1
|
Ye Y, Sun J, Fan Y, Li Y, Li Q, He C, Ma S, Zhao Z, Xu T. Key Roles of Bulk Viscosity and Acidity on Liquid-Liquid Phase Separation of Atmospheric Organic-Inorganic Mixed Aerosols. J Phys Chem A 2025; 129:3921-3930. [PMID: 40262061 DOI: 10.1021/acs.jpca.5c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Liquid-liquid phase separation (LLPS) and the resulting particle morphologies in atmospheric organic-inorganic mixed aerosols are key regulators of aerosol chemistry and climate forcing. However, the influence of coexisting viscous water-soluble organic compounds (WSOCs) on the LLPS behavior in complex multicomponent aerosol systems remains poorly understood. In this study, we introduced three representative WSOCs, i.e., sucrose (SUC), glycerol (GLY), and citric acid (CA), to increase the bulk viscosity of a model LLPS system composed of 1,2,6-hexanetriol (HXT) and ammonium sulfate (AS). Using microscopic imaging techniques and viscosity model predictions, we examined the impact of mass transfer limitations on LLPS. As WSOC fractions increased, both the phase separation relative humidity (SRH) and the efflorescence relative humidity (ERH) progressively decreased. For the HXT/AS/SUC and HXT/AS/CA mixed systems with molar ratios of 1:1:0.5 and 1:1:0.75, LLPS was completely suppressed, although efflorescence still occurred. In the 1:1:1 mixtures, neither LLPS nor efflorescence was observed. In contrast, the addition of GLY caused minimal changes to phase transitions due to its minor effect on the aqueous-phase viscosity. Additionally, reducing bulk acidity, along with the transformation of CA into its salts, alleviated molecular transport limitations, leading to increased SRH and ERH values for the HXT/AS/CA mixtures. These findings are critical for advancing high-resolution phase state modeling of multicomponent aerosols and assessing the atmospheric implications of particle morphologies in the presence or absence of LLPS.
Collapse
Affiliation(s)
- Yuanyuan Ye
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jingyu Sun
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yilin Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
2
|
Yang L, Liu Y, Ge Q, Wang J, Wang R, You W, Wang W, Wang T, Zhang L. Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol. J Am Chem Soc 2025; 147:3371-3382. [PMID: 39824145 DOI: 10.1021/jacs.4c14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10-3 M s-1. This production rate is several orders of magnitude higher than that of the bulk phase (2.4 × 10-11 M s-1) and previously known pathways. On this basis, the surface-based interfacial ·OH production rate is estimated to be 8.9 × 10-5 mol m-2 s-1 at the air-water-solid interface of 1 μm sized aerosol particles. The enhanced ·OH formation is attributed to the unique features of air-water-solid interfaces, where the lifespan of photoinduced holes was significantly increased due to the presence of strong electric fields at the air-water interface. We further investigated the impacts of various environmental factors and aerosol properties on ·OH production, including light intensity, relative humidity, particle size, and pH. Our findings provide new insights into atmospheric photochemical processes mediated by mineral dust-bearing microdroplet aerosols, which are important contributors to ·OH source in the atmosphere. This work advances our understanding of atmospheric interfacial chemistry and its profound and lasting implications for air quality and climate.
Collapse
Affiliation(s)
- Le Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jilun Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Runbo Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
3
|
Ma S, Fan Y, Tang Y, He C, Li Q, Zhao Z, Xu T, Zhang Y. Spectral Characteristics of Unsaturated and Supersaturated Inorganic Aerosols: Insights into Deliquescence Kinetics. J Phys Chem A 2024; 128:6286-6295. [PMID: 39042908 DOI: 10.1021/acs.jpca.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The deliquescence phase transition of atmospheric aerosols is crucial for radiative forcing and atmospheric chemistry. However, the deliquescence kinetics of micrometer-sized aerosols, especially the formation and evolution of surface solution films, remain poorly understood. In this study, IR spectral characteristics were employed for the first time to quantify the solute concentration evolution in surface solution films. At a constant relative humidity (RH) of ∼65%, solution films on NaCl crystals exhibited a very low solute concentration (3.06 ± 0.18 mol/L), comparable to aqueous NaCl droplets above 90% RH. These films reached saturation at ∼74% RH, i.e., the deliquescence RH of NaCl, maintaining a nearly constant saturation level during deliquescence. In contrast, amorphous NaNO3 solids showed supersaturated solution films before deliquescence. Following deliquescence, the saturation level of solution phases increased due to faster solid dissolution rates than liquid water condensation. These findings address knowledge gaps in the complex nonequilibrium dissolution processes of crystalline or amorphous atmospheric aerosols.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Sun J, Hu Y, Cao X, Pang SF, Liu P, Huang Q, Zhang YH. Role of WSOCs and pH on Ammonium Nitrate Aerosol Efflorescence: Insights into Secondary Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20074-20084. [PMID: 37974434 DOI: 10.1021/acs.est.3c07603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Efflorescence of ammonium nitrate (AN) aerosols significantly impacts atmospheric secondary aerosol formation, climate, and human health. We investigated the effect of representative water-soluble organic compounds (WSOCs) (sucralose (SUC), glycerol (GLY), and citric acid (CA) on AN:WSOC aerosol efflorescence using vacuum Fourier transform infrared spectroscopy. Combining efflorescence relative humidity (ERH) measurements, heterogeneous nucleation rates, and model predictions, we found that aerosol viscosity, correlating with molecular diffusion, effectively predicted ERH variations among the AN:WSOC aerosols. WSOCs with higher viscosity (SUC and CA) hindered efflorescence, while GLY with a lower viscosity showed a minor effect. At a low AN:CA molar ratio (10:1), CA promoted ERH, likely due to CA crystallization. Increasing the droplet pH inhibited AN:CA aerosol efflorescence. In contrast, for AN:SUC and AN:GLY aerosols, efflorescence is pH-insensitive. With the addition of trivial sulfate, AN:SUC droplets exhibited two-stage efflorescence, coinciding with ammonium sulfate and AN efflorescence. Given the atmospheric abundance, the morphology, phase, and mixing state of nitrate aerosols are significant for atmospheric chemistry and physics. Our results suggest that AN:WSOCs aerosols can exist in the amorphous phase in the atmosphere, with efflorescence behavior depending on the aerosol composition, viscosity, pH, and the cation and anion interactions in a complex manner.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yangyun Hu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xue Cao
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Zhang X, Ni L, He A, Yang L, Noda I, Ozaki Y, Guo R, Xu Y. A new apparatus and the relevant method to retrieve IR spectra of solutes from the corresponding aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122598. [PMID: 36996520 DOI: 10.1016/j.saa.2023.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Ran Guo
- PerkinElmer Inc., Jiuxianqiao Road, 14, Chaoyang District, Beijing 100015, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
6
|
Yang B, Xie Z, Liu J, Gui H, Zhang J, Wei X, Wang J, Fan Z, Zhang D. Investigating the hygroscopicities of calcium and magnesium salt particles aged with SO 2 using surface plasmon resonance microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161588. [PMID: 36642280 DOI: 10.1016/j.scitotenv.2023.161588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO3)2 and Mg(NO3)2 separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging. The Ca(NO3)2 and Mg(NO3)2 GFs at 90 % RH were 1.80 and 1.66, respectively, before aging and 1.33 and 1.42, respectively, after 4 h aging, meaning aging decreased the GFs by 26.11 % and 14.46 %, respectively. Aging decreased the hygroscopicity because insoluble or sparingly soluble substances (CaSO3, CaSO4, MgSO3) formed and strongly changed the overall hygroscopicity. For bicomponent aerosols with different mass ratios, the GFs (calculated using the Zdanovskii-Stokes-Robinson method) of the other components except galactose at 90 % RH after 1 h aging were all lower, respectively, than the measured GFs of pure Ca(NO3)2 and Mg(NO3)2 after aging for 1 h, especially with the mass ratio of 1:2, their GFs have decreased by 14.63 % and 7.50 %, respectively. Subsequently, Ion chromatograms indicated that the peak area ratio of SO42- to NO3- ratios were higher for the aged bicomponent particles than aged single-component particles, possibly because adding galactose improved the gas-liquid state stability during drying after the aging process and therefore promoted nitrate consumption and sulfate formation. The results indicated that organic components may play important roles in heterogeneous reactions between trace gases and multicomponent aerosols and should be considered in evaluating the impacts on submicron aerosol composition of high atmospheric SO2 concentrations at high humidities.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Zhibo Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huaqiao Gui
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiaoshi Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuli Wei
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jie Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zetao Fan
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Douguo Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Chen Z, Liu P, Liu Y, Zhang YH. Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase. Acc Chem Res 2021; 54:3667-3678. [PMID: 34569236 DOI: 10.1021/acs.accounts.1c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerosols are ubiquitous in the atmosphere and profoundly affect climate systems and human health. To gain more insights on their broad impacts, we need to comprehensively understand the fundamental properties of atmospheric aerosols. Since aerosols are multiphase, a dispersion of condensed matter (solid particles or liquid droplets, hereafter particles) in gas, partitioning of volatile matter between the condensed and the gas phases is one defining characteristic of aerosols. For example, water content partitioning under different relative humidity conditions, known as aerosol hygroscopicity, has been extensively investigated in the past decades. Meanwhile, partitioning of volatile organic or inorganic components, which is referred to as aerosol volatility, remains understudied. Commonly, a bulk solution system is treated as a single phase, with volatility mainly determined by the nature of its components, and the composition partitioning between solution and gas phase is limited. Aerosols, however, comprise an extensive gas phase, and their volatility can also be induced by component reactions. These reactions occurring within aerosols are driven by the formation of volatile products and their continuous partitioning into the gas phase. As a consequence, the overall aerosol systems exhibit prominent volatility. Noteworthily, such volatility induced by reactions is a phenomenon exclusively observed in the multiphase aerosol systems, and it is trivial in bulk solutions due to the limited extent of liquid-gas partitioning. Take the chloride depletion in sea salt particles as an example. Recent findings have revealed that chloride depletion can be caused by reactions between NaCl and weak organic acids, which release HCl into the gas phase. Such a reaction can be described as a strong acid displaced by a weak acid, which is hardly observed in bulk phase. Generally, this unique partitioning behavior of aerosol systems and its potential to alter aerosol composition, size, reactivity, and other physicochemical properties merits more attention by atmospheric community.This Account focuses on the recent advancements in the research of component reactions that induce aerosol volatility. These reactions can be categorized into four types: chloride depletion, nitrate depletion, ammonium depletion, and salt hydrolysis. The depletion of chloride or nitrate can be regarded as a displacement reaction, in which a strong acid is displaced by a weak acid. Such a reaction releases highly volatile HCl or HNO3 into the gas phase and leads to a loss of chloride or nitrate within the particles. Likewise, ammonium depletion is a displacement reaction in which a strong base is displaced by a weak base, resulting in release of ammonia and substantial changes in aerosol hygroscopicity. In addition, aerosol volatility can also be induced by salt hydrolysis in a specific case, which is sustained by the coexistence of proton acceptor and hydroxide ion acceptor within particles. Furthermore, we quantitatively discuss these displacement reactions from both thermodynamic and kinetic perspectives, by using the extended aerosol inorganic model (E-AIM) and Maxwell steady-state diffusive mass transfer equation, respectively. Given the ubiquity of component partitioning in aerosol systems, our discussion may provide a new perspective on the underlying mechanisms of aerosol aging and relevant climate effects.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pai Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yong Liu
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Yun-Hong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
8
|
Wu FM, Wang XW, Pang SF, Zhang YH. Hygroscopicity and mass transfer limit of mixed glutaric acid/MgSO 4/water particles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119790. [PMID: 33946015 DOI: 10.1016/j.saa.2021.119790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric aerosols are usually complex mixtures of inorganic and organic components, which show non-ideal behavior in hygroscopicity, mass transfer, and partitioning between gas and aerosols. In this study, we applied a novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer to investigate the mass transfer limit of magnesium sulfate/glutaric acid (GA) mixture aerosol particles. The liquid water band area of the aerosols is used to reveal the mass transfer limit during the rapid pulse RH downward and upward processes. Partitioning equilibrium between the aerosol particles and water gas phase is observed at the higher RH range (73-50%). When the RH is lower than 40%, there is a hysteresis for the liquid water content changing with the RH, indicating the limited water mass transfer in the aerosols.
Collapse
Affiliation(s)
- Feng-Min Wu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, PR China; The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiao-Wei Wang
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, PR China; The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
9
|
Ma S, Pang S, Li J, Zhang Y. A review of efflorescence kinetics studies on atmospherically relevant particles. CHEMOSPHERE 2021; 277:130320. [PMID: 33773310 DOI: 10.1016/j.chemosphere.2021.130320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The efflorescence transitions of aerosol particles have been intensively investigated due to their critical impacts on global climate and atmospheric chemistry. In the present study, we present a critical review of efflorescence kinetics focusing on three key issues: the efflorescence relative humidity (ERH) and the influence factors for aerosol ERH (e.g. particle sizes, and temperature); efflorescence processes of mixed aerosols, concerning the effect of coexisting inorganic and organic components on the efflorescence of inorganic salts; homogeneous and heterogeneous nucleation rates of pure and mixed aerosols. Among the previous studies, there are significant discrepancies for measured aerosol ERH under even the same conditions. Moreover, the interactions between organic and inorganic components remain largely unclear, causing efflorescence transition behaviours and chemical composition evolutions of certain mixed systems to be debatable. Thus, it is important to better understand efflorescence to gain insights into the physicochemical properties and characterize observed efflorescence characteristics of atmospheric particles, as well as guide further studies on aerosol hygroscopicity and reactivity.
Collapse
Affiliation(s)
- Shuaishuai Ma
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shufeng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jing Li
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
10
|
Ma S, Yang M, Pang S, Zhang Y. Subsecond measurement on deliquescence kinetics of aerosol particles: Observation of partial dissolution and calculation of dissolution rates. CHEMOSPHERE 2021; 264:128507. [PMID: 33045506 DOI: 10.1016/j.chemosphere.2020.128507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The deliquescence behavior of atmospheric aerosols has significant effects on global climate and atmospheric heterogeneous chemistry but remains largely unclear. The deliquescence kinetics data of micron-sized particles are scarce owing to the difficulty on performing the time-resolved dissolution measurements. In view of this technique bottleneck, an applicable and powerful experimental technique, i. e., vacuum FTIR combining pulsed relative humidity (RH) change technique, is introduced for gaining deliquescence kinetics information of three inorganic salts. For NaCl and (NH4)2SO4 aerosols, a solid-liquid mixing state derived from partial dissolution of NaCl and (NH4)2SO4 crystals is present during deliquescence, and the recrystallization will occur once RH decreases. While for NaNO3 particles, the recrystallization cannot occur as RH decreases owing to the formed amorphous NaNO3 solids after dying. The dissolution rates of NaCl, (NH4)2SO4 and NaNO3 solid particles are calculated, as a first attempt, by the upward pulsed RH mode. The measured rates show a significant dependency on ambient RH with three orders of magnitude. For NaCl particles, the measured J values range from 1.41 × 10-4 to 7.67 × 10-1 s-1 at RH of 73.41-75.15%. The J for (NH4)2SO4 particles is 7.34 × 10-3 to 2.46 × 100 s-1 over the RH range of 77.27%-80.13%. The J values for amorphous NaNO3 solids range from 6.01 × 10-3 to 2.63 × 100 s-1 as RH increases from 71.15% to 73.84%. Our results fill in the dataset of atmospheric models describing the kinetics features of deliquescence and provide an insight into dynamic solid-solution transition for PM2.5 particles.
Collapse
Affiliation(s)
- Shuaishuai Ma
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Miao Yang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shufeng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
11
|
Ma S, Yang M, Pang S, Zhang Y. Hygroscopic Growth and Phase Transitions of Na 2CO 3 and Mixed Na 2CO 3/Li 2CO 3 Particles: Influence of Li 2CO 3 on Phase Transitions of Na 2CO 3 and Formation of LiNaCO 3. J Phys Chem A 2020; 124:10870-10878. [PMID: 33320676 DOI: 10.1021/acs.jpca.0c08891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hygroscopic behaviors and phase changes of inorganic aerosols have been widely explored, but little is known on the hygroscopicity of soluble carbonates. The hydrated states of solid Na2CO3 particles in an air environment remain largely unclear. In this work, the hygroscopic growth, hydrated form transformations, and influence of internal Li2CO3 on phase transitions of Na2CO3 particles are investigated in linear and pulsed relative humidity (RH) changing modes by the vacuum Fourier transform infrared (FTIR) technique. For pure Na2CO3, aqueous droplets effloresced to a mixture of anhydrous Na2CO3 and Na2CO3·H2O with the initial efflorescence relative humidity (ERH) of 50.8%, probably concerning the formation of Na2CO3·10H2O in the conversion from aqueous to anhydrous Na2CO3. A reverse process is presented during the three-stage deliquescence transition beginning at ∼60.1% RH; i.e., anhydrous Na2CO3 transforms into aqueous Na2CO3 and Na2CO3·10H2O in stage I, Na2CO3·10H2O dissolves to aqueous Na2CO3 in stage II, and Na2CO3·H2O dissolves into aqueous Na2CO3 in stage III. For internally mixed Na2CO3/Li2CO3 particles, a double salt, LiNaCO3, is found in mixed crystalline phases for the first time, leading to the eutonic composition with Na2CO3. The experimental observations point to the excess of LiNaCO3 and complete consumption of Na2CO3 in eutonic composition formation, which results in the absence of Na2CO3 hydrates during phase transitions. The results provide key data for model simulations of hygroscopic properties and phase transitions of Na2CO3 as well as mixed soluble carbonates.
Collapse
Affiliation(s)
- Shuaishuai Ma
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Miao Yang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shufeng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
12
|
He X, Zhang YH. Kinetics study of heterogeneous reactions of O 3 and SO 2 with sea salt single droplets using micro-FTIR spectroscopy: Potential for formation of sulfate aerosol in atmospheric environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118219. [PMID: 32163877 DOI: 10.1016/j.saa.2020.118219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The heterogeneous reactions of sea salt single droplets with the mixture of O3 and SO2 were studied in real time using microscopic Fourier transform infrared (micro-FTIR) spectrometer. Chemical conversion of SO2 to sulfate and consumption of gaseous HCl occur on the surface of droplets in the presence of O3. The sulfate formation rate and the uptake coefficient are obtained by quantitatively estimating the changes in absorbance area of the sulfate stretching band. In order to further establish a mechanistic framework, we observed the reaction kinetics versus ambient relative humidities (RHs) and droplet sizes. In the view of RH effect, sulfate formation rates are enhanced by about a factor of two on the MgCl2 and ZnCl2 single droplets with increasing RH ranges. High RH is favorable for the sulfate formation because water vapor can trap and activate more gas molecules on the interface of the single droplet. The values of uptake coefficient increase slightly with an increase in single droplet size for the two reaction systems, indicating that the effect of surface adsorption dominates the reactions. Considering the existence of combined pollution with high concentrations of trace gases and sea salt aerosols, as expected in coastal regions, the formation micro-mechanism of sulfate revealed in this work should be incorporated into air quality models to improve the prediction of sulfate concentrations.
Collapse
Affiliation(s)
- Xiang He
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, PR China; Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
13
|
Chang P, Gao X, Cai C, Ma J, Zhang Y. Effect of waiting time on the water transport kinetics of magnesium sulfate aerosol at gel-forming relative humidity using optical tweezers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117727. [PMID: 31718970 DOI: 10.1016/j.saa.2019.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
With the loss of water, the amorphous gel states in aqueous magnesium sulfate (MgSO4) aerosol forms and results in nonequilibrium dynamics, owing to the extended time scales for diffusive mixing. The mass transfer resistance in MgSO4 aerosol droplets during evaporation or condensation is investigated using aerosol optical tweezers (AOTs) coupled with Raman spectroscopy. In addition, the kinetics of water transport during hydration and dehydration after different waiting time is studied. With the cyclic change of the relative humidity (RH) below gel-forming, the waiting time is varied to examine the effect of the duration of drying and humidifying on water transport kinetics during subsequent hydration and dehydration process. Apparent diffusion coefficients (Dap) of water molecules in the gel state after different waiting time are obtained. The results indicate that the duration of drying will affect water transport kinetics for subsequent humidifying process due to the different structure and composition in MgSO4 aerosol droplet at different ambient humidities. However, the duration of humidifying has little effect on water transport kinetics for subsequent drying process below gel-forming RH.
Collapse
Affiliation(s)
- Pianpian Chang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoyan Gao
- School of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, Huaiyin Institute of Technology, Jiangsu, Huaian, 223003, China
| | - Chen Cai
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Jiabi Ma
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
14
|
He X, Zhang YH. Influence of relative humidity on SO 2 oxidation by O 3 and NO 2 on the surface of TiO 2 particles: Potential for formation of secondary sulfate aerosol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:121-128. [PMID: 31030039 DOI: 10.1016/j.saa.2019.04.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The heterogeneous reactions of SO2/O3 and SO2/NO2 with TiO2 particles were studied as a function of relative humidities (RHs). An in situ microscopic Fourier transform infrared (micro-FTIR) spectrometer was used to monitor the reaction kinetics. Rapid conversion of SO2 to sulfate occurs on the surface of TiO2 particles in the presence of O3 or NO2, which is sensitive to RHs. For unreacted (fresh) particles, the uptake coefficients for SO2 in initial stage are both obviously enhanced over four times with the increasing RH from ~4% to ~85%. Moreover, the uptake coefficient in the system of SO2/O3 is about 40% higher than that of SO2/NO2 on TiO2 particles at the similar RH conditions. For TiO2 after exposure to SO2/O3 or SO2/NO2 (sulfated) particles, the uptake coefficients for SO2 in moisture absorption stage are all higher than that on fresh particles in initial stage at the similar RH, indicating rapid mixture gases adsorption with particle hygroscopic growth. The high production of the secondary sulfate for heterogeneous reaction of mixture gases on TiO2 surface from arid region to humid region provides new insights for better understanding the severe haze under the humid condition.
Collapse
Affiliation(s)
- Xiang He
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, PR China; Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
15
|
Wu FM, Wang XW, Pang SF, Zhang YH. Measuring hygroscopicity of internally mixed NaNO 3 and glutaric acid particles by vacuum FTIR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:104-109. [PMID: 31030037 DOI: 10.1016/j.saa.2019.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Sodium nitrate as an important inorganic component can be chemically formed from the reactions of nitrogen oxides and nitric acid (HNO3) with sea salt in atmosphere. Organic acids contribute a significant fraction of photochemical formed secondary organics that can condense on the preexisting nitrate-containing particles. Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Here we studied the hygroscopicity of aerosol particles composed of sodium nitrate and glutaric acid (GA) by using a pulsed RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR). The water content in the particles and efflorescence ratios of both NaNO3 and GA at ambient relative humidity (RH) as a function of time were obtained from the rapid-scan infrared spectra with a sub-second time resolution. Our study showed that both NaNO3 and GA crystallized at 44.1% RH during two different RH control processes (stepwise and pulsed processes). It was found that the addition of GA could suppress the efflorescence of NaNO3 during the dehumidifying process. In addition, the mixed NaNO3/GA particles release HNO3 during the dehumidifying and humidifying cycles. These findings are important in further understanding the role of interactions between water-soluble dicarboxylic acids and nitrates on hygroscopicity and environmental effects of atmospheric particles.
Collapse
Affiliation(s)
- Feng-Min Wu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China; School of Chemistry and Chemical Physics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiao-Wei Wang
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China; School of Chemistry and Chemical Physics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- School of Chemistry and Chemical Physics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Physics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
16
|
Wu FM, Wang N, Pang SF, Zhang YH. Hygroscopic behavior and fractional crystallization of mixed (NH 4) 2SO 4/glutaric acid aerosols by vacuum FTIR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:255-261. [PMID: 30340205 DOI: 10.1016/j.saa.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The hygroscopicity and phase transition of the mixed aerosol particles are significantly dependent upon relative humidity (RH) and interactions between particle components. Although the efflorescence behavior of particles has been studied widely, the crystallization behavior of each component in the particles is still poorly understood. Here, we study the hygroscopicity and crystallization behaviors of internally mixed ammonium sulfate (AS)/glutaric acid (GA) aerosols by a vacuum FTIR spectrometer coupled with a RH-controlling system. The mixed AS/GA aerosols in two different RH control processes (equilibrium and RH pulsed processes) show the fractional crystallization upon dehydration with AS crystallizing prior to GA in mixed particles with varying organic to inorganic molar ratios (OIRs). The initial efflorescence relative humidity (ERH) of AS decreased from ~43% for pure AS particles to ~41%, ~36% and ~34% for mixed AS/GA particles with OIRs of 2:1, 1:1 and 1:2, respectively. Compared to the ERH of 35% for pure GA, the initial ERHs of GA in mixed AS/GA particles were determined to be 31%, 30% and 28% for OIRs of 2:1, 1:1 and 1:2, respectively, indicating that the presence of AS decreased the crystallization RH of GA instead of inducing the heterogeneous nucleation of GA. When the AS fractions first crystallized at around 36% RH in the 1:1 mixed particles, GA remained noncrystalline until 30% RH. For the first time, the crystallization ratios of AS and GA are obtained for the internally mixed particles during the rapid downward RH pulsed process. The crystallization ratio of AS can reach around 100% at around 24% RH for both pure AS and the 1:1 mixed particles, consistent with the equilibrium RH process. It is clear that the RH downward rate did not influence efflorescence behavior of AS in pure AS and AS in mixed particles. In contrast, the crystallization ratio of GA can reach about 90% at 15.4% RH for pure GA particles in excellent agreement with the equilibrium RH process, whereas it is only up to 50% at 16.0% RH in the 1:1 mixed particles during the rapid downward pulsed process lower than that of the equilibrium RH process. Our results reveal that the rapid RH downward rate could inhibit the efflorescence of GA in the mixed droplets.
Collapse
Affiliation(s)
- Feng-Min Wu
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Wang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
17
|
Shao X, Wu FM, Yang H, Pang SF, Zhang YH. Observing HNO 3 release dependent upon metal complexes in malonic acid/nitrate droplets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:399-404. [PMID: 29775933 DOI: 10.1016/j.saa.2018.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Although the dicarboxylic acid has been reported to react with nitrate for aged internally mixed aerosols in atmosphere, the quantitative nitrate depletion dependent upon composition in particles is still not well constrained. The chemical composition evolutions for malonic acid/sodium nitrate (MA/SN), malonic acid/magnesium nitrate (MA/MN) and malonic acid/calcium nitrate (MA/CN) particles with the organic to inorganic molar ratio (OIR) of 1:1 are investigated by vacuum Fourier transform infrared spectroscopy (FTIR). Upon dehydration, the intensity of the asymmetric stretching mode of COO- group (νas-COO-) increases, accompanying the decrease in OH feather band and COOH band and NO3- band. These band changes suggest malonate salts formation and HNO3 release. The quantitative NO3- depletion data shows that the reactivity of MA-MN is most and that of MA-SN is least. Analysis of the stretching mode of COO- indicates the different bond type between metal cation and carboxylate anion. In addition, water content in particles decreases at the constant RH, implying water loss with the chemical reaction. When the RH changes very quickly, water uptake delay during the humidification process reveals that water mass transport is limited below 37% RH.
Collapse
Affiliation(s)
- Xu Shao
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. Beijing 100081, People's Republic of China; Beijing General Research Institute for Nonferrous Metals, People's Republic of China
| | - Feng-Min Wu
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. Beijing 100081, People's Republic of China
| | - Hui Yang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. Beijing 100081, People's Republic of China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. Beijing 100081, People's Republic of China.
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. Beijing 100081, People's Republic of China
| |
Collapse
|
18
|
Wang N, Cai C, He X, Pang SF, Zhang YH. Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:420-426. [PMID: 29202386 DOI: 10.1016/j.saa.2017.11.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2+ hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between ~70% and ~90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be ~5×10-12m2·s-1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.
Collapse
Affiliation(s)
- Na Wang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chen Cai
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiang He
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| |
Collapse
|
19
|
Shi XM, Wu FM, Jing B, Wang N, Xu LL, Pang SF, Zhang YH. Hygroscopicity of internally mixed particles composed of (NH 4) 2SO 4 and citric acid under pulsed RH change. CHEMOSPHERE 2017; 188:532-540. [PMID: 28910728 DOI: 10.1016/j.chemosphere.2017.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
In this research, we applied a pulsed RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) to investigate hygroscopicity of internally mixed (NH4)2SO4(AS)/citric acid (CA) particles. The water content and efflorescence ratio of AS in the particles and ambient relative humidity (RH) as a function of time were obtained with a subsecond time resolution. The hygroscopic behavior of AS aerosols in two different RH control processes (equilibrium and RH pulsed processes) showed that AS droplets crystallize with RH ranging from 42% to 26.5%. It was found that the half-life time ratio between the water content in the CA particles and the gas phase under RH pulsed change was greater than one under low RH conditions (<40% RH), indicating the significant water transfer limitation due to the high viscosity of CA aerosols at low RH, especially at RH<20%. In addition, water diffusion constants between 10-12 m2 s-1 and 10-13 m2 s-1 in micron size CA aerosols were obtained in a sub-second and second timescale. The addition of AS enhanced the water transfer limitation in the mixed aerosols. The efflorescence relative humidity (ERH) of the mixed particles with AS/CA by molar ratio 3:1 was found between 22.7% and 5.9%, which was much lower than AS particles. No efflorescence process was observed for the 1:1 mixed particles, indicating that CA greatly suppressed nucleation of AS. Our results have shown that the PRHCS-RSVFTIR is effective to simulate hygroscopicity and water transport of aerosols under fast variations in RH in atmosphere.
Collapse
Affiliation(s)
- Xiao-Min Shi
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Feng-Min Wu
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Jing
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Na Wang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin-Lin Xu
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
20
|
Ji ZR, Zhang Y, Pang SF, Zhang YH. Crystal Nucleation and Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles. J Phys Chem A 2017; 121:7968-7975. [DOI: 10.1021/acs.jpca.7b08004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Ru Ji
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yun Zhang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shu-Feng Pang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yun-Hong Zhang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
21
|
Wang LN, Cai C, Zhang YH. Kinetically Determined Hygroscopicity and Efflorescence of Sucrose-Ammonium Sulfate Aerosol Droplets under Lower Relative Humidity. J Phys Chem B 2017; 121:8551-8557. [PMID: 28825831 DOI: 10.1021/acs.jpcb.7b05551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic aerosols will likely form in semisolid, glassy, and high viscous state in the atmosphere, which show nonequilibrium kinetic characteristics at low relative humidity (RH) conditions. In this study, we applied optical tweezers to investigate the water transport in a sucrose/(NH4)2SO4 droplet with high organic to inorganic mole ratio (OIR). The characteristic time ratio between the droplet radius and the RH was used to describe the water mass transfer difference dependent on RH. For OIR greater than 1:1 in sucrose/(NH4)2SO4 droplets, the characteristic time ratio at low RH (<∼30% RH) was two orders magnitude greater than that at high RH (>∼60%). We also coupled vacuum FTIR spectrometer and a high-speed photography to study the efflorescence process in sucrose/(NH4)2SO4 droplets with low OIR. The crystalline fraction of (NH4)2SO4 was used to understand efflorescence behavior when the RH was linearly decreasing with a velocity of 1.2% RH min-1. Because of suppression of (NH4)2SO4 nucleation by addition of sucrose, the efflorescence relative humidity (ERH) of (NH4)2SO4 decrease from the range of ∼48.2% to ∼36.1% for pure (NH4)2SO4 droplets to from ∼44.7% to ∼25.4%, from ∼43.2% to ∼21.2%, and from ∼41.7% to ∼21.1% for the mixed droplets with OIR of 1:4, 1:3, and 1:2, respectively. No crystallization was observed when the OIR is higher than 1:1. Suppression of (NH4)2SO4 crystal growth was also observed under high viscous sucrose/(NH4)2SO4 droplets at lower RH.
Collapse
Affiliation(s)
- Lin-Na Wang
- Institute for Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chen Cai
- Institute for Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China.,Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Yun-Hong Zhang
- Institute for Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
22
|
Shao X, Zhang Y, Pang SF, Zhang YH. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhang Y, Cai C, Pang SF, Reid JP, Zhang YH. A rapid scan vacuum FTIR method for determining diffusion coefficients in viscous and glassy aerosol particles. Phys Chem Chem Phys 2017; 19:29177-29186. [DOI: 10.1039/c7cp04473a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of glassy formation on water transport in sucrose aerosol droplets is evaluated from characteristic time in a vacuum FTIR experiment.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Chemical Physics
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Chen Cai
- Institute of Chemical Physics
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
- Department of Atmospheric and Oceanic Sciences
| | - Shu-Feng Pang
- Institute of Chemical Physics
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | | | - Yun-Hong Zhang
- Institute of Chemical Physics
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| |
Collapse
|
24
|
Davies JF, Wilson KR. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers. Anal Chem 2016; 88:2361-6. [DOI: 10.1021/acs.analchem.5b04315] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James F. Davies
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94611, United States
| | - Kevin R. Wilson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94611, United States
| |
Collapse
|