1
|
S B, Shree K N R, K V A, M Y S. Adsorption - Advanced oxidation process (AAOP) for the heavy metals and organic matter removal from leachate using combined filtration -Fenton's and Photo-Fenton's treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123009. [PMID: 39471604 DOI: 10.1016/j.jenvman.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Design of cost - effective filtration unit was carried out to evaluate the efficiency of different filter media made of locally available materials to treat raw leachate. Four different filter media laterites, peat, bagasse and a mixture of all were considered as study filter media for the removal of Zinc, Nickel, Copper and Lead from raw leachate. The reactor exhibited a significant removal efficiency when the three-filter media were combined as a combination. A removal rate of around 83.0% and 64.12% was found for nickel and copper, respectively, with a combined filter medium. The order of heavy metal removal varied depending on the kind of filter media used. For combined filter media, the sequence was Ni > Cu > Pb > Zn. For bagasse filter media, it was Pb > Cu > Zn > Ni. For peat filter media, it was Ni > Cu > Pb > Zn. For laterite filter media, it was Zn > Cu > Ni > Pb. Insignificant removal of heavy metals was observed with bagasse in the current investigation and hence is not recommended for use as a filter medium. Pre-treated leachate was subjected to Fenton's oxidation and UV-Fenton's oxidation for organic matter removal. Green synthesized bleached laterite iron nanoparticles were used as a catalyst in the Fenton treatment. COD removal of 80.0% and 85.0% was observed with 0.5 g/L of nano iron catalyst and 500 mg/L of H2O2 and 100 mg/L of H2O2 on Fenton's oxidation and UV-Fenton's oxidation respectively. The synthesized particles were demonstrated to possess a catalytic function in the reduction of COD. Both Fenton's oxidation and UV-Fenton's oxidation exhibit pseudo-first-order kinetics with linear regression.
Collapse
Affiliation(s)
- Bhaskar S
- Department of Civil Engineering, National Institute of Technology Calicut, Calicut, P.O. - 673 601, Kerala, India.
| | - Rashmi Shree K N
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore, 575025, India.
| | - Apoorva K V
- Department of Water Resource and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore, 575025, India.
| | - Sreenivasa M Y
- Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
2
|
Xiang Y, Lan J, Dong Y, Zhou M, Hou H, Huang BT. Pollution control performance of solidified nickel-cobalt tailings on site: Bioavailability of heavy metals and microbial response. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134295. [PMID: 38631253 DOI: 10.1016/j.jhazmat.2024.134295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.
Collapse
Affiliation(s)
- Yuwei Xiang
- School of Resource and Environmental Sciences, Wuhan University, 430072, China.
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Yiqie Dong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Min Zhou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China.
| | - Bo-Tao Huang
- Institute of Advanced Engineering Structures, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Li W, Wang C, Che G, Su M, Zhang Z, Liu W, Lin Z, Zhang J. Enhanced extraction of heavy metals from gypsum-based hazardous waste by nanoscale sulfuric acid film at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134027. [PMID: 38508110 DOI: 10.1016/j.jhazmat.2024.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.
Collapse
Affiliation(s)
- Wenjing Li
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China
| | - Chunli Wang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Guiquan Che
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Min Su
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Zhihao Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Weizhen Liu
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China; School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Jing Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China.
| |
Collapse
|
4
|
Hetz SA, Schippers A. Do ferrous iron-oxidizing acidophiles ( Leptospirillum spp.) disturb aerobic bioleaching of laterite ores by sulfur-oxidizing acidophiles ( Acidithiobacillus spp.)? Front Microbiol 2024; 15:1359019. [PMID: 38655078 PMCID: PMC11035876 DOI: 10.3389/fmicb.2024.1359019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extraction of nickel, cobalt, and other metals from laterite ores via bioleaching with sulfur-oxidizing and ferric iron-reducing, autotrophic, acidophilic bacteria (e.g. Acidithiobacillus species) has been demonstrated under anaerobic as well as aerobic conditions in experiments in different laboratories. This study demonstrated the bioleaching of laterites from Brazil with the addition of elemental sulfur in 2-L stirred-tank bioreactors with pure and mixed cultures of Acidithiobacillus and Sulfobacillus species under aerobic conditions. In particular, a potential disturbance of mineral dissolution under aerobic conditions by ferrous iron-oxidizing acidophiles likely introduced as contaminants in an applied bioleaching process was investigated with Leptospirillum ferrooxidans at 30°C and Leptospirillum ferriphilum at 40°C, at maintained pH 1.5 or without maintained pH leading to an increase in acidity (with pH values <1.0) due to the biological production of sulfuric acid. Despite the proportion of ferrous iron to the total amount of extracted iron in the solution being drastically reduced in the presence of Leptospirillum species, there was a negligible effect on the extraction efficiency of nickel and cobalt, which is positive news for laterite bioleaching under aerobic conditions.
Collapse
Affiliation(s)
- Stefanie A. Hetz
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| |
Collapse
|
5
|
Hubau A, Joulian C, Tris H, Pino-Herrera D, Becquet C, Guezennec AG. Fe(III) bioreduction kinetics in anaerobic batch and continuous stirred tank reactors with acidophilic bacteria relevant for bioleaching of limonitic laterites. Front Microbiol 2024; 15:1358788. [PMID: 38533329 PMCID: PMC10964485 DOI: 10.3389/fmicb.2024.1358788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
In the framework of the H2020 project CROCODILE, the recovery of Co from oxidized ores by reductive bioleaching has been studied. The objective was to reduce Fe(III) to Fe(II) to enhance the dissolution of Co from New-Caledonian limonitic laterites, mainly composed of goethite and Mn oxides. This study focused on the Fe(III) bioreduction which is a relevant reaction of this process. In the first step, biomass growth was sustained by aerobic bio-oxidation of elemental sulfur. In the second step, the biomass anaerobically reduced Fe(III) to Fe(II). The last step, which is not in the scope of this study, was the reduction of limonites and the dissolution of metals. This study aimed at assessing the Fe(III) bioreduction rate at 35°C with a microbial consortium composed predominantly of Sulfobacillus (Sb.) species as the iron reducers and Acidithiobacillus (At.) caldus. It evaluated the influence of the biomass concentration on the Fe(III) bioreduction rate and yield, both in batch and continuous mode. The influence of the composition of the growth medium on the bioreduction rate was assessed in continuous mode. A mean Fe(III) bioreduction rate of 1.7 mg·L-1·h-1 was measured in batch mode, i.e., 13 times faster than the abiotic control (0.13 mg·L-1·h-1). An increase in biomass concentrations in the liquid phase from 4 × 108 cells·mL-1 to 3 × 109 cells·mL-1 resulted in an increase of the mean Fe(III) bioreduction rate from 1.7 to 10 mg·L-1·h-1. A test in continuous stirred tank reactors at 35°C resulted in further optimization of the Fe(III) bioreduction rate which reached 20 mg·L-1·h-1. A large excess of nutrients enables to obtain higher kinetics. The determination of this kinetics is essential for the design of a reductive bioleaching process.
Collapse
|
6
|
Boase K, Santini T, Watkin E. Microbes of biotechnological importance in acidic saline lakes in the Yilgarn Craton, Western Australia. Front Microbiol 2024; 15:1308797. [PMID: 38419638 PMCID: PMC10899397 DOI: 10.3389/fmicb.2024.1308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Acidic salt lakes are environments that harbor an array of biologically challenging conditions. Through 16S rRNA, 18S rRNA, and ITS amplicon sequencing of eight such lakes across the Yilgarn Craton of Western Australia, we aim to understand the microbial ecology of these lakes with a focus on iron- and sulfur-oxidizing and reducing microorganisms that have theoretical application in biomining industries. In spite of the biological challenges to life in these lakes, the microbial communities were highly diverse. Redundancy analysis of soil samples revealed sulfur, ammonium, organic carbon, and potassium were significant diversities of the microbial community composition. The most abundant microbes with a hypothetical application in biomining include the genus 9 M32 of the Acidithiobacillus family, Alicyclobacillus and Acidiphilium, all of which are possible iron- and/or sulfur-oxidizing bacteria. It is evident through this study that these lakes harbor multiple organisms with potential in biomining industries that should be exploited and studied further.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Talitha Santini
- School of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- School of Science, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
7
|
Rouchalová K, Rouchalová D, Čablík V, Matýsek D. Microwave-Assisted Hydrothermal Synthesis of Pure-Phase Sodalite (>99 wt.%) in Suspension: Methodology Design and Verification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:269. [PMID: 38204121 PMCID: PMC10780149 DOI: 10.3390/ma17010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Despite numerous studies focused on the hydrothermal (HT) synthesis of fly ash zeolites (FAZs), this method still has many limitations, the main of which is the low yield of zeolites. Hydrothermally synthesized zeolites are typically multiphase and exhibit low purity, which limits their applicability. Pure-phase zeolites have been primarily prepared from filtrates after alkaline mineralization of fly ashes, not directly in suspension. In addition, the published methodologies have not been tested in a wider set of samples, and thus their reproducibility is not confirmed. The aim of the study is to propose a reproducible methodology that overcomes the mentioned limitations. The influence of the Si/Al ratio (1.3:1-1:2), the type and concentration of the activator (2/4 M NaOH/KOH/LiOH), the reagent (30% LiCl), the duration (24-168 h), and the temperature (50-180 °C) of the synthesis phases were studied. The sequence of the synthesis phases was also optimized, depending on the type of heat transfer. The fly ashes were analyzed by wavelength-dispersive X-ray fluorescence (WD XRF), flame atomic absorption spectrometry (F-AAS), and X-ray diffraction (XRD). The energy intensity of the synthesis was reduced through the application of unique microwave digestion technology. Both microwave and combined (microwave and convection) syntheses were conducted. FAZs were identified and quantified by XRD analysis. This study presents a three-stage (TS) hydrothermal synthesis of pure-phase sodalite in suspension. Sodalite (>99 wt.%) was prepared from nine fly ashes under the following conditions: I. microwave phase: 120 °C, 150 min, solid-to-liquid ratio (S/L) 1:5, Si/Al ratio 1:1.5, and 4 M NaOH; II. convection phase: 120 °C, 24 h, S/L 1:40, and the addition of 30 mL of 30% LiCl; and III. crystallization: 70 °C for 24 h. The formation of rhombododecahedral sodalite crystals was confirmed by scanning electron microscope (SEM) images.
Collapse
Affiliation(s)
- Kamila Rouchalová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB—Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; (D.R.); (V.Č.)
| | - Dana Rouchalová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB—Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; (D.R.); (V.Č.)
| | - Vladimír Čablík
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB—Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; (D.R.); (V.Č.)
| | - Dalibor Matýsek
- Department of Geological Engineering, Faculty of Mining and Geology, VŠB—Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| |
Collapse
|
8
|
Breuker A, Schippers A. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates. Res Microbiol 2024; 175:104110. [PMID: 37544391 DOI: 10.1016/j.resmic.2023.104110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0-1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.
Collapse
Affiliation(s)
- Anja Breuker
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg2, 30655 Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg2, 30655 Hannover, Germany.
| |
Collapse
|
9
|
He J, Zhang B, Wang Y, Chen S, Dong H. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1807-1818. [PMID: 36598371 DOI: 10.1021/acs.est.2c06184] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vanadium(V) is a redox-sensitive heavy-metal contaminant whose environmental mobility is strongly influenced by pyrrhotite, a widely distributed iron sulfide mineral. However, relatively little is known about microbially mediated vanadate [V(V)] reduction characteristics driven by pyrrhotite and concomitant mineral dynamics in this process. This study demonstrated efficient V(V) bioreduction during 210 d of operation, with a lifespan about 10 times longer than abiotic control, especially in a stable period when the V(V) removal efficiency reached 44.1 ± 13.8%. Pyrrhotite oxidation coupled to V(V) reduction could be achieved by an enriched single autotroph (e.g., Thiobacillus and Thermomonas) independently. Autotrophs (e.g., Sulfurifustis) gained energy from pyrrhotite oxidation to synthesize organic intermediates, which were utilized by the heterotrophic V(V) reducing bacteria such as Anaerolinea, Bacillus, and Pseudomonas to sustain V(V) reduction. V(V) was reduced to insoluble tetravalent V, while pyrrhotite oxidation mainly produced Fe(III) and SO42-. Secondary minerals including mackinawite (FeS) and greigite (Fe3S4) were produced synchronously, resulting from further transformations of Fe(III) and SO42- by sulfate reducing bacteria (e.g., Desulfatiglans) and magnetotactic bacteria (e.g., Nitrospira). This study provides new insights into the biogeochemical behavior of V under pyrrhotite effects and reveals the previously overlooked mineralogical dynamics in V(V) reduction bioprocesses driven by Fe(II)-bearing minerals.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Ya'nan Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science and Resources, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Roberto FF, Schippers A. Progress in bioleaching: part B, applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 2022; 106:5913-5928. [PMID: 36038754 PMCID: PMC9424069 DOI: 10.1007/s00253-022-12085-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
This review provides an update to the last mini-review with the same title pertaining to recent developments in bioleaching and biooxidation published in 2013 (Brierley and Brierley). In the intervening almost 10 years, microbial processes for sulfide minerals have seen increased acceptance and ongoing but also declining commercial application in copper, gold, nickel and cobalt production. These processes have been applied to heap and tank leaching, nowadays termed biomining, but increasing concerns about the social acceptance of mining has also seen the re-emergence of in situ leaching and quest for broader applicability beyond uranium and copper. Besides metal sulfide oxidation, mineral dissolution via reductive microbial activities has seen experimental application to laterite minerals. And as resources decline or costs for their exploitation rise, mine waste rock and tailings have become more attractive to consider as easily accessible resources. As an advantage, they have already been removed from the ground and in some cases contain ore grades exceeding that of those currently being mined. These factors promote concepts of circular economy and efficient use and valorization of waste materials. KEY POINTS: • Bioleaching of copper sulfide ore deposits is producing less copper today • Biooxidation of refractory gold ores is producing more gold than in the past • Available data suggest bioleaching and biooxidation processes reduce carbon emissions.
Collapse
Affiliation(s)
- Francisco F. Roberto
- Technical Services Processing and Metallurgy, Newmont Corporation, Englewood, CO USA
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Geomicrobiology Unit, Resource Geochemistry, Stilleweg 2 30655, Hannover, Germany
| |
Collapse
|
11
|
Zhang DR, Chen HR, Xia JL, Nie ZY, Zhang RY, Pakostova E. Efficient dealkalization of red mud and recovery of valuable metals by a sulfur-oxidizing bacterium. Front Microbiol 2022; 13:973568. [PMID: 36106077 PMCID: PMC9465049 DOI: 10.3389/fmicb.2022.973568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Red mud (RM) is a highly alkaline polymetallic waste generated via the Bayer process during alumina production. It contains metals that are critical for a sustainable development of modern society. Due to a shortage of global resources of many metals, efficient large-scale processing of RM has been receiving increasing attention from both researchers and industry. This study investigated the solubilization of metals from RM, together with RM dealkalization, via sulfur (S0) oxidation catalyzed by the moderately thermophilic bacterium Sulfobacillus thermosulfidooxidans. Optimization of the bioleaching process was conducted in shake flasks and 5-L bioreactors, with varying S0:RM mass ratios and aeration rates. The ICP analysis was used to monitor the concentrations of dissolved elements from RM, and solid residues were analyzed for surface morphology, phase composition, and Na distribution using the SEM, XRD, and STXM techniques, respectively. The results show that highest metal recoveries (89% of Al, 84% of Ce, and 91% of Y) were achieved with the S0:RM mass ratio of 2:1 and aeration rate of 1 L/min. Additionally, effective dealkalization of RM was achieved under the above conditions, based on the high rates (>95%) of Na, K, and Ca dissolution. This study proves the feasibility of using bacterially catalyzed S0 oxidation to simultaneously dealkalize RM and efficiently extract valuable metals from the amassing industrial waste.
Collapse
Affiliation(s)
- Duo-rui Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha, China
| | - Hong-rui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha, China
| | - Jin-lan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha, China
- *Correspondence: Jin-lan Xia
| | - Zhen-yuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha, China
| | - Rui-Yong Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha, China
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Eva Pakostova
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
12
|
Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. METALS 2022. [DOI: 10.3390/met12050807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The automotive industry is in the process of transformation from the traditional production of vehicles with engines powered by the combustion of fossil fuels to vehicles powered by electric energy. This revolutionary transformation will generate a growing demand for metallic raw materials that are a crucial part of batteries—nickel and cobalt, among others. Providing enough raw materials for e-mobility in a sustainable way will be a challenge in the years to come. The region of South-Eastern Europe (SEE) and Turkey is relatively rich in lateritic Ni-Co deposits, and this region has the potential to partially replace the import of nickel and cobalt intermediates to the European Union from distant overseas locations. Possibilities for the sustainable sourcing of nickel and cobalt from the SEE region are reviewed in this paper, with an overview of the global demand and production of these metals, lateritic mineral resources of SEE, the current status of production, and the prospective development of nickel and cobalt production in this region.
Collapse
|
13
|
Ye Z, Hong S, He C, Zhang Y, Wang Y, Zhu H, Hou H. Evaluation of different factors on metal leaching from nickel tailings using generalized additive model (GAM). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113488. [PMID: 35398648 DOI: 10.1016/j.ecoenv.2022.113488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Compared with sulfide tailings, the oxidation and transformation of certain substances in oxidized tailings into more soluble forms may affect the bioaccumulation and biomagnification properties and enhance the risk of toxic effects in the ecosystem. This study aimed to apply the generalized additive model (GAM) to evaluate factors affecting heavy metal leaching from nickel (Ni) tailings. We created an orthogonal experiment table (L18(37)) to evenly distribute the different combinations of factor values. The Ni tailings were immersed in solutions with different combinations of factor values for 16 d, and samples were taken on days 1, 2, 4, 7, 11, and 16 to measure the pH and heavy metal concentration of the leachate. The GAM was used to fit the concentration of heavy metals of the leachate and the initial factors of the leaching solution. The results showed that the pH and Cr concentration of the leachate increased with time and stabilized after 1 d (pH of approximately 7), while the Mn, Ni, and Tl concentrations gradually decreased and stabilized after peaking on the first day. An analysis of the GAM results showed that the Cr concentration was highly sensitive to the solid-liquid ratio (F = 127.8) and tailing particle size (F = 10.7). The Cr concentration of the leachate was significantly higher when exposed to a high solid-liquid ratio or a fine particle size, whereas the Mn, Ni, and Tl concentrations were highly sensitive to the KCl concentration and solid-liquid ratio (F = 77.4, 146.9, and 315.9 respectively). The GAM identified interactions between key factors, which have complex and strong effects on the leaching of tailings and the migration of heavy metals, either promotional or antagonistic. The prediction of the minimum Cr leaching concentration shows that GAM can be used to determine the conditions associated with minimum leaching concentrations of heavy metals and to effectively predict the metal concentrations of leachate. As such, the results of this study can be applied to the management of nickel tailings.
Collapse
Affiliation(s)
- Zhixiang Ye
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China
| | - Song Hong
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China.
| | - Chao He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, 430100 Wuhan, Hubei, China; College of Resources and Environment, Yangtze University, 430100 Wuhan, Hubei, China
| | - Yun Zhang
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China
| | - Yan Wang
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China.
| | - Hua Zhu
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China.
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430079 Wuhan, Hubei, China
| |
Collapse
|
14
|
Chen X, Du Z, Guo T, Wu J, Wang B, Wei Z, Jia L, Kang K. Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118624. [PMID: 34864104 DOI: 10.1016/j.envpol.2021.118624] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuang Du
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin, 150056, China
| |
Collapse
|
15
|
Santos AL, Dybowska A, Schofield PF, Herrington RJ, Cibin G, Johnson DB. Chromium (VI) Inhibition of Low pH Bioleaching of Limonitic Nickel-Cobalt Ore. Front Microbiol 2022; 12:802991. [PMID: 35087502 PMCID: PMC8787160 DOI: 10.3389/fmicb.2021.802991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Limonitic layers of the regolith, which are often stockpiled as waste materials at laterite mines, commonly contain significant concentrations of valuable base metals, such as nickel, cobalt, and manganese. There is currently considerable demand for these transition metals, and this is projected to continue to increase (alongside their commodity values) during the next few decades, due in the most part to their use in battery and renewable technologies. Limonite bioprocessing is an emerging technology that often uses acidophilic prokaryotes to catalyse the oxidation of zero-valent sulphur coupled to the reduction of Fe (III) and Mn (IV) minerals, resulting in the release of target metals. Chromium-bearing minerals, such as chromite, where the metal is present as Cr (III), are widespread in laterite deposits. However, there are also reports that the more oxidised and more biotoxic form of this metal [Cr (VI)] may be present in some limonites, formed by the oxidation of Cr (III) by manganese (IV) oxides. Bioleaching experiments carried out in laboratory-scale reactors using limonites from a laterite mine in New Caledonia found that solid densities of ∼10% w/v resulted in complete inhibition of iron reduction by acidophiles, which is a critical reaction in the reductive dissolution process. Further investigations found this to be due to the release of Cr (VI) in the acidic liquors. X-ray absorption near edge structure (XANES) spectroscopy analysis of the limonites used found that between 3.1 and 8.0% of the total chromium in the three limonite samples used in experiments was present in the raw materials as Cr (VI). Microbial inhibition due to Cr (VI) could be eliminated either by adding limonite incrementally or by the addition of ferrous iron, which reduces Cr (VI) to less toxic Cr (III), resulting in rates of extraction of cobalt (the main target metal in the experiments) of >90%.
Collapse
Affiliation(s)
- Ana Laura Santos
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | | | | | | | | | - D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom.,Health and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
16
|
Malik L, Hedrich S. Ferric Iron Reduction in Extreme Acidophiles. Front Microbiol 2022; 12:818414. [PMID: 35095822 PMCID: PMC8790237 DOI: 10.3389/fmicb.2021.818414] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.
Collapse
Affiliation(s)
- Luise Malik
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Sabrina Hedrich
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
17
|
Li J, Zhang B, Yang M, Lin H. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125843. [PMID: 33865106 DOI: 10.1016/j.jhazmat.2021.125843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Bioleaching is promising to meet the demand of strategic vanadium both economically and environmentally. Whereas the combination of bioleaching with traditional techniques is of great interest, little is known on bioleaching of vanadium from abundant vanadium-bearing resources utilized/produced in existing processes. This study investigated the bioleaching of vanadium from vanadium-titanium magnetite, steel slag, and clinker, which are common raw mineral and intermediates used in conventional vanadium extraction process. Clinker had greater leachability by Acidithiobacillus ferrooxidans, compared to vanadium-titanium magnetite and steel slag. Pulp density, inoculum volume, initial pH and initial Fe2+ concentration had influencing effects on this bioleaching process. Under optimal condition with 3% pulp density, 10% inoculum volume, initial pH at 1.8, and 3 g/L initial Fe2+ concentration, the bioleaching of clinker achieved the maximum vanadium leaching efficiency of 59.0%. Both X-ray fluorescence and energy dispersive spectroscopy analysis confirmed the reduction of vanadium content in the solid residues after leaching. The results of Community Bureau of Reference sequential extraction suggested that vanadium in acid-soluble and oxidizable phase was more easily leachable. This study is helpful to develop sustainable and practical techniques for vanadium extraction from abundant raw materials and step forward in combining bioleaching with traditional process.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Meng Yang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
18
|
Johnson DB, Smith SL, Santos AL. Bioleaching of Transition Metals From Limonitic Laterite Deposits and Reassessment of the Multiple Roles of Sulfur-Oxidizing Acidophiles in the Process. Front Microbiol 2021; 12:703177. [PMID: 34381430 PMCID: PMC8352580 DOI: 10.3389/fmicb.2021.703177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Using acidophilic bacteria to catalyze the reductive dissolution of oxidized minerals is an innovative process that facilitates the extraction of valuable base metals (principally cobalt and nickel) from limonites, which are otherwise often regarded as waste products of laterite mining. The most appropriate conditions required to optimize reductive mineral dissolution are unresolved, and the current work has reassessed the roles of Acidithiobacillus spp. in this process and identified novel facets. Aerobic bio-oxidation of zero-valent sulfur (ZVS) can generate sufficient acidity to counterbalance that consumed by the dissolution of oxidized iron and manganese minerals but precludes the development of low redox potentials that accelerate the reductive process, and although anaerobic oxidation of sulfur by iron-reducing species can achieve this, less acid is generated. Limited reduction of soluble iron (III) occurs in pure cultures of Acidithiobacillus spp. (Acidithiobacillus thiooxidans and Acidithiobacillus caldus) that do not grow by iron respiration. This phenomenon ("latent iron reduction") was observed in aerated cultures and bioreactors and was independent of electron donor used (ZVS or hydrogen). Sufficient ferrous iron was generated in the presence of sterilized hydrophilic sulfur (bio-ZVS) to promote the effective reductive dissolution of Mn (IV) minerals in limonite and the solubilization of cobalt in the absence of viable acidophiles.
Collapse
Affiliation(s)
- D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom.,School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Sarah L Smith
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Ana Laura Santos
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
19
|
Bellenberg S, Turner S, Seidel L, van Wyk N, Zhang R, Sachpazidou V, Embile RF, Walder I, Leiviskä T, Dopson M. Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery. Front Microbiol 2021; 12:693615. [PMID: 34276626 PMCID: PMC8278310 DOI: 10.3389/fmicb.2021.693615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Vanadium - a transition metal - is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery.
Collapse
Affiliation(s)
- Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Nathan van Wyk
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Ruichi Zhang
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Varvara Sachpazidou
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | | | - Ingar Walder
- Kjeøy Research & Education Center, Vestbygd, Norway
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
20
|
Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9941979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The accumulation of mine tailings on Earth is a serious environmental challenge. The importance for the recovery of heavy metals, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of metal recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, the research status of using biological leaching technologies to recover heavy metals from tailings was reviewed. Furthermore, CiteSpace 5.7.R2 was used to visually analyze the keywords of relevant studies on biological leaching of tailings to intuitively establish the current research hotspots. We found that current research has made recent progress on influencing factors and microbial genetic data, and innovations have also been made regarding the improvement of the rate of metal leaching by biological leaching combined with other technologies. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, challenges and opportunities for bioleaching provide directions for further research by the scientific community.
Collapse
|
21
|
S B, Manu B, M Y S. Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton's catalyst in selective herbicide degradation. PLoS One 2021; 16:e0243444. [PMID: 33784303 PMCID: PMC8009436 DOI: 10.1371/journal.pone.0243444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
A novel isolated strain Acidithiobacillus ferrooxidans BMSNITK17 has been investigated for its bioleaching potential from lateritic soil and the results are presented. System conditions like pH, feed mineral particle size, pulp density, temperature, rotor speed influences bioleaching potential of Acidithiobcillus ferrooxidans BMSNITK17 in leaching out iron from laterite soil. Effect of sulfate addition on bioleaching efficiency is studied. The bioleached laterite iron (BLFe's) on evaluation for its catalytic role in Fenton's oxidation for the degradation of ametryn and dicamba exhibits 94.24% of ametryn degradation and 92.45% of dicamba degradation efficiency. Fenton's oxidation performed well with the acidic pH 3. The study confirms the role of Acidithiobacillus ferrooxidans in leaching iron from lateritic ore and the usage of bioleached lateritic iron as catalyst in the Fenton's Oxidation.
Collapse
Affiliation(s)
- Bhaskar S
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Basavaraju Manu
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Sreenivasa M Y
- Department of Studies in Microbiology, University of Mysore, Mysuru, Karnataka, India
| |
Collapse
|
22
|
Processing Tests, Adjusted Cost Models and the Economies of Reprocessing Copper Mine Tailings in Chile. METALS 2021. [DOI: 10.3390/met11010103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To increase resource efficiency, mining residues–especially tailings–have come into the focus of research, companies, and politics. Tailings still contain varying amounts of unextracted elements of value and minerals that were not of economic interest during production. As for primary mineral deposits, only a small share of tailings offers the possibility for an economic reprocessing. To minimize exploration expenditure, a stepwise process is followed during exploration, to estimate the likelihood of a project to become a mine or in this case a reprocessing facility. During this process, costs are continuously estimated at least in an order of magnitude. Reprocessing flowsheets for copper mine tailings in Chile were developed and costs and revenues of possible products from reprocessing were examined for a rough economic assessment. Standard cost models with capex and opex for flotation, leaching, and magnetic separation were adopted to the needs of tailings reprocessing. A copper tailing (around 2 M t) that also contains magnetite was chosen as a case study. A combination of magnetic separation and leaching gave the best economic results for copper and magnetite. The adopted cost models showed positive results at this early stage of investigation (semi-technical scale processing tests).
Collapse
|
23
|
Zheng Y, Wang L, Zhu Y, Li X, Ren Y. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123307. [PMID: 32653783 DOI: 10.1016/j.jhazmat.2020.123307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioleaching by coupling iron oxidization with microbial growth is a process frequently used to extract target metals from sulfide tailing piles. However, the slower leaching, longer operational times, and lower efficiency compared to those of other extracting processes are the most important reasons that make this approach unattractive for the recovery of target elements. A triple-chamber microbial fuel cell (MFC) was explored to elevate the dissolution of sulfide tailings via in-situ removal of bioleached Fe3+/Fe2+ and SO42-, during which iron and SO42- ions were synchronously recovered as Fe(OH)3 and S° in the first and second cathode chambers, respectively. 107.9 % of iron and 99.8 % of sulfur contained in the sulfide tailings was bioleached over 50 h, with 80.0 % iron and 22.1 % sulfur elements synchronously recovered. The purities of the Fe(OH)3 and S° precipitates with high metallurgical values were up to 93.1 % and 90.2 %, respectively. The excellent leaching performance of the explored triple-chamber MFC was attributed to the synergistic effect of Acidithiobacillia catalysis and electrochemical oxidation. The explored approach, by virtue of having the higher bioleaching efficiency, less aggressive conditions and shorter operating times than the conventional bioleaching, is of potential commercial value.
Collapse
Affiliation(s)
- Yan Zheng
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Ling Wang
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China.
| | - Yueping Ren
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| |
Collapse
|
24
|
Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by Microbacterium trichothecenolyticum Y1: Mechanism and characteristics of microbial metabolites. BIORESOURCE TECHNOLOGY 2021; 319:124056. [PMID: 33038655 DOI: 10.1016/j.biortech.2020.124056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The related microbial metabolomics on biological recovery of manganese (Mn) from Electrolytic Manganese Slag (EMS) has not been studied. This study aimed at open the door to the metabolic characteristics of microorganisms in leaching Mn from EMS by using waste molasses (WM) as carbon source. Results show Microbacterium trichothecenolyticum Y1 (Y1) could effectively leach Mn from EMS in combination with using waste molasses as carbon and energy sources. For the first time, Y1 was identified to be capable of generating and then metabolizing several organic acids or other organic matter (e.g., fumaric acid, succinic acid, malic acid, glyoxylic acid, 3-hydroxybutyric acid, glutaric acid, L(+)-tartaric acid, citric acid, tetrahydrofolic acid, and L-methionine). The production of organic acids by Y1 bacteria was promoted by EMS with the carbon source. This study demonstrated for the first time that metabolic characteristics and carbon source metabolic pathways of Y1 in bioleaching of Mn from EMS.
Collapse
Affiliation(s)
- Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xiaohong Chen
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
25
|
Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments. MINERALS 2020. [DOI: 10.3390/min11010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particularly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are known to undergo dissolution, typically forming Co2+(aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments. Further research is required to gain a truly robust understanding of the Co-system in mining-affected environments. Key knowledge gaps include the mechanics and kinetics of secondary Co-bearing mineral environmental transformation, the extent at which such environmental cycling is facilitated by microbial activity, the nature of Co speciation across different Eh-pH conditions, and the environmental and human toxicity of Co.
Collapse
|
26
|
Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, Wei Z, Liu Y, He P. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: Sensitive, resistant and actor. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122858. [PMID: 32473324 DOI: 10.1016/j.jhazmat.2020.122858] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution exerts an effect on microbial community composition and structure during composting, the way how microbial community responses to HM pressure is remain poorly understood though. The aim of this study was to explore functional roles of microorganisms based on selective pressures of HM (Cu, Zn and Cd). The results of microbial resistance showed that the toxicity of metals to microorganisms were Cu > Zn > Cd during composting. Cu and Zn were more toxic for microorganisms during composting when compared with Cd. However, microorganisms had a longer lag period to grow under Zn stress through microbial tolerance determination. In addition, the microbial catalase activity generally decreased and protease activity generally increased, thus microorganisms became more adaptable to HM stress during composting. The experimental results confirmed the existence of sensitive, resistant and actor microorganisms during beef cattle and chicken manures composting. Ultimately, the resistant, sensitive and actor microorganisms at genus level were distinguished under HM pressure based on the network analysis and structural equation models, including 85 resistant microorganisms, 5 sensitive microorganisms and 6 actor microorganisms. This would be helpful to understand the microbial succession process under HM stress and identify functional strains of HM remediation.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
27
|
Abstract
Following the growing demand for Ni and Co and the dwindling supplies of sulfide nickel ore, attention has turned toward the more efficient exploitation and utilization of laterite ore. Using ammonium chloride acid solution to leach is an effective method. Our research concerned investigations on the leaching mechanism and leaching kinetics of laterite. XRD was used to demonstrate the leaching mechanism through analysis of the pattern of the leaching residue and raw ore, showing that acid concentration affects the leaching process more significantly than other factors, and that valuable metals are mainly released from goethite and serpentine. The leaching order of these materials are as follows: Goethite > serpentine > magnetite and hematite. The leaching kinetics were analyzed and this leaching process followed a shrinking core model controlled by a combination of interfacial transfer and diffusion across the solid film. Leaching data fitted to the kinetic equation perfectly, and the apparent activation energies for the leaching of nickel, cobalt, and iron were calculated to be 4.01 kJ/mol, 3.43 kJ/mol, and 1.87 kJ/mol, respectively. The Arrhenius constants for Ni, Co, and Fe were 204.38, 16.65, and 7.12 × 10−3, respectively, with reaction orders of Ni (a 1.32, b 0.85, c 1.53), Co (a 1.74, b 1.12, c 1.22), and Fe (a 2.52, b −0.11, c 0.94).
Collapse
|
28
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
29
|
Zhang R, Neu TR, Li Q, Blanchard V, Zhang Y, Schippers A, Sand W. Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. Front Microbiol 2019; 10:896. [PMID: 31133998 PMCID: PMC6524610 DOI: 10.3389/fmicb.2019.00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
Biooxidation of reduced inorganic sulfur compounds (RISCs) by thermoacidophiles is of particular interest for the biomining industry and for environmental issues, e.g., formation of acid mine drainage (AMD). Up to now, interfacial interactions of acidophiles with elemental sulfur as well as the mechanisms of sulfur oxidation by acidophiles, especially thermoacidophiles, are not yet fully clear. This work focused on how a crenarchaeal isolate Acidianus sp. DSM 29099 interacts with elemental sulfur. Analysis by Confocal laser scanning microscopy (CLSM) and Atomic force microscopy (AFM) in combination with Epifluorescence microscopy (EFM) shows that biofilms on elemental sulfur are characterized by single colonies and a monolayer in first stage and later on 3-D structures with a diameter of up to 100 μm. The analysis of extracellular polymeric substances (EPS) by a non-destructive lectin approach (fluorescence lectin-barcoding analysis) using several fluorochromes shows that intial attachment was featured by footprints rich in biofilm cells that were embedded in an EPS matrix consisting of various glycoconjugates. Wet chemistry data indicate that carbohydrates, proteins, lipids and uronic acids are the main components. Attenuated reflectance (ATR)-Fourier transformation infrared spectroscopy (FTIR) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) indicate glucose and mannose as the main monosaccharides in EPS polysaccharides. EPS composition as well as sugar types in EPS vary according to substrate (sulfur or tetrathionate) and lifestyle (biofilms and planktonic cells). This study provides information on the building blocks/make up as well as dynamics of biofilms of thermoacidophilic archaea in extremely acidic environments.
Collapse
Affiliation(s)
- Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Thomas R. Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yutong Zhang
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
| | - Wolfgang Sand
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
30
|
Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M. Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite. Front Microbiol 2019; 10:592. [PMID: 30984136 PMCID: PMC6450195 DOI: 10.3389/fmicb.2019.00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) cause oxidative stress and growth inhibition by inactivation of essential enzymes, DNA and lipid damage in microbial cells. Acid mine drainage (AMD) ecosystems are characterized by low pH values, enhanced levels of metal ions and low species abundance. Furthermore, metal sulfides, such as pyrite and chalcopyrite, generate extracellular ROS upon exposure to acidic water. Consequently, oxidative stress management is especially important in acidophilic leaching microorganisms present in industrial biomining operations, especially when forming biofilms on metal sulfides. Several adaptive mechanisms have been described, but the molecular repertoire of responses upon exposure to pyrite and the presence of ROS are not thoroughly understood in acidophiles. In this study the impact of the addition of H2O2 on iron oxidation activity in Acidithiobacillus ferrooxidans DSM 14882T was investigated. Iron(II)- or sulfur-grown cells showed a higher sensitivity toward H2O2 than pyrite-grown ones. In order to elucidate which molecular responses may be involved, we used shot-gun proteomics and compared proteomes of cells grown with iron(II)-ions against biofilm cells, grown for 5 days in presence of pyrite as sole energy source. In total 1157 proteins were identified. 213 and 207 ones were found to have increased levels in iron(II) ion-grown or pyrite-biofilm cells, respectively. Proteins associated with inorganic sulfur compound (ISC) oxidation were among the latter. In total, 80 proteins involved in ROS degradation, thiol redox regulation, macromolecule repair mechanisms, biosynthesis of antioxidants, as well as metal and oxygen homeostasis were found. 42 of these proteins had no significant changes in abundance, while 30 proteins had increased levels in pyrite-biofilm cells. New insights in ROS mitigation strategies, such as importance of globins for oxygen homeostasis and prevention of unspecific reactions of free oxygen that generate ROS are presented for A. ferrooxidans biofilm cells. Furthermore, proteomic analyses provide insights in adaptations of carbon fixation and oxidative phosphorylation pathways under these two growth conditions.
Collapse
Affiliation(s)
- Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Dieu Huynh
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany.,School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany.,Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany.,College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mario Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Bioreductive Dissolution as a Pretreatment for Recalcitrant Rare-Earth Phosphate Minerals Associated with Lateritic Ores. MINERALS 2019. [DOI: 10.3390/min9030136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research has demonstrated the applicability of a biotechnological approach for extracting base metals using acidophilic bacteria that catalyze the reductive dissolution of ferric iron oxides from oxidized ores, using elemental sulfur as an electron donor. In Brazil, lateritic deposits are frequently associated with phosphate minerals such as monazite, which is one of the most abundant rare-earth phosphate minerals. Given the fact that monazite is highly refractory, rare earth elements (REE) extraction is very difficult to achieve and conventionally involves digesting with concentrated sodium hydroxide and/or sulfuric acid at high temperatures; therefore, it has not been considered as a potential resource. This study aimed to determine the effect of the bioreductive dissolution of ferric iron minerals associated with monazite using Acidithiobacillus (A.) species in pH- and temperature-controlled stirred reactors. Under aerobic conditions, using A. thiooxidans at extremely low pH greatly enhanced the solubilization of iron from ferric iron minerals, as well that of phosphate (about 35%), which can be used as an indicator of the dissolution of monazite. The results from this study have demonstrated the potential of using bioreductive mineral dissolution, which can be applied as pretreatment to remove coverings of ferric iron minerals in a process analogous to the bio-oxidation of refractory golds and expand the range of minerals that could be processed using this approach.
Collapse
|
32
|
Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus. Appl Environ Microbiol 2019; 85:AEM.02153-18. [PMID: 30389769 DOI: 10.1128/aem.02153-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Acidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genus Acidithiobacillus to answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes in Acidithiobacillus spp. The results showed that the evolutionary history of metal resistance genes in Acidithiobacillus spp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes in Acidithiobacillus spp. were acquired by early HGT events from species that shared habitats with Acidithiobacillus spp., such as Acidihalobacter, Thiobacillus, Acidiferrobacter, and Thiomonas species. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizing Acidithiobacillus ferridurans, Acidithiobacillus ferrivorans, and Acidithiobacillus ferrooxidans and were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability of Acidithiobacillus spp. to adapt to harsh environments. Altogether, the results suggested that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes in Acidithiobacillus spp.IMPORTANCE Horizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT in Acidithiobacillus species in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved in Acidithiobacillus are still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies of Acidithiobacillus spp.
Collapse
|
33
|
Liu W, Zheng J, Ou X, Liu X, Song Y, Tian C, Rong W, Shi Z, Dang Z, Lin Z. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13336-13342. [PMID: 30353724 DOI: 10.1021/acs.est.8b02213] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Through controlling the phase transformation and chromium species under hydrothermal condition, the Cr(VI) was extracted fully from hazardous Cr(VI)-containing gypsum sludge, with a very high efficiency of more than 99.5%. Scanning transmission electron microscopy, X-ray absorption fine structure, and density functional theory calculation results revealed that the dissolution-recrystallization of CaSO4·2H2O into CaSO4 was the key factor to fully release the encapsulated Cr(VI). Moreover, the mineralizer (persulfate salt) provided H+ and SO42- ions, the former made an acidic condition to transform the released CrO42- into the specie (Cr2O72-) with less similarity to SO42-, which further prevented the recombination of the released Cr(VI) with gypsum; and the latter was essential to accelerate crystal growth of calcium sulfate so as to enhance Cr(VI) extraction. This work would provide an instructive guidance to fully extract heavy metals from hazardous solid wastes via the control of crystal transformation and the pollutant species.
Collapse
Affiliation(s)
- Weizhen Liu
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
| | - Jiayi Zheng
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
| | - Xinwen Ou
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
| | - Xueming Liu
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou , 510006 , China
| | - Yao Song
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
| | - Chen Tian
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou , 510006 , China
| | - Wencong Rong
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou , 510006 , China
| | - Zhenqing Shi
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou , 510006 , China
| | - Zhi Dang
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
| | - Zhang Lin
- School of Environment and Energy , South China University of Technology , Guangzhou , 510006 , China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou , 510006 , China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou , 510006 , China
| |
Collapse
|
34
|
The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. MINERALS 2018. [DOI: 10.3390/min8080343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current global demand in terms of both the amounts and range of metals for industrial and domestic use greatly exceeds that at any previous time in human history. Recycling is inadequate to meet these needs and therefore mining primary metal ores will continue to be a major industry in the foreseeable future. The question of how metal mining can develop in a manner which is less demanding of energy and less damaging of the environment in a world whose population is increasingly aware of, and concerned about, the environment, requires urgent redress. Increased application of biotechnologies in the mining sector could go some way in solving this conundrum, yet, biomining (harnessing microorganisms to enhance the recovery of base and precious metals) has remained a niche application since it was first knowingly used in the 1960s. This manuscript reviews the development and current status of biomining applications and highlights their limitations as well as their strengths. New areas of biotechnology that could be applied in the mining sector, and their potential impact in terms of both their potential environmental and economic benefits, are also discussed.
Collapse
|
35
|
Bio-adsorption and Bio-transformation of Arsenic by Acidithiobacillus ferrooxidans BY3. Int Microbiol 2018; 21:207-214. [DOI: 10.1007/s10123-018-0017-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
36
|
|
37
|
Reed KB, Alper HS. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering. Synth Syst Biotechnol 2018; 3:20-33. [PMID: 29911196 PMCID: PMC5884228 DOI: 10.1016/j.synbio.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/08/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially) be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.
Collapse
Affiliation(s)
- Kevin B. Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
38
|
Smith SL, Johnson DB. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Extremophiles 2018; 22:327-333. [PMID: 29330649 PMCID: PMC5847181 DOI: 10.1007/s00792-018-1001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.
Collapse
Affiliation(s)
- Sarah L Smith
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK.
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| |
Collapse
|
39
|
Wang N, Zhang S, He M. Bacterial community profile of contaminated soils in a typical antimony mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:141-152. [PMID: 28039624 DOI: 10.1007/s11356-016-8159-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, SbDGT, AsDGT, potential ecological risk index (RI), TC, TN), among which pH, SbDGT, and AsDGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Suhuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
40
|
Ye M, Li G, Yan P, Ren J, Zheng L, Han D, Sun S, Huang S, Zhong Y. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. CHEMOSPHERE 2017; 185:1189-1196. [PMID: 28772358 DOI: 10.1016/j.chemosphere.2017.07.124] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na2S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na2S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na2S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings.
Collapse
Affiliation(s)
- Maoyou Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China.
| | - Guojian Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Pingfang Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Jie Ren
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Dajian Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China.
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Yujian Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Johnson DB, Hedrich S, Pakostova E. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria. Front Microbiol 2017; 8:211. [PMID: 28239375 PMCID: PMC5301019 DOI: 10.3389/fmicb.2017.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022] Open
Abstract
Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed.
Collapse
Affiliation(s)
- D Barrie Johnson
- School of Biological Sciences, College of Natural Sciences, Bangor University Bangor, UK
| | - Sabrina Hedrich
- Federal Institute for Geosciences and Natural Resources Hannover, Germany
| | - Eva Pakostova
- School of Biological Sciences, College of Natural Sciences, Bangor University Bangor, UK
| |
Collapse
|
42
|
Ye M, Yan P, Sun S, Han D, Xiao X, Zheng L, Huang S, Chen Y, Zhuang S. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process. CHEMOSPHERE 2017; 168:1115-1125. [PMID: 27884516 DOI: 10.1016/j.chemosphere.2016.10.095] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 05/28/2023]
Abstract
During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCl) concentration (10-200 g/L) and temperature (25 and 50 °C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 °C and at a rate of 99.46% at 50 °C when the NaCl concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching.
Collapse
Affiliation(s)
- Maoyou Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Pingfang Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic College of Environmental Protection Engineering, Foshan 528216, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control of Environmental Protection of Guangdong Province, Guangzhou 510006, China.
| | - Dajian Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Yun Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengwei Zhuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
43
|
|
44
|
Nancharaiah Y, Mohan SV, Lens P. Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends Biotechnol 2016; 34:137-155. [DOI: 10.1016/j.tibtech.2015.11.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022]
|