1
|
Pollegioni L, Molla G. Protein biochemistry and engineering drive the development of a carbonic anhydrase-based carbon dioxide sequestration strategy. FEBS J 2025; 292:2511-2514. [PMID: 39868622 PMCID: PMC12103064 DOI: 10.1111/febs.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The sequestration of carbon dioxide using carbonic anhydrase (CA) is one of the most effective methods for mitigating global warming. The burning of fossil fuels releases large quantities of flue gas; because of its high temperature and of the alkaline conditions required for CaCO3 precipitation in the mineralization process, thermo-alkali-stable CAs are needed. In this context, Manyumwa et al. conducted a biochemical characterization of three CAs derived from thermophilic bacteria. They then employed a rational design approach to enhance the specific activity and stability of the enzyme from the hydrothermal vent species Persephonella sp. KM09-Lau-8.
Collapse
Affiliation(s)
- Loredano Pollegioni
- ‘The Protein Factory 2.0’, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli Studi dell'InsubriaVareseItaly
| | - Gianluca Molla
- ‘The Protein Factory 2.0’, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli Studi dell'InsubriaVareseItaly
| |
Collapse
|
2
|
Zhou R, Ren Y, Jiang C, Lu Q. Wastewater as a resource for carbon capture: A comprehensive overview and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124608. [PMID: 39999754 DOI: 10.1016/j.jenvman.2025.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
As two important but energy-intense processes, carbon capture and wastewater treatment always attract wide research interests to improve their operational efficiency and technological feasibility. Consequently, utilizing wastewater for carbon capture or integrating carbon capture plants into wastewater treatment facilities has become a promising concept drawing great attention to investigate and demonstrate its feasibility and efficiency. In this study, recent research progress and concept validation studies of utilizing wastewater for carbon capture were briefly reviewed and summarized with the status and main challenges of this concept provided accordingly. Three integration strategies for combining carbon capture with wastewater treatment-utilization of wastewater as the absorbent to capture CO2, biological pathway for simultaneous carbon capture and wastewater treatment, and electrochemical approach to integrate wastewater purification with carbon capture-were primarily reviewed and discussed in this study. Meanwhile, the perspectives of these integrated technology strategies were also discussed providing guidance for future investigations and development of carbon capture with wastewater treatment. Based on our study, the integrated wastewater treatment and carbon capture shows promising prospects in terms of reducing energy consumption and cost of carbon capture and wastewater treatment. However, more relevant studies and demonstrations are still necessary to improve efficiency and reduce possible carbon emissions. As a promising technology contributing to achieving net-zero emission and mitigating global warming, the integration of wastewater treatment and carbon capture will attract more attention in the future.
Collapse
Affiliation(s)
- Rufan Zhou
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Natural Resources Canada, Geological Survey of Canada, Calgary, Alberta, T2L 2A7, Canada
| | - Yuxuan Ren
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Chunqing Jiang
- Natural Resources Canada, Geological Survey of Canada, Calgary, Alberta, T2L 2A7, Canada.
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
3
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Cao TND, Wang T, Peng Y, Hsu HY, Mukhtar H, Yu CP. Photo-assisted microbial fuel cell systems: critical review of scientific rationale and recent advances in system development. Crit Rev Biotechnol 2024; 44:31-46. [PMID: 36424845 DOI: 10.1080/07388551.2022.2115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Bioelectrochemical systems such as microbial fuel cells (MFCs) have gained extensive attention due to their abilities to simultaneously treat wastewater and generate renewable energy resources. Recently, to boost the system performance, the photoelectrode has been incorporated into MFCs for effectively exploiting the synergistic interaction between light and microorganisms, and the resultant device is known as photo-assisted microbial fuel cells (photo-MFCs). Combined with the metabolic reaction of organic compounds by microorganisms, photo-MFCs are capable of simultaneously converting both chemical energy and light energy into electricity. This article aims to systematically review the recent advances in photo-MFCs, including the introduction of specific photosynthetic microorganisms used in photo-MFCs followed by the discussion of the fundamentals and configurations of photo-MFCs. Moreover, the materials used for photoelectrodes and their fabrication approaches are also explored. This review has shown that the innovative strategy of utilizing photoelectrodes in photo-MFCs is promising and further studies are warranted to strengthen the system stability under long-term operation for advancing practical application.
Collapse
Affiliation(s)
- Thanh Ngoc Dan Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - TsingHai Wang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chongli, Taiwan
| | - Yong Peng
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Lai LL, Wan SZ, Qaisar M, Yang YF, Wang R, Yuan LJ. Electrochemically mediated phosphorus and energy recovery from digested effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119511. [PMID: 37956517 DOI: 10.1016/j.jenvman.2023.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The growing global concern over the high phosphorus concentration in discharged wastewaters has driven the demand for exploring the means to recover it from wastewater. We previously demonstrated the possibility of phosphorus recovery by iron-air fuel cells from digested effluent. The present study focused on further optimizing the performance of the fuel cell by adjusting the wastewater properties (initial pH) and device parameters (anode/cathode area ratio, electrode spacing). Under neutral or slightly alkaline conditions, the HCO3- ions accelerated the formation of iron anode passivation layer, resulting in a decreased phosphate removal efficiency and vivianite yield. Additionally, the occurrence of oxygen crossover with small electrode spacing and anode/cathode area ratio significantly influenced the efficiency of fuel cells in terms of phosphate removal, vivianite production, and electricity generation. The results showed that an acidic pH (5.78), an adequate anode/cathode area ratio (1.3), and an appropriate electrode spacing (5 cm) were prone to increase vivianite yield. Furthermore, the fuel cell achieved the highest electric energy output with an initial pH of 5.78, an anode/cathode area ratio of 0.4, and an electrode spacing of 7.5 cm. As far as operational cost was concerned, the iron-air fuel cell system exhibited a potential cost-saving advantage of about 65.6% compared to the traditional electrochemical crystallization system.
Collapse
Affiliation(s)
- Ling-Ling Lai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Si-Zhuo Wan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Yi-Fan Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Ru Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Lin-Jiang Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
6
|
Khodadi S, Karbassi A, Tavakoli O, Baghdadi M, Zare Z. Simultaneous dairy wastewater treatment and bioelectricity production in a new microbial fuel cell using photosynthetic Synechococcus. Int Microbiol 2023; 26:741-756. [PMID: 36680697 DOI: 10.1007/s10123-023-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell's high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.
Collapse
Affiliation(s)
- Sahar Khodadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abdolreza Karbassi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Omid Tavakoli
- Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Zeinab Zare
- Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Yaashikaa PR, Senthil Kumar P, Saravanan A, Karishma S, Rangasamy G. A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment. CHEMOSPHERE 2023; 329:138670. [PMID: 37054843 DOI: 10.1016/j.chemosphere.2023.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
8
|
Hou X, Hu X. Self-Assembled Nanoscale Manganese Oxides Enhance Carbon Capture by Diatoms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17215-17226. [PMID: 36375171 DOI: 10.1021/acs.est.2c04500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Continuous CO2 emissions from human activities increase atmospheric CO2 concentrations and affect global climate change. The carbon storage capacity of the ocean is 20-fold higher than that of the land, and diatoms contribute to approximately 40% of carbon capture in the ocean. Manganese (Mn) is a major driver of marine phytoplankton growth and the marine carbon pump. Here, we discovered self-assembled manganese oxides (MnOx) for CO2 fixation in a diatom-based biohybrid system. MnOx shared key features (e.g., di-μ-oxo-bridged Mn-Mn) with the Mn4CaO5 cluster of the biological catalyst in photosystem II and promoted photosynthesis and carbon capture by diatoms/MnOx. The CO2 capture capacity of diatoms/MnOx was 1.5-fold higher than that of diatoms alone. Diatoms/MnOx easily allocated carbon into proteins and lipids instead of carbohydrates. Metabolomics showed that the contents of several metabolites (e.g., lysine and inositol) were positively associated with increased CO2 capture. Diatoms/MnOx upregulated six genes encoding photosynthesis core proteins and a key rate-limiting enzyme (Rubisco, ribulose 1,5-bisphosphate carboxylase-oxygenase) in the Calvin-Benson-Bassham carbon assimilation cycle, revealing the link between MnOx and photosynthesis. These findings provide a route for offsetting anthropogenic CO2 emissions and inspiration for self-assembled biohybrid systems for carbon capture by marine phytoplankton.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|
9
|
Luo T, Song Q, Han J, Li Y, Liu L. The reduction of CO2/bicarbonate to ethanol driven by Bio-electrochemical system using reduced graphene oxide modified nickel foam. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Pahunang RR, Buonerba A, Senatore V, Oliva G, Ouda M, Zarra T, Muñoz R, Puig S, Ballesteros FC, Li CW, Hasan SW, Belgiorno V, Naddeo V. Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148479. [PMID: 34465066 DOI: 10.1016/j.scitotenv.2021.148479] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.
Collapse
Affiliation(s)
- Rekich R Pahunang
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Florencio C Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines; Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, Tamkang University, 151 Yingzhuan Road Tamsui District, New Taipei City 25137, Taiwan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
11
|
Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Nguyen HTH, Min B. Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 316:123928. [PMID: 32768999 DOI: 10.1016/j.biortech.2020.123928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A novel tubular-type photosynthetic microbial fuel cell (PMFC) with algal growth and multiple electrodes in the cathode chamber was operated at various hydraulic retention times (HRTs). When the HRT in the cathode was fixed to 24 h, cell voltage gradually increased as the HRT in the anode was decreased from 24 h to 6 h, and at 6 h, 315 mV of electricity was generated and the dissolved oxygen concentration was 10.31 ± 2.60 mg/L. However, HRT changes in the cathode did not affect cell voltage generation much, although a sharp decrease in cell voltage was observed at 2-h HRT. With wastewater passing through the chambers in series (19.3-h total HRT), the PMFC was able to successfully generate cell voltage and remove nutrients. The maximum COD and phosphorus removal percentages were obtained for an initial COD of 300 mg/L, while the maximum nitrogen removal was obtained for an initial COD of 400 mg/L.
Collapse
Affiliation(s)
- Hai T H Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Republic of Korea.
| |
Collapse
|
13
|
Dasan YK, Lam MK, Yusup S, Lim JW, Show PL, Tan IS, Lee KT. Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: A stress-inducing strategy for lipid accumulation and carbon dioxide fixation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wang Z, He Z, Young EB. Toward enhanced performance of integrated photo-bioelectrochemical systems: Taxa and functions in bacteria-algae communities. Curr Opin Chem Biol 2020; 59:130-139. [PMID: 32750674 DOI: 10.1016/j.cbpa.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Abstract
An integrated photo-bioelectrochemical (IPB) system uses microalgae in the cathode of a microbial fuel cell to achieve higher electricity generation and nutrient removal from wastewater. Using multivariate analysis and surveys of IPB studies, this paper identifies key algal and bacterial taxa and discusses their functions critical for IPB performance. Unicellular algae with high photosynthetic oxygen production and biofilm formation can enhance IPB energy production. Diverse bacterial taxa achieve nitrogen transformations and can improve total nitrogen removal. Understanding bacteria-algae interactions via quorum sensing in the IPB cathode may potentially aid in boosting system performance. Future advances in development of IPBs for wastewater treatment will benefit from interdisciplinary collaboration in analysis of microbial community functions.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA.
| | - Erica B Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
15
|
Jiang Q, Song X, Liu J, Shao Y, Feng Y. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC). WATER RESEARCH 2019; 167:115097. [PMID: 31563706 DOI: 10.1016/j.watres.2019.115097] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 05/18/2023]
Abstract
Nutrients removal and recovery from surface water are attracting wide attention as nutrients contamination can cause eutrophication even threaten human health. In this study, a novel in-situ photomicrobial nutrient recovery cell (PNRC) was developed, which employed the self-generated electric field to drive nutrient ions to migrate and subsequent recovery as microalgae biomass. At an external resistance of 200 Ω, the current density of the PNRC reactor reached 2.0 A m-2, more than 92% of ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total phosphorus (TP) were separated from eutrophic water, which represented <0.19 mg L-1 of NH4+-N, <0.23 mg L-1 of NO3--N, <0.02 mg L-1 of TP were left in the eutrophic water effluent. Meanwhile these separated NH4+-N, NO3--N, and TP were highly enriched in the cathode and anode chambers, and further removed from the system with the removal efficiencies of 91.8%, 90.6%, and 94.4%. The analysis of microbial communities unraveled that high nitrate removal was attributed to the abundant denitrifying bacteria (Thauera, Paracoccus, Stappia, and Azoarcus). The removal of ammonia was attributed to the algae assimilation (69.3%) and nitrification process (22.5%), and the phosphorus removal was mainly attributed to C. vulgaris. The preliminary energy balance analysis indicated that the electricity generation and biodiesel production could achieve energy neutrality theoretically, further demonstrating the huge potential of the PNRC system in cost-effective nutrients recovery from eutrophic water.
Collapse
Affiliation(s)
- Qing Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Xiangru Song
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Jia Liu
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China; School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Yuqiang Shao
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
16
|
Li M, Zhou M, Luo J, Tan C, Tian X, Su P, Gu T. Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 280:95-103. [PMID: 30763866 DOI: 10.1016/j.biortech.2019.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
This study developed a bubbling-type photosynthetic algae microbial fuel cell (B-PAMFC) to treat synthetic wastewater and capture CO2 using Chlorella vulgaris with simultaneous power production. The performance of B-PAMFC in CO2 fixation and bioenergy production was compared with the photosynthetic algae microbial fuel cell (PAMFC) and bubbling photobioreactor. Different nitrogen sources for C. vulgaris growth, namely sodium nitrate, urea, ammonium acetate and acetamide were studied. The maximum CO2 fixation rate in B-PAMFC with 2.8 g L-1 urea reached 605.3 mg L-1 d-1, 3.86-fold higher than that in PAMFC. Urea also enhanced the solution absorption of CO2. Furthermore, the B-PAMFC reached a high lipid productivity of 105.9 mg L-1 d-1. An energy balance analysis indicated that B-PAMFC had a maximum net energy of 1.824 kWh m-3, making it a lab-scale energy-positive system. The B-PAMFC with urea as nitrogen source would provide an attractive strategy for simultaneous CO2 sequestration and bioenergy production.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chaolin Tan
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaoyu Tian
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
17
|
A novel two-stage culture strategy used to cultivate Chlorella vulgaris for increasing the lipid productivity. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Li M, Zhou M, Tan C, Tian X. Enhancement of CO 2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 272:501-509. [PMID: 30391843 DOI: 10.1016/j.biortech.2018.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
This study developed a novel airlift type photosynthetic microbial fuel cell (AL-PMFC) using Chlorella vulgaris to enhance the CO2 biofixation and bioenergy (bioelectricity and biodiesel) generation. The performances of AL-PMFC in CO2 fixation rate, lipid accumulation and power output were investigated and compared with a bubbling-type photosynthetic microbial fuel cell (B-PMFC). Due to the enhanced mass transfer, the CO2 fixation rate of AL-PMFC reached 835.7 mg L-1 d-1, 28.6% higher than that of B-PMFC. Besides, the analysis of energy balance indicated that a maximum net energy of 2.701 kWh m-3 was achieved in AL-PMFC, which performed better than B-PMFC. After optimization of C. vulgaris inoculum density, CO2 concentration and aeration rate, the maximum CO2 fixation rate, lipid productivity, and power density in AL-PMFC reached 1292.8 mg L-1 d-1, 234.3 mg L-1 d-1, and 5.94 W m-3, respectively. The AL-PMFC provided an attractive approach for CO2 fixation and bioenergy generation.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Chaolin Tan
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaoyu Tian
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
19
|
Tan SI, Han YL, Yu YJ, Chiu CY, Chang YK, Ouyang S, Fan KC, Lo KH, Ng IS. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. BIORESOURCE TECHNOLOGY 2018; 261:350-360. [PMID: 29679853 DOI: 10.1016/j.biortech.2018.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000 lx) and light/dark regimes (24/00, 12/12, 16/8 h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126 mW m-3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4 g l-1 (or biomass yield of 0.44 g l-1 day-1) was obtained in continuous light intensity of 10,000 lx. The comparison of the PMMFC performance with air-cathode and abiotic-cathode MFCs shows that the maximum power density of air-cathode MFC was only 13% higher than PMMFC.
Collapse
Affiliation(s)
- Elahe Bazdar
- Department of Energy Engineering, Sharif Energy Research Institute, Sharif University of Technology, Tehran, Iran
| | - Ramin Roshandel
- Department of Energy Engineering, Sharif Energy Research Institute, Sharif University of Technology, Tehran, Iran.
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif Chemical and Petroleum Research Institute, Sharif University of Technology, Tehran, Iran
| | - Mohammad Mahdi Mardanpour
- Technology and Innovation Group, Faculty of Technology, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
21
|
Luo S, Berges JA, He Z, Young EB. Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Hu X, Zhou J, Liu B. Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode. RSC Adv 2016. [DOI: 10.1039/c5ra26299b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of algal species (Chlorella vulgarisandChlorellasp.) and light intensity on the performance of air-lift-type microbial carbon capture cells (ALMCCs) was investigated.
Collapse
Affiliation(s)
- Xia Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Baojun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|