on Sb bioavailability in the rice-soil system, with rice ingestion being a major Sb exposure pathway in humans. Results show that while both amendments increased dissolved organic carbon in soil solution, their effects on Sb bioavailability differed markedly. Rice straw increased CDGT-SbIII by 13.24 %-66.63 %, whereas compost decreased CDGT-SbIII by 32.47 %-43.51 %. These differences were also reflected in Sb accumulation in rice shoots, where compost application resulted in lower Sb content. This reduction may be attributed to increased microbial genera such as Ramlibacter and Sphingomonas, which are associated with SbIII oxidation. Conversely, organic matter with low stability, prone to rapid degradation, could promote reducing soil conditions, thereby increasing SbIII concentrations. Our findings suggest that stable exogenous organic matter, such as pre-decomposed compost, is preferable for managing Sb-contaminated soils.
Collapse
Affiliation(s)
- Danxing Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Wen Fang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Chu Z, Qi K, Yi L, Kang Y, Xie X, Zhao Y, Wang Z. Molecular fractionation on ferrihydrite eroded the disinfection byproduct formation potential of dissolved organic matter derived from microplastics and biochar. WATER RESEARCH 2025; 280:123471. [PMID: 40120385 DOI: 10.1016/j.watres.2025.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Dissolved organic matter derived from microplastics (MPDOM) and biochar (BDOM), as examples of anthropogenic DOM, have received significant attention. Nonetheless, molecular fractionation particularly the detailed "kinetic architecture" and sequential assembly of MPDOM and BDOM at the mineral-water interface remains elusive, which significantly alters DOM composition and subsequent disinfection byproducts (DBPs) formation. This work systematically investigated these issues using FT-ICR MS, 2D-COS, PARAFAC analysis, and kinetic assays. For MPDOM, polyphenolics-like from plastic additives and breakdown products were rapidly adsorbed onto ferrihydrite, while combustion-derived condensed aromatics-like in BDOM exhibited priority adsorption. These results aligned with the equilibrium adsorption capacity for phenolics and condensed aromatics calculated by the Folin-Ciocalteu and benzenepolycarboxylic acid methods, 13.93 mg g-1 and 0.93 mgC g-1 for MPDOM, 3.66 mg g-1 and 7.16 mgC g-1 for BDOM, respectively. It suggested that mineral affinity of specific compounds relied on both molecular state and origin. The molecular fractionation driven by the co-action of "mineral-OM" and "OM-OM" interactions consequently eroded DBPs formation potential (21.77 % for MPDOM and 23.05 % for BDOM) by preferentially sequestering unsaturated and aromatic substances with higher chlorine reactivity. Our findings highlight molecular fractionation on minerals is a vital geochemical behavior regulating solid-liquid distribution and chlorine reactivity, advancing our understanding of anthropogenic carbon sequestration and cycling.
Collapse
Affiliation(s)
- Zhenkun Chu
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China
| | - Kemin Qi
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China
| | - Lusheng Yi
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China
| | - Yaqi Kang
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China.
| | - Yiru Zhao
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
4
|
Yin Z, Zhang M, Jing C, Cai Y. Organic matter in geothermal springs and its association with the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176775. [PMID: 39378948 DOI: 10.1016/j.scitotenv.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Organic matter (OM) plays an important role in the biogeochemical cycles of carbon, nitrogen, and other elements, shaping the structure of the microbiome and vice versa. However, the molecular composition of OM and its impact on the microbial community in terrestrial geothermal environments remain unclear. In this study, we characterized the OM in water and sediment from a typical geothermal field using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. By combining high-throughput amplicon sequencing and multivariate analyses, we deciphered the association between OM components and microbial community. A surprisingly high chemodiversity of OM was observed in the waters (11,088 compounds) and sediments (7772 compounds) in geothermal springs. Sulfur-containing organic compounds, a characteristic molecular signature of geothermal springs, accounted for 21 % ± 5 % in waters and 33 % ± 4 % in sediments. Multivariate analyses revealed that both labile and recalcitrant fractions of OM (e.g., carbohydrates intensity and tannins chemodiversity) influenced the structure and function of the microbial community. Co-occurrence networks showed that Proteobacteria and Crenarchaeota accounted for most of the connections with OM in waters (33 % and 15 %, respectively) and sediments (15 % and 12 %, respectively), highlighting their key roles in carbon cycling. This study expands our understanding of the molecular compositions of OM in geothermal springs and highlights its potentially important role in global climate change through microbial carbon cycling.
Collapse
Affiliation(s)
- Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
5
|
Sun Y, Xu Z, He M, Alessi DS, Tsang DCW. Unlocking the solution-phase molecular transformation of biochar during intensive rainfall events: Implications for the long-term carbon cycle under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176708. [PMID: 39383956 DOI: 10.1016/j.scitotenv.2024.176708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The unclear turnover of soluble and solid phases of biochar during increasingly severe climate change (e.g., intensive rainfall) raised questions about the carbon stability of biochar in soil. Here, we present an in-depth analysis of the molecular-level transformations occurring in both the soluble and solid phases of biochar subjected to prolonged wet-dry cycles with simulated rainwater. Biochar properties, including surface functionality and carbon texture, greatly affected the transformation route and led to a distinct stability variation. The rich alkyl -CH3 on the low-temperature biochar (450 °C) was oxidized to hydroxymethyl -CH2OH or formyl -CHO, and the ester -COOC- or peptide -CONHC- bonds were fragmented in the meantime, causing the release of protein- or lipid-like organic carbon and the declined carbon stability (Æ, tested by H2O2 oxidation, from 60.1% to 53.2%). After a high-temperature (750 °C) pyrolysis process, only oxidation of the surface -OH with limited bond breaking occurred after rainwater elution, presenting a marginal composition difference with constant stability. However, the fragile carbon nature of biochar, caused by CO2 activation, led to enhanced fragmentation, oxidation, and hydration, resulting in the release of tannin-like organic carbon, which compromised the carbon storage (Æ decreased from 81.2% to 73.0%). Our findings evaluated the critical transformation of biochar during intensive rainfall, offering crucial insights for designing sustainable biochar and achieving carbon neutrality.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjing He
- Deloitte China, 88 Queensway, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Liu YJ, Yang HY, Gao SX, Li ZH, Hu YY, Zheng X, Sheng GP. Molecular fractionation mediates genotoxicity evolution of hydrochar-derived dissolved organic matter at the iron oxyhydroxides-water interface. WATER RESEARCH 2024; 268:122584. [PMID: 39395367 DOI: 10.1016/j.watres.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Adsorption fractionation of dissolved organic matter (DOM) induced by soil minerals is a common geochemical process, which has been widely documented on natural DOM. Hydrochar is a promising functional material in soil remediation but can continuously release abundant endogenic DOM with potential biotoxicity. However, adsorption fractionation at molecular level and its influence on toxicity evolution of hydrochar-derived DOM (HDOM) at genetic level at the soil-water interface remain poorly understood. Herein, we investigated the molecular fractionation of HDOM on three typical soil iron minerals (i.e., ferrihydrite, goethite, and hematite). Results from ultrahigh-resolution mass spectrum showed that HDOM molecules with high molecular weight and high contents of unsaturated oxidized or aromatic structures (e.g., unsaturated phenolic compounds, polyphenols, and organic acids) were preferentially absorbed by iron oxyhydroxides, while aliphatic molecules and poorly oxygenated compounds (e.g., hydrocarbon, phenols, and alcohols) were retained in aqueous phase. Furthermore, we quantitatively evaluated their genotoxicity variation using a toxicogenomics assay using green fluorescence protein-fused whole-cell array, and results showed that oxidative, protein, membrane, and DNA stresses were primary responses upon exposure to original HDOM. Interface fractionation induced by iron oxyhydroxides significantly reduced genotoxicity of HDOM, especially for oxidative, membrane and DNA stresses. Overall, the selective absorption of HDOM molecules by iron oxyhydroxides shifted its biotoxicity, which might change the ecological effects of hydrochar amendment, e.g., microbial community structure, environmental pollutant transformation, and even the ecological function of terrestrial and aquatic ecosystems. These findings would contribute to unraveling the environmental geochemistry process of HDOM in the natural soil-water interface and provide a new insight into the biotoxicity of hydrochar usage to terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yan-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - He-Yun Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Shu-Xian Gao
- Research Group BioGeoOmics, Department Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig D-04318, Germany
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yan-Yun Hu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Cheng X, Wei Z, Cao W, Feng Q, Liu J, Wu Y, Feng L, Wang D, Luo J. Untangling the interplay of dissolved organic matters variation with microbial symbiotic network in sludge anaerobic fermentation triggered by various pretreatments. WATER RESEARCH 2024; 260:121930. [PMID: 38908316 DOI: 10.1016/j.watres.2024.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Various pretreatments are commonly adopted to facilitate dissolved organic matter (DOM) release from waste activated sludge (WAS) for high-valued volatile fatty acids (VFAs) promotion, while the interplay impact of DOM dynamics transformation on microbial population and metabolic function traits is poorly understood. This work constructed "DOM-microorganisms-metabolism-VFAs" symbiotic ecologic networks to disclose how DOM dynamics variation intricately interacts with bacterial community networks, assembly processes, and microbial traits during WAS fermentation. The distribution of DOM was altered by different pretreatments, triggering the release of easily biodegradable compounds (O/C ratio > 0.3) and protein-like substance. This alteration greatly improved the substrates biodegradability (higher biological index) and upregulated microbial metabolism capacity (e.g., hydrolysis and fatty acid synthesis). In turn, microbial activity modifications augment substance metabolism level and expedite the conversion of highly reactive compounds (proteins-like DOM) to VFAs, leading to 1.6-4.2 fold rise in VFAs generation. Strong correlations were found between proteins-like DOM and topological properties of DOM-bacteria associations, suggesting that high DOM availability leads to more intricate ecological networks. A change in the way communities assemble, shifting from stronger uniform selection in pH10 and USp reactors to increased randomness in heat reactor, was linked to DOM composition alterations. The ecologic networks further revealed metabolic synergy between hydrolytic-acidogenic bacteria (e.g., Bacteroidota and Firmicutes) and biodegradable DOM (e.g., proteins and amino sugars) leading to higher VFAs generation. This study provides a deeper knowledge of the inherent connections between DOM and microbial traits for efficient VFAs biosynthesis during WAS anaerobic fermentation, offering valuable insights for effective WAS pretreatment strategies.
Collapse
Affiliation(s)
- Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Zhicheng Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| |
Collapse
|
8
|
He Y, Mi B, Luo C, Zhao W, Zhu Y, Chen L, Tu N, Wu F. Mechanisms insights into Cd passivation in soil by lignin biochar: Transition from flooding to natural air-drying. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134565. [PMID: 38743974 DOI: 10.1016/j.jhazmat.2024.134565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Biochar shows great potential in soil cadmium pollution treatment, however, the effect and mechanisms of biochar on cadmium passivation (CP) during the long-term process of soil from flooding to natural air-drying are not clear. In this study, a 300-day experiment was conducted to keep the flooded water level constant for the first 100 days and then dried naturally. Mechanisms of CP by lignin biochar (LBC) were analyzed through chemical analysis, FTIR-2D-COS, EEMs-PARAFAC, ultraviolet spectroscopy characterizations, and microbial community distribution of soil. Results showed that application of LBC results in rapid CP ratio in soil within 35 days, mainly in the residual and Fe-Mn bound states (total 72.80%). CP ratio further increased to 90.89% with water evaporation. The CP mechanisms include precipitation, electrostatic effect, humus complexation, and microbial remediation by promoting the propagation of fungi such as Penicillium and Trichoderma. Evaporation of water promoted the colonization of aerobic microorganisms and then increased the degree of soil humification and aromatization, thereby enhancing the cadmium passivation. Simultaneously, the biochar could reduce the relative abundance of plant pathogens in soil from 1.8% to 0.03% and the freshness index (β/α) from 0.64 to 0.16, favoring crop growth and promoting carbon sequestration and emission reduction.
Collapse
Affiliation(s)
- Yanying He
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Cheng Luo
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Zhao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yule Zhu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Naimei Tu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|