1
|
Sonke JE, Angot H, Zhang Y, Poulain A, Björn E, Schartup A. Global change effects on biogeochemical mercury cycling. AMBIO 2023; 52:853-876. [PMID: 36988895 PMCID: PMC10073400 DOI: 10.1007/s13280-023-01855-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
Collapse
Affiliation(s)
- Jeroen E. Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, Université Paul Sabatier Toulouse 3, 14 ave Edouard Belin, 31400 Toulouse, France
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 1025 rue de la piscine, 38000 Grenoble, France
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023 Jiangsu China
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Erik Björn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Amina Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
2
|
Rudershausen PJ, Cross FA, Runde BJ, Evans DW, Cope WG, Buckel JA. Total mercury, methylmercury, and selenium concentrations in blue marlin Makaira nigricans from a long-term dataset in the western north Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159947. [PMID: 36336054 DOI: 10.1016/j.scitotenv.2022.159947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mercury in seafood is a neurotoxicant that threatens human health. Dynamic rates of mercury emission, re-emission, and atmospheric deposition warrant studies into mercury concentrations in fish because many are consumed by humans and can serve as sentinels of mercury levels in the environment. We modeled trends in total mercury content in an apex marine fish predator, Atlantic blue marlin Makaira nigricans, whose muscle tissues were opportunistically sampled from North Carolina (USA) sportfishing tournaments over a discontinuous time period: between 1975 and 77 and 1998-2021 (n = 148). The model-estimated influence of marlin weight on total mercury concentration was constant across years (shared slope) allowing for comparisons of weight-corrected mercury concentrations among years. Weight-corrected total mercury concentrations revealed an inter-decadal decline of approximately 45 % between the 1970s and late 1990s and then variable but relatively stable concentrations through 2021. The mean (SD) wet weight concentration of total mercury was 9.47 (4.11) from 1975 to 77 and 4.17 (2.61) from 2020 to 2021. Methylmercury and selenium were measured on a subset of fish to address questions related to human health and consumption. Methylmercury levels (mean = 0.72 μg/g) were much lower than total mercury (mean = 4.69 μg/g) indicating that total mercury is not a good proxy for methylmercury in Atlantic blue marlin. Selenium, examined as a Se:Hg molar ratio and as a selenium health benefit value (HBVSe), showed high protective value against mercury toxicity. Long-term trends in the concentration of mercury in blue marlin should continue to be monitored to determine whether policies to mitigate anthropogenic contributions to global mercury are achieving their intended goals and to provide information to inform safe human consumption.
Collapse
Affiliation(s)
- P J Rudershausen
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA.
| | - F A Cross
- NOAA, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - B J Runde
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA
| | - D W Evans
- NOAA, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - W G Cope
- North Carolina State University, Department of Applied Ecology, Box 7617, Raleigh, NC 27695, USA
| | - J A Buckel
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA
| |
Collapse
|
3
|
Taylor VF, Landis JD, Janssen SE. Tracing the sources and depositional history of mercury to coastal northeastern U.S. lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1805-1820. [PMID: 36065894 DOI: 10.1039/d2em00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) deposition was reconstructed in sediment cores from lakes in two coastal U.S. National Parks: Acadia National Park (ANP) and Cape Cod National Seashore (CCNS), to fill an important spatial gap in Hg deposition records and to explore changing sources of Hg and processes affecting Hg accumulation in these coastal sites. Recent Hg deposition chronology was assessed using (1) a newly developed lead-210 (210Pb) based sediment age model which employs 7Be to constrain deposition and sediment mixing of 210Pb-excess, (2) coinciding Pb flux and isotope ratios (206Pb/207Pb), and (3) Hg isotope ratios and their response to changes in Hg flux. At both sites, Hg flux increased substantially from pre-1850 levels, with accumulation in ANP peaking in the 1970s, whereas in CCNS, Hg levels were highest in recent sediments. Negative values of δ202Hg and Δ199Hg indicated terrestrially-derived Hg was a major constituent of Hg flux to Sargent Mountain Pond, ANP, although recent decreases in Hg flux were in agreement with precipitation Hg records, indicating a rapid watershed response. By contrast, δ202Hg and Δ199Hg profiles in Long Pond, CNNS reflect direct Hg deposition, but disturbances in the sedimentary record were indicated by bomb fallout radionuclide inventories and by peaks in both Pb and Hg isotope depth profiles. These cores provided poor reconstructions of atmospheric deposition and reveal responses that are decoupled from emissions reduction due to complex post-depositional redistribution of atmospheric metals including Hg. The application of multiple tracers of Hg deposition provide insight into the sources and pathways governing Hg accumulation in these lakes.
Collapse
Affiliation(s)
- Vivien F Taylor
- Department of Earth Science, 6105 Fairchild Hall, Dartmouth College, Hanover, NH 03755, USA.
| | - Joshua D Landis
- Department of Earth Science, 6105 Fairchild Hall, Dartmouth College, Hanover, NH 03755, USA.
| | - Sarah E Janssen
- U.S. Geological Survey Upper Midwest Water Science Center, Mercury Research Lab, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
| |
Collapse
|
4
|
Bank MS, Frantzen S, Duinker A, Amouroux D, Tessier E, Nedreaas K, Maage A, Nilsen BM. Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117843. [PMID: 34340180 DOI: 10.1016/j.envpol.2021.117843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ15N and δ13C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35-50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ15N) and carbon (δ13C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety.
Collapse
Affiliation(s)
- Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA.
| | | | | | - David Amouroux
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physicochimie pour L'Environnement et Les Matériaux (IPREM), Pau, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physicochimie pour L'Environnement et Les Matériaux (IPREM), Pau, France
| | | | - Amund Maage
- Institute of Marine Research, Bergen, Norway; University of Bergen, Norway
| | | |
Collapse
|
5
|
Furtado R, Granadeiro JP, Gatt MC, Rounds R, Horikoshi K, Paiva VH, Menezes D, Pereira E, Catry P. Monitoring of mercury in the mesopelagic domain of the Pacific and Atlantic oceans using body feathers of Bulwer's petrel as a bioindicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145796. [PMID: 33618310 DOI: 10.1016/j.scitotenv.2021.145796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Global mercury pollution has markedly and consistently grown over the past 70 years (although with regional variations in trends) and is a source of major concern. Mercury contamination is particularly prevalent in biota of the mesopelagic layers of the open ocean, but these realms are little studied, and we lack a large scale picture of contamination in living organisms of this region. The Bulwer's petrel Bulweria bulwerii, a species of migratory seabird, is a highly specialised predator of mesopelagic fish and squid, and therefore can be used as a bioindicator for the mesopelagic domain. Mercury accumulated by the birds through diet is excreted into feathers during the moulting process in adults and feather growth in chicks, reflecting contamination in the non-breeding and breeding periods, respectively, and hence the influence of different, largely non-overlapping breeding and non-breeding ranges. We studied mercury in feathers and the trophic position in two colonies from the Atlantic Ocean (Portugal and Cape Verde) and two colonies from the Pacific Ocean (Japan and Hawaii). We found significantly lower levels of mercury in adult and chick samples from the Pacific Ocean compared with samples from the Atlantic Ocean. However, we did not detect differences in trophic position of chicks among colonies and oceans, suggesting that differences in mercury measured in feathers reflect levels of environmental contamination, rather than differences in the structure of the trophic chain in different oceans. We conclude that despite a reduction in mercury levels in the Atlantic in recent decades, mesopelagic organisms in this ocean remain more heavily contaminated than in the Pacific at tropical and subtropical latitudes. We suggest that Bulwer's petrel is a highly suitable species to monitor the global contamination of mercury in the mesopelagic domain.
Collapse
Affiliation(s)
- Ricardo Furtado
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 1149-041 Lisboa, Portugal.
| | - José Pedro Granadeiro
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marie Claire Gatt
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rachel Rounds
- Pacific Islands Refuges and Monuments Office Inventory and Monitoring Program U.S. Fish and Wildlife Service, Honolulu, HI 808-792-9559, United States of America
| | - Kazuo Horikoshi
- Institute of Boninology Chichijima, Ogasawara-mura, Tokyo 100-2101, Japan
| | - Vítor H Paiva
- Universidade de Coimbra, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências da Vida, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Dilia Menezes
- Instituto das Florestas e Conservação da Natureza, IP-RAM, 9064-512 Funchal, Portugal
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Catry
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 1149-041 Lisboa, Portugal
| |
Collapse
|
6
|
|
7
|
Richter W, Skinner LC. Mercury in the fish of New York's Great Lakes: A quarter century of near stability. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1721-1738. [PMID: 31784923 DOI: 10.1007/s10646-019-02130-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
We collected 849 fish of 16 species from New York portions of Lake Erie, Lake Ontario and the intervening Niagara River and its tributary Cayuga Creek, and analyzed fillets from individual fish for total mercury. Concentrations ranged from 0.029 to 1.090 ppm wet weight, with 92% below the EPA tissue residue criterion of 0.3 ppm, and thus not posing an undue risk from human consumption. We compared these 2010-2017 results to historical data spanning 40 years to assess temporal changes. The temporal pattern was generally consistent among water bodies and species: Mercury concentrations differed little between the most recent collections and fish taken from 1999-2008 and 1988-1996, while concentrations in all three of these periods were generally lower than in 1970. Smallmouth Bass from Lake Ontario were an exception with a continued decline, likely due to diet change following the introduction of exotic prey. Overall, though, fish tissue mercury concentrations from these large water bodies, which integrate regional influences, appear to have changed little in the last quarter century. We also report a consistent spatial pattern for multiple species having lower mercury concentrations in Lake Erie than in Lake Ontario over the period of record.
Collapse
Affiliation(s)
- Wayne Richter
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233, USA.
- Department of Biology, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Lawrence C Skinner
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233, USA
| |
Collapse
|
8
|
Grieb TM, Fisher NS, Karimi R, Levin L. An assessment of temporal trends in mercury concentrations in fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1739-1749. [PMID: 31583510 DOI: 10.1007/s10646-019-02112-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 05/22/2023]
Abstract
The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency's Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment's Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972-2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, a leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, long-lived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading.
Collapse
Affiliation(s)
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY, USA
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY, USA
| | - Leonard Levin
- Electric Power Research Institute, Palo Alto, CA, USA
| |
Collapse
|
9
|
Wang S, Dong D, Li P, Hua X, Zheng N, Sun S, Hou S, An Q, Li P, Li Y, Song X, Li X. Mercury concentration and fatty acid composition in muscle tissue of marine fish species harvested from Liaodong Gulf: An intelligence quotient and coronary heart disease risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138586. [PMID: 32481211 DOI: 10.1016/j.scitotenv.2020.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Marine fish species are an important source of biologically valuable proteins, fats, fat-soluble vitamins, and n-3 polyunsaturated fatty acids, but they are also susceptible to pollutants. Mercury is liable to bioamplify in the aquatic food chain, and the health risks posed by methylmercury (MeHg) could undermine the benefits of eating fish, so risk-benefit assessments are needed for those fish species regularly consumed. The purpose of this study was to analyze the concentrations of mercury and characteristics of fatty acids in marine fish harvested from Liaodong Gulf, China, so as to better understand the risk-benefit effects of marine fish consumption. We found that the ratio of MeHg to total Hg (THg) was normally distributed. The concentrations of THg and MeHg in marine fish muscles (14 species, a total of 239) ranged from 0.920 to 0.288 μg/g and 0.050 to 0.192 μg/g, respectively. There were no significant interannual differences in the muscles' concentrations of MeHg and THg, or of their fatty acids (p > 0.05). The proportion of total saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) varied significantly among different marine fish-feeding habits (predacious, omnivorous, benthivorous and planktivorous), but the differences between polyunsaturated fatty acids (PUFAs) were not significant, which may be due to the undistinguished fatty acids (p < 0.05). The risk-benefit assessment using the intelligence quotient (IQ) scoring model revealed that all the studied marine fish had positive effects on child IQ under different consumption scenarios. Additionally, the integrated risk-benefit analysis for adult cardiovascular health showed that all the studied marine fish, but especially Ditrema temmincki Bleeker, are capable of reducing the relative cardiovascular risk posed by the MeHg in the fish. We conclude the positive effects of eating common marine fish from the Liaodong Gulf far outweigh their negative ones.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xue Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
10
|
Bank MS. The mercury science-policy interface: History, evolution and progress of the Minamata Convention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137832. [PMID: 32208250 DOI: 10.1016/j.scitotenv.2020.137832] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) pollution is an important environmental and public health issue that has garnered significant interest from policy makers and the global regulatory community. Consumption of seafood is the primary mechanism of methyl Hg (MeHg) exposure in humans, globally, and marine fish represent an important linkage between atmospheric dynamics, aquatic biogeochemistry and trophic transfer of this highly neurotoxic and easily assimilated form of Hg. Hg policies and management are highly interdisciplinary and at their foundation are relatively well established scientific principles related to Hg methylation, MeHg cycling and bioaccumulation, and subsequent trophic transfer to humans; however, certain fine-scale aspects of these processes remain poorly understood. After several years of intergovernmental negotiations the Minamata Convention on Mercury (MCM) entered into force in August 2017. Anthropogenic releases (water) and emissions (air) of Hg, human exposure, and environmental health are of considerable importance within the framework and policies outlined in the MCM. Additionally, the overall risk of Hg from artisanal and small-scale gold mining (ASGM) is considered a significant source of human exposure and commonly occurs in low and middle income countries, where miners use elemental Hg to extract gold from ore. Here I outline the history, evolution and progress of the MCM as it relates to the science-policy interface and offer a brief synthesis of the state of Hg science in the context of modeling, temporal assessments of Hg trends and global environmental change and ecosystem sensitivity.
Collapse
Affiliation(s)
- Michael S Bank
- Department of Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
11
|
Schartup AT, Thackray CP, Qureshi A, Dassuncao C, Gillespie K, Hanke A, Sunderland EM. Climate change and overfishing increase neurotoxicant in marine predators. Nature 2019; 572:648-650. [PMID: 31391584 DOI: 10.1038/s41586-019-1468-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/03/2019] [Indexed: 11/10/2022]
Abstract
More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.
Collapse
Affiliation(s)
- Amina T Schartup
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA. .,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Asif Qureshi
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Clifton Dassuncao
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kyle Gillespie
- Fisheries and Oceans Canada, St Andrews Biological Station, St Andrews, New Brunswick, Canada
| | - Alex Hanke
- Fisheries and Oceans Canada, St Andrews Biological Station, St Andrews, New Brunswick, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA. .,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
12
|
Wang F, Outridge PM, Feng X, Meng B, Heimbürger-Boavida LE, Mason RP. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:58-70. [PMID: 31003088 DOI: 10.1016/j.scitotenv.2019.04.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
The Minamata Convention to reduce anthropogenic mercury (Hg) emissions entered into force in 2017, and attention is now focused on how to best monitor its effectiveness at reducing Hg exposure to humans. A key question is how closely Hg concentrations in the human food chain, especially in fish and other aquatic wildlife, will track the changes in atmospheric Hg that are expected to occur following anthropogenic emission reductions. We investigated this question by evaluating several regional groups of case studies where Hg concentrations in aquatic biota have been monitored continuously or intermittently for several decades. Our analysis shows that in most cases Hg time trends in biota did not agree with concurrent Hg trends in atmospheric deposition or concentrations, and the divergence between the two trends has become more apparent over the past two decades. An over-arching general explanation for these results is that the impact of changing atmospheric inputs on biotic Hg is masked by two factors: 1) The aquatic environment contains a large inventory of legacy emitted Hg that remains available for bio-uptake leading to a substantial lag in biotic response time to a change in external inputs; and 2) Biotic Hg trends reflect the dominant effects of changes in multi-causal, local and regional processes (e.g., aquatic or terrestrial biogeochemical processes, feeding ecology, climate) that control the speciation, bioavailability, and bio-uptake of both present-day and legacy emitted Hg. Globally, climate change has become the most prevalent contributor to the divergence. A wide range of biotic Hg outcomes can thus be expected as anthropogenic atmospheric Hg emissions decline, depending on how these processes operate on specific regions and specific organisms. Therefore, evaluating the effectiveness of the Minamata Convention will require biomonitoring of multiple species that represent different trophic and ecological niches in multiple regions of the world.
Collapse
Affiliation(s)
- Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Peter M Outridge
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Geological Survey of Canada, Natural Resources Canada, 601 Booth St., Ottawa, ON K1A 0E8, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| |
Collapse
|
13
|
Azad AM, Frantzen S, Bank MS, Johnsen IA, Tessier E, Amouroux D, Madsen L, Maage A. Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:622-637. [PMID: 30833261 DOI: 10.1016/j.scitotenv.2019.02.352] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Hardangerfjord is one of the longest fjords in the world and has historical mercury (Hg) contamination from a zinc plant in its inner sector. In order to investigate the extent of Hg transferred to abiotic and biotic ecosystem compartments, Hg and monomethylmercury (MeHg) concentrations were measured in seawater, sediment, and seafood commonly consumed by humans. Although total mercury in seawater has been described previously, this investigation reports novel MeHg data for seawater from Norwegian fjords. Total Hg and MeHg concentrations in seawater, sediment, and biota increased towards the point source of pollution (PSP) and multiple lines of evidence show a clear PSP effect in seawater and sediment concentrations. In fish, however, similar high concentrations were found in the inner part of another branch adjacent to the PSP. We postulate that, in addition to PSP, atmospheric Hg, terrestrial run-off and hydroelectric power stations are also important sources of Hg in this fjord ecosystem. Hg contamination gradually increased towards the inner part of the fjord for most fish species and crustaceans. Since the PSP and the atmospheric Hg pools were greater towards the inner part of the fjord, it is not entirely possible to discriminate the full extent of the PSP and the atmospheric Hg contribution to the fjord food web. The European Union (EU) Hg maximum level for consumption was exceeded in demersal fish species including tusk (Brosme brosme), blue ling (Molva dypterygia) and common ling (Molva molva) from the inner fjord (1.08 to 1.89 mg kg-1 ww) and from the outer fjord (0.49 to 1.07 mg kg-1 ww). Crustaceans were less contaminated and only European lobster (Homarus gammarus) from inner fjord exceeded the EU limit (0.62 mg kg-1 ww). Selenium (Se) concentrations were also measured in seafood species and Se-Hg co-exposure dynamics are also discussed.
Collapse
Affiliation(s)
- Atabak M Azad
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.
| | | | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts, Amherst, USA.
| | | | - Emmanuel Tessier
- CNRS/ Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR5254, 64000 Pau, France
| | - David Amouroux
- CNRS/ Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR5254, 64000 Pau, France
| | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Biology, University of Copenhagen, Denmark
| | - Amund Maage
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Azad AM, Frantzen S, Bank MS, Nilsen BM, Duinker A, Madsen L, Maage A. Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1482-1496. [PMID: 30586833 DOI: 10.1016/j.scitotenv.2018.10.405] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that bioaccumulates in seafood. Co-occurrence of selenium (Se) may affect the bioavailability and toxicity of MeHg in organisms. Here we report the concentrations of total mercury (Hg) and Se in 17 teleost fish species (n = 8459) sampled during 2006-2015 from the North East Atlantic Ocean (NEAO) and evaluate species variation and effects of geography. Mean Hg concentration ranged from 0.04 mg kg-1 ww in Atlantic mackerel (Scomber scombrus) and blue whiting (Micromesistius poutassou) to 0.72 mg kg-1 ww in blue ling (Molva dypterygia). Se concentrations were less variable and ranged from 0.27 mg kg-1 ww in Atlantic cod (Gadus morhua) to 0.56 mg kg-1 ww in redfish (Sebastes spp.). The mean Se:Hg molar ratio ranged from 1.9 in blue ling to 43.3 in mackerel. Pelagic species had the lowest Hg concentrations and the highest Se:Hg ratios, whereas demersal species had the highest Hg concentrations and the lowest Se:Hg ratios. Se and Hg concentrations were positively correlated in 13 of the 17 species. Hg concentrations increased from the North to South in contrast to the Se:Hg molar ratio which exhibited the opposite trend. Fish from fjord and coastal areas had higher concentrations of Hg and lower Se:Hg molar ratios compared to fish sampled offshore. All species had average Se:Hg molar ratios >1 and Hg concentrations were largely below the EU maximum level of 0.5 mg kg-1 ww with few exceptions including the deep water species tusk (Brosme brosme) and blue ling sampled from fjord and coastal habitats. Our results show that two fillet servings of tusk, blue ling or Atlantic halibut (Hippoglossus hippoglossus) exceeded the tolerable weekly intake of MeHg although the surplus Se may possibly ameliorate the toxic effects of MeHg. However, some individuals with selenium deficiencies may exhibit greater sensitivity to MeHg.
Collapse
Affiliation(s)
- Atabak M Azad
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.
| | | | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts Amherst, USA.
| | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Biology, University of Copenhagen, Denmark
| | - Amund Maage
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Fitzgerald WF, Engstrom DR, Hammerschmidt CR, Lamborg CH, Balcom PH, Lima-Braun AL, Bothner MH, Reddy CM. Global and Local Sources of Mercury Deposition in Coastal New England Reconstructed from a Multiproxy, High-Resolution, Estuarine Sediment Record. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7614-7620. [PMID: 29897241 DOI: 10.1021/acs.est.7b06122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Historical reconstruction of mercury (Hg) accumulation in natural archives, especially lake sediments, has been essential to understanding human perturbation of the global Hg cycle. Here we present a high-resolution chronology of Hg accumulation between 1727 and 1996 in a varved sediment core from the Pettaquamscutt River Estuary (PRE), Rhode Island. Mercury accumulation is examined relative to (1) historic deposition of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) and its isotopes (206Pb/207Pb) in the same core, and (2) other reconstructions of Hg deposition in urban and remote settings. Mercury deposition in PRE parallels the temporal patterns of PAHs, and both track industrialization and regional coal use between 1850 and 1950 as well as rising petroleum use after 1950. There is little indication of increased Hg deposition from late 19th-century silver and gold mining in the western U.S. A broad maximum of Hg deposition during 1930-1980, and not found in remote sites, is consistent with the predicted influence of additional industrial sources and commercial products. Our results imply that a significant portion of global anthropogenic Hg emissions during the 20th century was deposited locally, near urban and industrial centers of Hg use and release.
Collapse
Affiliation(s)
- William F Fitzgerald
- Department of Marine Sciences , University of Connecticut , Groton , Connecticut 06340 , United States
| | - Daniel R Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota , Marine on St. Croix , Minnesota 55047 , United States
| | - Chad R Hammerschmidt
- Department of Earth & Environmental Sciences , Wright State University , Dayton , Ohio 45435 , United States
| | - Carl H Lamborg
- Department of Ocean Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Prentiss H Balcom
- Department of Marine Sciences , University of Connecticut , Groton , Connecticut 06340 , United States
| | - Ana L Lima-Braun
- Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Michael H Bothner
- United States Geological Survey, Woods Hole Science Center , Woods Hole , Massachusetts 02543 , United States
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| |
Collapse
|
16
|
Sunderland EM, Li M, Bullard K. Erratum: "Decadal Changes in the Edible Supply of Seafood and Methylmercury Exposure in the United States". ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:029003. [PMID: 29498929 PMCID: PMC6066346 DOI: 10.1289/ehp3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
[This corrects the article DOI: https://doi.org/10.1289/EHP2644.].
Collapse
|
17
|
Sunderland EM, Li M, Bullard K. Decadal Changes in the Edible Supply of Seafood and Methylmercury Exposure in the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017006. [PMID: 29342451 PMCID: PMC6014700 DOI: 10.1289/ehp2644] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Methylmercury (MeHg) exposure is associated with adverse effects on neurodevelopment and cardiovascular health. Previous work indicates most MeHg is from marine fish sold in the commercial market, but does not fully resolve supply regions globally. This information is critical for linking changes in environmental MeHg levels to human exposure in the U.S. population. OBJECTIVES We used available data to estimate the geographic origins of seafood consumed in the United States (major ocean basins, coastal fisheries, aquaculture, freshwater) and how shifts in edible supply affected MeHg exposures between 2000-2002 and 2010-2012. METHODS Source regions for edible seafood and MeHg exposure in the United States were characterized from national and international landing, export and import data from the Food and Agricultural Organization of the United Nations and the U.S. National Marine Fisheries Service. RESULTS Our analysis suggests 37% of U.S. population-wide MeHg exposure is from mainly domestic coastal systems and 45% from open ocean ecosystems. We estimate that the Pacific Ocean alone supplies more than half of total MeHg exposure. Aquaculture and freshwater fisheries together account for an estimated 18% of total MeHg intake. Shifts in seafood types and supply regions between 2000-2002 and 2010-2012 reflect changes in consumer preferences (e.g., away from canned light meat tuna), global ecosystem shifts (e.g., northern migration of cod stocks), and increasing supply from aquaculture (e.g., shrimp and salmon). CONCLUSION Our findings indicate global actions that reduce anthropogenic Hg emissions will be beneficial for U.S. seafood consumers because open ocean ecosystems supply a large fraction of their MeHg exposure. However, our estimates suggest that domestic actions can provide the greatest benefit for coastal seafood consumers. https://doi.org/10.1289/EHP2644.
Collapse
Affiliation(s)
- Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Miling Li
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Kurt Bullard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Govoni JJ, Morris JA, Evans DW. Tracing Dietary Mercury Histochemically, with Autometallography, through the Liver to the Ovaries and Spawned Eggs of the Spot, a Temperate Coastal Marine Fish. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:173-180. [PMID: 28686515 DOI: 10.1080/08997659.2017.1349009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to mercury (Hg) results in reproductive abnormalities and deficiencies in female fish. We traced the maternal assimilation and redistribution of dietary inorganic (HgII) and organic (MeHg) forms of Hg in a coastal marine fish, the Spot Leiostomus xanthurus. We conducted a 90-d laboratory experiment in which treatment Spot were fed muscle of Blue Marlin Makaira nigricans with elevated concentrations of Hg mixed with a commercial fish food, while control Spot were fed only commercial food pellets. Gonadal maturation was induced by shortening the photoperiod and increasing the temperature. Spawning was induced by intramuscular injection of human chorionic gonadotropin at 100 IU/kg. Solid-sampling atomic absorption spectrophotometry measured the total Hg (THg), HgII, and MeHg in Blue Marlin muscle. Autometallography located Hg-sulfide granules in the liver, ovaries, and spawned eggs, and densitometry provided comparisons of Hg-sulfide granules in the ovaries of treatment and control Spot. Overall, the intensity and prevalence of Hg-sulfide granules were greater in the liver, ovaries, and eggs from treatment Spot than in those from controls. The tissue and cellular distribution of Hg-sulfide granules differed. Received November 18, 2016; accepted June 18, 2017.
Collapse
Affiliation(s)
- John J Govoni
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| | - James A Morris
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| | - David W Evans
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| |
Collapse
|
19
|
Baumann Z, Mason RP, Conover DO, Balcom P, Chen CY, Buckman KL, Fisher NS, Baumann H. Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic silverside, Menidia menidia). CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES. JOURNAL CANADIEN DES SCIENCES HALIEUTIQUES ET AQUATIQUES 2017; 74:1009-1015. [PMID: 28701819 PMCID: PMC5502350 DOI: 10.1139/cjfas-2016-0396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total Hg [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg g-1 dw per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species.
Collapse
Affiliation(s)
- Zofia Baumann
- Department of Marine Sciences, University of Connecticut,
1080 Shennecossett Road, Groton CT, 06340
- Corresponding author; phone: 860-405-9281;
| | - Robert P. Mason
- Department of Marine Sciences, University of Connecticut,
1080 Shennecossett Road, Groton CT, 06340
| | - David O. Conover
- University of Oregon, 1266 University of Oregon, Eugene, OR
97403
| | - Prentiss Balcom
- Harvard Paulson School of Engineering and Applied Sciences,
58 Oxford Street, Cambridge MA 02138
| | - Celia Y. Chen
- Department of Biological Sciences, Dartmouth College,
Hanover NH, 03755
| | - Kate L. Buckman
- Department of Biological Sciences, Dartmouth College,
Hanover NH, 03755
| | - Nicholas S. Fisher
- School of Marine and Atmospheric Sciences, Stony Brook
University, Dana Hall, Stony Brook NY 11794-5000
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut,
1080 Shennecossett Road, Groton CT, 06340
| |
Collapse
|
20
|
Drevnick PE, Brooks BA. Mercury in tunas and blue marlin in the North Pacific Ocean. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1365-1374. [PMID: 28264147 DOI: 10.1002/etc.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 02/03/2017] [Indexed: 05/04/2023]
Abstract
Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC.
Collapse
Affiliation(s)
- Paul E Drevnick
- University of Michigan Biological Station and School of Natural Resources and Environment, Ann Arbor, Michigan, USA
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, Alberta, Canada
| | - Barbara A Brooks
- Hazard Evaluation and Emergency Response Office, Hawaii Department of Health, Honolulu, Hawaii, USA
| |
Collapse
|
21
|
Wolff BA, Johnson BM, Lepak JM. Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:167-177. [PMID: 28064370 DOI: 10.1007/s00244-016-0353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Partial decoupling of mercury (Hg) loading and observed Hg concentrations ([Hg]) in biotic and abiotic samples has been documented in aquatic systems. We studied two Colorado reservoirs to test whether shifts in prey for sport fish would lead to changes in [Hg] independent of external atmospheric Hg deposition. We compared sport fish total mercury concentrations ([T-Hg]) and macroinvertebrate (chironomids and crayfish) methylmercury concentrations ([MeHg]) before and after food web shifts occurred in both reservoirs. We also monitored wet atmospheric Hg deposition and sediment [T-Hg] and [MeHg] at each reservoir. We found rapid shifts in Hg bioaccumulation in each reservoir's sport fish, and these changes could not be attributed to atmospheric Hg deposition. Our study shows that trends in atmospheric deposition, environmental samples (e.g., sediments), and samples of species at the low trophic levels (e.g., chironomids and crayfish) may not accurately reflect conditions that result in fish consumption advisories for high trophic level sport fish. We suggest that in the short-term, monitoring fish [Hg] is necessary to adequately protect human health because natural and anthropogenic perturbations to aquatic food-webs that affect [Hg] in sport fish will continue regardless of trends in atmospheric deposition.
Collapse
Affiliation(s)
- Brian A Wolff
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Brett M Johnson
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Jesse M Lepak
- New York Sea Grant Extension, SUNY Oswego, Oswego, NY, 13126, USA
| |
Collapse
|
22
|
Lacerda LD, Goyanna F, Bezerra MF, Silva GB. Mercury Concentrations in Tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:149-155. [PMID: 28025688 DOI: 10.1007/s00128-016-2007-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Average total Hg concentrations measured in muscle of two species of tuna (Thunnus obesus and T. albacares) captured in the Brazilian Equatorial Atlantic Ocean varied from 95 to 1748 ng.g-1 wet weight in T. obesus and 48 to 500 ng.g-1 wet weight in T. albacares. Higher concentrations in T. obesus are probably related to foraging on deep water carnivorous fish. Smaller individuals of both species showed the lowest concentrations, but a significant positive relationship between fish weight and length and Hg concentrations was found for T. obesus, but not for T. albacares. Largest individuals (>30 kg) of T. obesus showed Hg concentrations ≥1000 ng.g-1, surpassing the legal limits for human consumption, although the average concentration for this species was much lower (545 ng.g-1). Concentrations in T. albacares from the Brazilian Equatorial were lower than those found in the African and in the North Atlantic. No comparison could be made for T. obesus due to few studies for this species in the Atlantic Ocean.
Collapse
Affiliation(s)
- L D Lacerda
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição 3207, Meireles, Fortaleza, 60.165-081, CE, Brazil.
| | - F Goyanna
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição 3207, Meireles, Fortaleza, 60.165-081, CE, Brazil
| | - M F Bezerra
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição 3207, Meireles, Fortaleza, 60.165-081, CE, Brazil
| | - G B Silva
- Departamento Ciências Animais, Universidade Federal Rural do Semiárido, Mossoró, 59.625-900, RN, Brazil
| |
Collapse
|
23
|
Taylor DL, Williamson PR. Mercury contamination in Southern New England coastal fisheries and dietary habits of recreational anglers and their families: Implications to human health and issuance of consumption advisories. MARINE POLLUTION BULLETIN 2017; 114:144-156. [PMID: 27595617 PMCID: PMC5219939 DOI: 10.1016/j.marpolbul.2016.08.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2016] [Accepted: 08/26/2016] [Indexed: 05/03/2023]
Abstract
Total mercury (Hg) was measured in coastal fishes from Southern New England (RI, USA), and Hg exposure was estimated for anglers and family members that consumed these resources. Fish Hg was positively related to total length (n = 2028 across 7 fish species), and interspecies differences were evident among legally harvestable fish. Many recreational anglers and their families experienced excessively high Hg exposure rates, which was attributed to the enriched Hg content of frequently consumed fishes. Specifically, 51.5% of participants in this study had Hg exposures exceeding the US EPA reference dose, including 50.0% of women of childbearing years. These results are noteworthy given that Hg neurotoxicity occurs in adults and children from direct and prenatal low-dose exposure. Moreover, this study underscores the need for geographic-specific research that accounts for small-scale spatial variations in fish Hg and dietary habits of at-risk human populations.
Collapse
Affiliation(s)
- David L Taylor
- Roger Williams University, Department of Marine Biology, One Old Ferry Road, Bristol, RI 02809, USA.
| | - Patrick R Williamson
- Roger Williams University, Department of Marine Biology, One Old Ferry Road, Bristol, RI 02809, USA
| |
Collapse
|
24
|
Lee CS, Lutcavage ME, Chandler E, Madigan DJ, Cerrato RM, Fisher NS. Declining Mercury Concentrations in Bluefin Tuna Reflect Reduced Emissions to the North Atlantic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12825-12830. [PMID: 27934271 PMCID: PMC5161346 DOI: 10.1021/acs.est.6b04328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tunas are apex predators in marine food webs that can accumulate mercury (Hg) to high concentrations and provide more Hg (∼40%) to the U.S population than any other source. We measured Hg concentrations in 1292 Atlantic bluefin tuna (ABFT, Thunnus thynnus) captured in the Northwest Atlantic from 2004 to 2012. ABFT Hg concentrations and variability increased nonlinearly with length, weight, and age, ranging from 0.25 to 3.15 mg kg-1, and declined significantly at a rate of 0.018 ± 0.003 mg kg-1 per year or 19% over an 8-year period from the 1990s to the early 2000s. Notably, this decrease parallels comparably reduced anthropogenic Hg emission rates in North America and North Atlantic atmospheric Hg0 concentrations during this period, suggesting that recent efforts to decrease atmospheric Hg loading have rapidly propagated up marine food webs to a commercially important species. This is the first evidence to suggest that emission reduction efforts have resulted in lower Hg concentrations in large, long-lived fish.
Collapse
Affiliation(s)
- Cheng-Shiuan Lee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
- Corresponding Author: . Phone: (929)-268-4338
| | - Molly E. Lutcavage
- Large Pelagics Research Center, School for the Environment, University of Massachusetts—Boston, Gloucester, Massachusetts 01931, United States
| | - Emily Chandler
- Large Pelagics Research Center, School for the Environment, University of Massachusetts—Boston, Gloucester, Massachusetts 01931, United States
| | - Daniel J. Madigan
- Harvard University Center for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Nicholas S. Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| |
Collapse
|
25
|
Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck JA, Stewart AR, Wiener JG, Evers DC, Lepak JM, Davis JA, Pritz CF. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1171-1184. [PMID: 27102274 DOI: 10.1016/j.scitotenv.2016.03.229] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/25/2023]
Abstract
Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management. A database was compiled with THg concentrations in 96,310 fish that comprised 206 species from 4262 locations, and used to evaluate the spatial distribution of fish THg across the region and effects of species, foraging guilds, habitats, and ecoregions. Areas of elevated THg exposure were identified by developing a relativized estimate of fish mercury concentrations at a watershed scale that accounted for the variability associated with fish species, fish size, and site effects. THg concentrations in fish muscle ranged between 0.001 and 28.4 (μg/g wet weight (ww)) with a geometric mean of 0.17. Overall, 30% of individual fish samples and 17% of means by location exceeded the 0.30μg/g ww US EPA fish tissue criterion. Fish THg concentrations differed among habitat types, with riverine habitats consistently higher than lacustrine habitats. Importantly, fish THg concentrations were not correlated with sediment THg concentrations at a watershed scale, but were weakly correlated with sediment MeHg concentrations, suggesting that factors influencing MeHg production may be more important than inorganic Hg loading for determining fish MeHg exposure. There was large heterogeneity in fish THg concentrations across the landscape; THg concentrations were generally higher in semi-arid and arid regions such as the Great Basin and Desert Southwest, than in temperate forests. Results suggest that fish mercury exposure is widespread throughout Western US and Canada, and that species, habitat type, and region play an important role in influencing ecological risk of mercury in aquatic ecosystems.
Collapse
Affiliation(s)
- Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Michael T Tate
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Michelle A Lutz
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Jacob A Fleck
- U.S. Geological Survey, California Water Science Center, 6000 J St. Placer Hall, Sacramento, CA 95819, USA
| | - A Robin Stewart
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - James G Wiener
- University of Wisconsin La Crosse, River Studies Center, 1725 State Street, La Crosse, WI 54601, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | - Jesse M Lepak
- Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, CO 80526, USA
| | - Jay A Davis
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, USA
| | | |
Collapse
|
26
|
Sunderland EM, Driscoll CT, Hammitt JK, Grandjean P, Evans JS, Blum JD, Chen CY, Evers DC, Jaffe DA, Mason RP, Goho S, Jacobs W. Benefits of Regulating Hazardous Air Pollutants from Coal and Oil-Fired Utilities in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2117-20. [PMID: 26848613 DOI: 10.1021/acs.est.6b00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Harvard T.H. Chan School of Public Health, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University , Syracuse, New York 13244, United States
| | - James K Hammitt
- Harvard T.H. Chan School of Public Health, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Philippe Grandjean
- Harvard T.H. Chan School of Public Health, Harvard University , Cambridge, Massachusetts 02138, United States
| | - John S Evans
- Harvard T.H. Chan School of Public Health, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - David C Evers
- Biodiversity Research Institute , Portland, Maine 04103, United States
| | - Daniel A Jaffe
- Science and Technology Program, University of Washington-Bothell , Bothell, Washington 98011, United States
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut , Groton, Connecticut 06340, United States
| | - Shaun Goho
- Emmett Environmental Law & Policy Clinic, Harvard Law School, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Wendy Jacobs
- Emmett Environmental Law & Policy Clinic, Harvard Law School, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
St Gelais AT, Costa-Pierce BA. Mercury concentrations in Northwest Atlantic winter-caught, male spiny dogfish (Squalus acanthias): A geographic mercury comparison and risk-reward framework for human consumption. MARINE POLLUTION BULLETIN 2016; 102:199-205. [PMID: 26707980 DOI: 10.1016/j.marpolbul.2015.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Mercury (Hg) contamination testing was conducted on winter-caught male spiny dogfish (Squalus acanthias) in southern New England and results compared to available data on Hg concentrations for this species. A limited risk-reward assessment for EPA (eicosapentanoic acid) and DHA (docosahexanoic acid) lipid concentrations of spiny dogfish was completed in comparison with other commonly consumed marine fish. Mean Hg concentrations were 0.19 ppm (±0.30) wet weight. In comparison, mean Hg concentrations in S. acanthias varied geographically ranging from 0.05 ppm (Celtic Sea) to 2.07 ppm (Crete, Mediterranean Sea). A risk-reward assessment for Hg and DHA+EPA placed S. acanthias in both "low-risk, high-reward" and "high-risk, high-reward" categories for consumption dependent on locations of the catch. Our results are limited and are not intended as consumption advisories but serve to illustrate the need for making more nuanced, geo-specific, consumption guidance for spiny dogfish that is inclusive of seafood traceability and nutritional benefits.
Collapse
Affiliation(s)
- Adam T St Gelais
- Department of Marine Sciences, Marine Science Center, University of New England, Biddeford, ME 04005, USA.
| | - Barry A Costa-Pierce
- Department of Marine Sciences, Marine Science Center, University of New England, Biddeford, ME 04005, USA.
| |
Collapse
|