1
|
Breuninger ES, Tolu J, Aemisegger F, Thurnherr I, Bouchet S, Mestrot A, Ossola R, McNeill K, Tukhmetova D, Vogl J, Meermann B, Sonke JE, Winkel LHE. Marine and terrestrial contributions to atmospheric deposition fluxes of methylated arsenic species. Nat Commun 2024; 15:9623. [PMID: 39511187 PMCID: PMC11543862 DOI: 10.1038/s41467-024-53974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Arsenic, a toxic element from both anthropogenic and natural sources, reaches surface environments through atmospheric cycling and dry and wet deposition. Biomethylation volatilizes arsenic into the atmosphere and deposition cycles it back to the surface, affecting soil-plant systems. Chemical speciation of deposited arsenic is important for understanding further processing in soils and bioavailability. However, the range of atmospheric transport and source signature of arsenic species remain understudied. Here we report significant levels of methylated arsenic in precipitation, cloud water and aerosols collected under free tropospheric conditions at Pic du Midi Observatory (France) indicating long-range transport, which is crucial for atmospheric budgets. Through chemical analyses and moisture source diagnostics, we identify terrestrial and marine sources for distinct arsenic species. Estimated atmospheric deposition fluxes of methylated arsenic are similar to reported methylation rates in soils, highlighting atmospheric deposition as a significant, overlooked source of potentially bioavailable methylated arsenic species impacting plant uptake in soils.
Collapse
Affiliation(s)
- Esther S Breuninger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| | - Julie Tolu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| | - Franziska Aemisegger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Iris Thurnherr
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Sylvain Bouchet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Dariya Tukhmetova
- Federal Institute for Materials Research and Testing, Division 1.1-Inorganic Trace Analysis, Berlin, Germany
| | - Jochen Vogl
- Federal Institute for Materials Research and Testing, Division 1.1-Inorganic Trace Analysis, Berlin, Germany
| | - Björn Meermann
- Federal Institute for Materials Research and Testing, Division 1.1-Inorganic Trace Analysis, Berlin, Germany
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, Toulouse, France
| | - Lenny H E Winkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Michalicová R, Hegrová J, Svoboda J, Ličbinský R. Seasonal and spatial variations of arsenic and its species in particulate matter in an urban environment of Brno, Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55251-55262. [PMID: 39225932 DOI: 10.1007/s11356-024-34645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The present paper deals with an analysis of total arsenic concentration using ICP-MS/MS and an analysis of concentration of several arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonate (MMA), dimethylarsenite (DMA), and trimethylarsine oxide (TMAO), using HPLC-ICP-MS/MS in the PM10 fraction of airborne urban aerosol. The samples were collected during two campaigns, in the autumn of 2022 and in the winter of 2023, at three locations within the central European city of Brno, with the aim to evaluate the seasonal and spatial variations in the PM10 composition. The results confirmed only the seasonal variability in the content of the methylated arsenic species in PM10 influenced by biomethylation processes. To gain better understanding of the possible arsenic origin, a supplementary analysis of the total arsenic concentrations was performed in samples of different size fractions of particulate matter collected using ELPI + . Local emissions, including industrial activities and heating during the winter season, were suggested as the most likely predominant source contributing to the total As content in PM10.
Collapse
Affiliation(s)
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Josef Svoboda
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Roman Ličbinský
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| |
Collapse
|
3
|
Michalicová R, Pecina V, Hegrová J, Brtnický M, Svoboda J, Prokeš L, Baltazár T, Ličbinský R. Seasonal variation of arsenic in PM 10 and PM x in an urban park: The influence of vegetation-related biomethylation on the distribution of its organic species and air quality. CHEMOSPHERE 2024; 362:142721. [PMID: 38945226 DOI: 10.1016/j.chemosphere.2024.142721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Arsenic (As) levels in particulate matter (PM) are routinely monitored in cities of developed countries. Despite advances in the knowledge of its inorganic species in PM in urban areas, organic species are often overlooked with no information on their behaviour in urban parks - areas with increased potential for As biomethylation. Therefore, the aim of this study was to characterize As distribution, bioaccessibility, seasonal variation and speciation (AsIII, AsV, MMA, DMA and TMAO) in PMx-PM10 of an urban park. Two sites with different distance from the road were selected for winter and summer sampling. From the PM samples, we gravimetrically determined PM10 concentrations in the air and via ICP-MS the total As content there. To assess the portion of bioaccessible As, water extractable As content was analysed. Simultaneously, the As species in PM10 water extracts were analysed via coupling of HPLC with ICP-MS method. There was no seasonal difference in PM10 concentration in the park, probably due to the increased summer PM load related to recreational activities in the park and park design. Spatial distribution of total As in PM10 and As fractional distribution in PMx suggested that As mostly didn't originate from traffic although highest As content was observed in the fine fraction (PM2.5) related to combustion processes. However, significant winter increase of As (determined by AsIII and AsV) despite the unchanged concentration of PM10 indicated a decisive influence of household heating-related combustion and possibly influence of reduced vegetation density. As present in the PM10 was mostly in bioaccessible form. Seasonal influence of As biomethylation was clearly demonstrated on the TMAO specie during the summer campaign. Except the significant summer TMAO increase, the results also indicated the biomethylation influence on DMA. Therefore, an increased risk of exposure to organic As species in urban parks can be expected during summer.
Collapse
Affiliation(s)
| | - Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Agrovyzkum Rapotin, Ltd, Výzkumníků 267, 788 13, Rapotín, Czech Republic
| | - Josef Svoboda
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno, 603 00, Czech Republic
| | - Tivadar Baltazár
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Roman Ličbinský
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| |
Collapse
|
4
|
Huang S, Han M, Chen P, Feng W, Li G, Zhang H, Peng H, Huang T. Assessing health risks from bioaccessible PM 2.5-bound toxic metals in Nanchang metro: Implications for metro workers and emissions control. ENVIRONMENTAL RESEARCH 2024; 258:119284. [PMID: 38823618 DOI: 10.1016/j.envres.2024.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
High concentrations of PM2.5 with enriched levels of metallic constituents could significantly affect the health and comfort of metro employees. To avoid overestimating the exposure risks, we investigated the bioaccessibility of toxic metals (TMs) bound in PM2.5 from the Nanchang metro using Gamble's solution method, and qualitatively analyzed the impact of valence state and various sources on the bioaccessibility of TMs bound to PM2.5. The results showed that the bioaccessibility of the studied TMs ranged from 2.1% to 88.1%, with As, Ba, Co and Pb being the most bioaccessible and V, Fe and Cr being the less bioaccessible. The bioaccessibility of TMs in our subway PM2.5 samples varied based on their valence and species, showing higher valence states associated with increased bioaccessibility. Vehicle traffic, secondary aerosols and wheel/rail sources were found to be significantly and positively associated with the bioaccessibility of several TMs, implying a severe potential risk from these three sources. Although both non-carcinogenic and carcinogenic risks associated with total TMs were found to be high, only As and Cr(VI) posed a considerable carcinogenic risk to metro workers based on the bioaccessible fractions and were therefore priority pollutants. In addition, potential carcinogenic risk was found to be more severe in platform than that in ticket counter. The results indicate that considerable efforts are required to control and manage PM2.5 and the associated TMs in the Nanchang subway, particularly from traffic, wheel/rail and secondary sources, to protect the health of metro staff and the public.
Collapse
Affiliation(s)
- Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Minglei Han
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Peixian Chen
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China; Jiangxi Jiujiang Ecological Environment Monitoring Center, Jiujiang, 332099, China
| | - Weiwei Feng
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Filella M, Wey S, Matoušek T, Coster M, Rodríguez-Murillo JC, Loizeau JL. Arsenic in Lake Geneva (Switzerland, France): long term monitoring, and redox and methylation speciation in an As unpolluted, oligo-mesotrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:850-869. [PMID: 36924114 DOI: 10.1039/d2em00431c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arsenic speciation was followed monthly along the spring productivity period (January-June 2021) in the Petit Lac (76 m deep) and in April and June 2021 in the Grand Lac (309.7 m deep) of Lake Geneva (Switzerland/France). Lake Geneva is presently an oligo-mesotrophic lake, and As-unpolluted. The water column never becomes anoxic but the oxygen saturation at the bottom of the Grand Lac is now below 30% owing to lack of water column mixing since 2012. Thus, this lake offers excellent conditions to study As behaviour in an unpolluted, oxic freshwater body. The following 'dissolved' As species: iAs(III), iAs(III + V), MA(III), MA(III + V), DMA(III + V), and TMAO were analysed by HG-CT-ICP-MS/MS. Water column measurements were complemented with occasional sampling in the main rivers feeding the lake and in the interstitial waters of a sediment core. The presence of MA(III) and TMAO and the predominance of iAs(V) in lake and river samples has been confirmed as well as the key role of algae in the formation of organic species. While the total 'dissolved' As concentrations showed nearly vertical profiles in the Petit Lac, As concentrations steadily increase at deeper depths in the Grand Lac due to the lack of mixing and build up in bottom waters. The evaluation of 25 years of monthly data of 'dissolved' As concentrations showed no significant temporal trends between 1997 and 2021. The observed seasonal character of the 'dissolved' As along this period coincides with a lack of seasonality in As mass inventories, pointing to a seasonal internal cycling of As species in the water column with exchanges between the 'dissolved' and 'particulate' (i.e., algae) fractions.
Collapse
Affiliation(s)
- Montserrat Filella
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Sebastian Wey
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | | | | | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
6
|
Yan W, Xie M, Liu X, Han S, Xu J, Zhang G. Exposure-lag response of fine particulate matter on intrauterine fetal death: an analysis using a distributed lag non-linear model in Linxia Hui Autonomous Prefecture, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45184-45194. [PMID: 36705830 DOI: 10.1007/s11356-023-25526-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The results of studies on intrauterine fetal death (IUFD) caused by exposure to fine particulate matter (PM2.5) during pregnancy are inconsistent. Further exploration of the dose-response relationship and exposure window is required. We aimed to provide a reference for policy formulation by estimating the exposure-lag relationship of PM2.5 on IUFD and looking for sensitive exposure windows. IUFD data was obtained from China Children Under 5 Death Surveillance Network in Linxia Hui Autonomous Prefecture from 2016 to 2020. Air pollution data and temperature data were obtained from ambient air monitoring stations and China Meteorological Data Network, respectively. The moving average is used to describe the trend and seasonality of PM2.5 exposure; the distributed lag non-linear model (DLNM) is used to estimate the exposure-lag effect; the sandwich estimators are used to correct the variance-covariance matrix; and the model selected by Akaike's Information Criterion (AIC) finally adjusts gender, temperature, and district. About 180,622 infants were enrolled in the study, including 952 IUFDs (5.27‰). The median of PM2.5 exposure is 34.08 μg/m3. There is an exposure-lag effect of PM2.5 on IUFD approximate to a wavy shape; the concentration with effect is 40-90 μg/m3; and the sensitive lag time is 1, 2, 3, 8, 9, and 10 months. The maximum RR value of the exposure-lag effect of PM2.5 on IUFD is 1.61 [95% CI 1.19, 2.19], in which the concentration of PM2.5 is 62 μg/m3, and the lag month is 9 months. In the case of less than 6 months lag, the maximum RR value of the exposure-lag effect of PM2.5 on IUFD is 1.43 [95% CI 1.24, 1.67], in which the concentration of PM2.5 is 73 μg/m3, and the lag month is 3 months. Exposure to PM2.5 concentrations above 40 μg/m3 may increase the risk of IUFD, especially in the first and third trimesters.
Collapse
Affiliation(s)
- Wenshan Yan
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mingjun Xie
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xinwei Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternal and Child Health Hospital, Linxia, 731100, People's Republic of China
| | - Juanjuan Xu
- Linxia Hui Autonomous Prefecture Maternal and Child Health Hospital, Linxia, 731100, People's Republic of China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
7
|
Sun H, Wang Y, Liu R, Yin P, Li D, Shao L. Speciation and source changes of atmospheric arsenic in Qingdao from 2016 to 2020 - Response to control policies in China. CHEMOSPHERE 2023; 313:137438. [PMID: 36464020 DOI: 10.1016/j.chemosphere.2022.137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a toxic pollutant in the atmosphere. The atmospheric As concentration is high over the East Asian continent. At present, there is less research on the long-term trend of atmospheric arsenic pollution, which is not conducive to understanding its behavior. Total suspended particulate matter (TSP) samples were collected in Qingdao in autumn and winter from 2016 to 2020 to analyze total arsenic (TAs), As(V) and As(III). The interannual variation patterns, influencing factors and health risks of arsenic concentrations in aerosols were discussed. The results showed that As(V) is the dominant species of arsenic in aerosols. The average concentration of TAs gradually decreased and the proportion of As(III) increased during autumn and winter from 2016 to 2020. The levels of TAs, As(V) and As(III) in aerosols increased during the heating period and on polluted days. Negative correlation between TAs/TSP and TSP indicated that higher concentrations of TSP in the atmosphere would reduce the content of TAs in particulate matter. The increase of secondary aerosol particles played a dilution effect. Mobile source emissions, biomass and coal combustion were main sources of atmospheric arsenic. The distribution range of large potential sources of atmospheric arsenic decreased from 2016 to 2020, and concentrated, mainly in parts of Shandong province and its offshore areas. Local sources contributed the most to atmospheric arsenic pollution in Qingdao in autumn and winter. TAs, As(V) and As(III) posed a low non-carcinogenic risk and a negligible carcinogenic risk to adults and children. This study reveals the influence of strict air pollution control policies on the speciation and source of arsenic in aerosols.
Collapse
Affiliation(s)
- Haolin Sun
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yan Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ruhai Liu
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Pingping Yin
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dou Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Long Shao
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
8
|
Lin Y, Zhang X, Sun Y, Cai Z, Fu F. Soluble arsenic species in total suspended particles and their health risk and origin implication: A case study in Taiyuan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150791. [PMID: 34619203 DOI: 10.1016/j.scitotenv.2021.150791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The inhalation is one of important exposure ways to arsenic. Traditionally, the health risk of arsenic exposure from particulate matter (PM) was assessed by using total arsenic, which may erroneously estimate the health risk of arsenic since the toxicity of arsenic depends on its chemical species and not all arsenic in PM is bio-accessible. Herein, total suspended particles (TSP) were collected from Taiyuan in China during whole year of 2018, and the species and concentrations of arsenic in TSP were investigated in order to more accurately assess the health risk of arsenic exposure from TSP and evaluate the possible sources of arsenic in TSP. Total arsenic varied within 1.16-28.4 ng/m3 with a mean value of 7.40 ng/m3, which exceeded the standard limit of China (6 ng/m3). Two arsenic species, As5+ and As3+, were detected out in soluble fractions of TSP, with As5+ as dominant species. Total arsenic, soluble arsenic and soluble As5+ in TSP revealed closed correlation each other, indicating that they may originate from similar anthropogenic and crust sources. Soluble As3+ showed no obvious correlations with total arsenic, implying that soluble As3+ has different dominant sources. The ratio of As5+/As3+ significantly varied within 1.08-32.5 and the percentages of soluble arsenic in total arsenic varied within 50%-93%, implying that arsenic in TSP of Taiyuan has multiple sources and none of them stably dominated during 2018. Non-carcinogenic risk and carcinogenic risk indicators calculated with soluble arsenic species showed significant difference to that calculated with total arsenic or soluble arsenic when TSP contained equivalent As5+ and As3+, verifying that it is necessary and more accurate to assess the health risk of arsenic exposure from TSP by using soluble arsenic species, rather than total arsenic or soluble arsenic.
Collapse
Affiliation(s)
- Yaohui Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xu Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zongwei Cai
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
9
|
Xie J, Niu XD, Xie JJ, He KQ, Shi MD, Yu SJ, Yuan CG, Liu JF. Distribution and chemical speciation of arsenic in different sized atmospheric particulate matters. J Environ Sci (China) 2021; 108:1-7. [PMID: 34465424 DOI: 10.1016/j.jes.2021.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 06/13/2023]
Abstract
The distribution and chemical speciation of arsenic (As) in different sized atmospheric particulate matters (PMs), including total suspended particles (TSP), PM10, and PM2.5, collected from Baoding, China were analyzed. The average total mass concentrations of As in TSP, PM10, and PM2.5 were 31.5, 35.3, and 54.1 µg/g, respectively, with an order of PM2.5 >PM 10 > TSP, revealing that As is prone to accumulate on fine particles. Due to the divergent toxicities of different As species, speciation analysis of As in PMs is further conducted. Most of previous studies mainly focused on inorganic arsenite (iAsIII), inorganic arsenate (iAsV), monomethylarsonate (MMA), and dimethylarsinate (DMA) in PMs, while the identification and sensitive quantification of trimethylarsine oxide (TMAO) were rarely reported. In this study, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry system was optimized for As speciation including TMAO in PMs. An anion exchange column was used to separate MMA, DMA and iAsV, while a cation exchange column to separate TMAO and iAsIII. Results showed that iAsV was the dominate component in all the samples, corresponding to a portion of 79.2% ± 9.3% of the total extractable species, while iAsIII, TMAO and DMA made up the remaining 21%. Our study demonstrated that iAsIII accounted for about 14.4% ± 11.4% of the total extracted species, with an average concentration of 1.7 ± 1.6 ng/m3. It is worth noting that TMAO was widely present in the samples (84 out of 97 samples), which supported the assumption that TMAO was ubiquitous in atmospheric particles.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiao-Dong Niu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jiao-Jiao Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Kai-Qiang He
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Meng-Dan Shi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China.
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Meharg AA, Meharg C. The Pedosphere as a Sink, Source, and Record of Anthropogenic and Natural Arsenic Atmospheric Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7757-7769. [PMID: 34048658 DOI: 10.1021/acs.est.1c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Anthropocene has led to global-scale contamination of the biosphere through diffuse atmospheric dispersal of arsenic. This review considers the sources arsenic to soils and its subsequent fate, identifying key knowledge gaps. There is a particular focus on soil classification and stratigraphy, as this is central to the topic under consideration. For Europe and North America, peat core chrono-sequences record massive enhancement of arsenic depositional flux from the onset of the Industrial Revolution to the late 20th century, while modern mitigation efforts have led to a sharp decline in emissions. Recent arsenic wet and dry depositional flux measurements and modern ice core records suggest that it is South America and East Asia that are now primary global-scale polluters. Natural sources of arsenic to the atmosphere are primarily from volcanic emissions, aeolian soil dust entrainment, and microbial biomethylation. However, quantifying these natural inputs to the atmosphere, and subsequent redeposition to soils, is only starting to become better defined. The pedosphere acts as both a sink and source of deposited arsenic. Soil is highly heterogeneous in the natural arsenic already present, in the chemical and biological regulation of its mobility within soil horizons, and in interaction with climatic and geomorphological settings. Mineral soils tend to be an arsenic sink, while organic soils act as both a sink and a source. It is identified here that peatlands hold a considerable amount of Anthropocene released arsenic, and that this store can be potentially remobilized under climate change scenarios. Also, increased ambient temperature seems to cause enhanced arsine release from soils, and potentially also from the oceans, leading to enhanced rates of arsenic biogeochemical cycling through the atmosphere. With respect to agriculture, rice cultivation was identified as a particular concern in Southeast Asia due to the current high arsenic deposition rates to soil, the efficiency of arsenic assimilation by rice grain, and grain yield reduction through toxicity.
Collapse
Affiliation(s)
- Andrew A Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| | - Caroline Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| |
Collapse
|
11
|
Can-Terzi B, Ficici M, Tecer LH, Sofuoglu SC. Fine and coarse particulate matter, trace element content, and associated health risks considering respiratory deposition for Ergene Basin, Thrace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142026. [PMID: 33254949 DOI: 10.1016/j.scitotenv.2020.142026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 05/21/2023]
Abstract
Ergene Basin is located in Thrace, Turkey, where industries are densely populated. This study aimed to determine exposure of people living in Ergene Basin (Çorlu and Çerkezköy) to fine and coarse PM, and its potentially toxic element (PTE) content by considering variation in respiratory airway deposition rates with daily activities and PM particle size by employing deposition models of International Commission on Radiological Protection and Multiple Path Particle Dosimetry. Fine and coarse PM samples were collected daily for a year at points in Çorlu and Çerkezköy representing urban and industrial settings, respectively. A questionnaire survey was conducted in the study area to obtain time-activity budgets, and associated variation was included in the health risk assessment by considering time-activity-dependent inhalation rates. The studied PTEs were Al, As, Ba, Cd, Cr, Co, Mn, Ni, Pb, and Se. The mean fine and coarse PM concentrations were measured as 23 and 14 μg/m3 in Çorlu, and 22 and 12 μg/m3 in Çerkezköy, respectively. The only PTE that exceeded acceptable risk in terms of total carcinogenic risk was Cr. Non-carcinogenic risks of all the PTEs including Cr were below the threshold. The use of deposition fractions in the health risk assessment (HRA) calculations was found to prevent overestimation of health risks by at least 91% and 87% for fine and coarse PM, respectively, compared to the regular HRA. Minor differences in risk between Çorlu and Çerkezköy suggest that urban pollution sources could be at least as influential on human health as industrial sources.
Collapse
Affiliation(s)
- Begum Can-Terzi
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Merve Ficici
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey
| | - Lokman Hakan Tecer
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey.
| | - Sait C Sofuoglu
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
12
|
Tanda S, Gingl K, Ličbinský R, Hegrová J, Goessler W. Occurrence, Seasonal Variation, and Size Resolved Distribution of Arsenic Species in Atmospheric Particulate Matter in an Urban Area in Southeastern Austria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5532-5539. [PMID: 32294376 PMCID: PMC7304873 DOI: 10.1021/acs.est.9b07707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Extensive information is available on total arsenic in particulate matter (PM), but little is known about the relative contribution of each individual species. Recent studies often focus on inorganic arsenic as arsenite and arsenate, neglecting the organoarsenicals, i.e., methylarsine, dimethylarsine, and trimethylarsine or the corresponding oxidized forms methylarsonate, dimethylarsinate, and trimethylarsine oxide, although they were already first detected in PM in the mid-1970s. This work presents results from more than 300 daily PM10 and further size-resolved atmospheric PM samples in the size range from 15 nm to 10 μm collected in an urban environment in Austria during the course of a year. An ion-exchange-HPLC (with anion and cation exchange columns) and an ICPMS/MS system were used to study the seasonal variations of total arsenic and all species known to exist in PM. Inorganic arsenic was present in significant amounts in all samples with highest concentrations during winter, but also all organoarsenicals were detected throughout the year. We show that their contribution cannot be ignored, as particles smaller than <1 μm can contain up to 35% of the water+H2O2 extractable arsenic as methylated species, but only dimethylarsinate showed a clear seasonal trend throughout the year.
Collapse
Affiliation(s)
- Stefan Tanda
- University
of Graz, Institute of Chemistry,
Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria
| | - Katharina Gingl
- University
of Graz, Institute of Chemistry,
Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria
| | - Roman Ličbinský
- Transport
Research Centre, Division of Sustainable
Transport and Transport Buildings Diagnostics, Líšeňská 33a, 619 00 Brno, Czech
Republic
| | - Jitka Hegrová
- Transport
Research Centre, Division of Sustainable
Transport and Transport Buildings Diagnostics, Líšeňská 33a, 619 00 Brno, Czech
Republic
| | - Walter Goessler
- University
of Graz, Institute of Chemistry,
Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
13
|
Savage L, Carey M, Williams PN, Meharg AA. Maritime Deposition of Organic and Inorganic Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7288-7295. [PMID: 31187619 DOI: 10.1021/acs.est.8b06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The speciation of arsenic in wet and dry deposition are ambiguously described in current literature. Presented here is a 2 year study quantifying arsenic species in atmospheric deposition collected daily from an E. Atlantic coastal, semirural site, with comparative urban locations. Inorganic arsenic (Asi) was the principal form of arsenic in wet deposition, with a mean concentration of 0.54 μmol/m3. Trimethylarsine oxide (TMAO) was found to be the dominant form of organic arsenic, determined as above the LoD in 33% of wet deposition samples with a mean concentration of 0.12 μmol/m3. Comparison with codeposited trace elements and prevailing weather trajectories indicated that both anthropogenic and marine sources contribute to atmospheric deposition. Analysis of dry deposition revealed it to be a less significant input to the land-surface for Asi, contributing 32% of that deposited by wet deposition. Dry deposition had a larger proportion of Asi than that found in wet deposition, with TMAO making up only 12% of the sum of species. In comparison, urban sites showed large spatial and temporal variations in organic arsenic deposition, indicating that local sources of methylated species may be likely and that further understanding of biogenic arsine evolution and degradation are required to adequately assess the atmospheric arsenic burden and subsequent contribution to terrestrial ecosystems.
Collapse
Affiliation(s)
- Laurie Savage
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , Northern Ireland
| | - Manus Carey
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , Northern Ireland
| | - Paul N Williams
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , Northern Ireland
| | - Andrew A Meharg
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , Northern Ireland
| |
Collapse
|
14
|
Tanda S, Ličbinský R, Hegrová J, Faimon J, Goessler W. Arsenic speciation in aerosols of a respiratory therapeutic cave: A first approach to study arsenicals in ultrafine particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1839-1848. [PMID: 30317172 DOI: 10.1016/j.scitotenv.2018.10.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Arsenic is ubiquitous in the environment and of special concern due to its varying toxicity depending on the chemical form present. Less is known about arsenic in air, especially about organoarsenicals, their sources and fate. There is also a lack of knowledge regarding arsenic in airborne nanoparticles that are critical for understanding with respect to human health effects due to their size. Here we show results from an arsenic speciation analysis in size-resolved airborne particles with aerodynamic diameters down to 15 nm. Analysis of aerosols from a respiratory therapeutic cave showed temporarily higher concentrations of trimethylarsine oxide than inorganic arsenic and substantial amounts of organoarsenicals, especially in smaller particles. Our method provides guidance for future studies investigating arsenicals in ultrafine particles and their health implications. Furthermore, the method developed can be used to widely monitor particle-bound organoarsenicals to fully understand the importance of As biovolatilization in the environment.
Collapse
Affiliation(s)
- Stefan Tanda
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria
| | - Roman Ličbinský
- Transport Research Centre, Division of Sustainable Transport and Transport Buildings Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Division of Sustainable Transport and Transport Buildings Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Jiří Faimon
- Transport Research Centre, Division of Sustainable Transport and Transport Buildings Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic; Masaryk University, Faculty of Sciences, Department of Geological Sciences, Kotlářská 2, 611 37 Brno, Czech Republic; Palacký University, Faculty of Science, Department of Geology, 17. Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
15
|
Savage L, Carey M, Hossain M, Islam MR, de Silva PMCS, Williams PN, Meharg AA. Elevated Trimethylarsine Oxide and Inorganic Arsenic in Northern Hemisphere Summer Monsoonal Wet Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12210-12218. [PMID: 28977751 DOI: 10.1021/acs.est.7b04356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For arsenic speciation, the inputs for wet deposition are not well understood. Here we demonstrate that trimethylarsine oxide (TMAO) and inorganic arsenic are the dominant species in monsoonal wet deposition in the summer Indian subcontinent, Bangladesh, with inorganic arsenic dominating, accounting for ∼80% of total arsenic in this medium. Lower concentrations of both species were found in monsoonal wet deposition in the winter Indian subcontinent, Sri Lanka. The only other species present was dimethylarsinic acid (DMAA), but this was usually below limits of detection (LoD). We hypothesize that TMAO and inorganic arsenic in monsoonal wet deposition are predominantly of marine origin. For TMAO, the potential source is the atmospheric oxidation of marine derived trimethylarsine. For inorganic arsenic, our evidence suggests entrainment of water column inorganic arsenic into atmospheric particulates. These conclusions are based on weather trajectory analysis and on the strong correlations with known wet deposition marine derived elements: boron, iodine, and selenium. The finding that TMAO and inorganic arsenic are widely present and elevated in monsoonal wet deposition identifies major knowledge gaps that need to be addressed regarding the understanding of arsenic's global cycle.
Collapse
Affiliation(s)
- Laurie Savage
- Institute for Global Food Security, Queen's University Belfast , David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland
| | - Manus Carey
- Institute for Global Food Security, Queen's University Belfast , David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland
| | - Mahmud Hossain
- Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M Rafiqul Islam
- Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - P Mangala C S de Silva
- Department of Zoology, Faculty of Science, University of Ruhuna , Matara 81170, Sri Lanka
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast , David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast , David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland
| |
Collapse
|
16
|
Pinheiro BS, Gimenes LL, Moreira AJ, de Araújo AF, Freschi CD, Freschi GPG. Speciation of As in environmental samples using the nano-TiO 2/PCHG-FAAS online system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1089-1098. [PMID: 28841354 DOI: 10.1080/10934529.2017.1340749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work presents an alternative method for arsenic speciation using the nano-TiO2 hydride generation photocatalytic hydride generation (PCHG) system, which is easily separated from the medium. Nano-TiO2 was studied as photocatalyst to reduction of arsenic species by UV-induced with formic acid and atomic absorption detection of different forms of arsenic [As (III), As (V), dimethylarsinic acid (DMA)] in environmental samples (water, sediment and plant). The effect of the average pH, the organic acid concentration, the ultraviolet irradiation time and their amount were investigated. With the presence of formic acid, the process was more effective in the reduction of arsenic when compared to other organic acids, mainly acetic acid. In addition, the photocatalytic hydride generation and flame atomic absorption spectrometry (nano-TiO2/PCHG-FAAS) increased the identification and quantification of different arsenic species. The ultrasound extraction procedure was used as a method to prepare samples with solutions of 1.0 mol L-1 phosphoric acid. The accuracy of the measurements (n = 12), calculated as relative standard deviation, was less than 8.6%. The detection limits for As (III) and As (total) in samples were 0.418 and 0.574 μg g-1, respectively.
Collapse
Affiliation(s)
- Bianca S Pinheiro
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| | - Luana L Gimenes
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| | - Ailton J Moreira
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| | - André F de Araújo
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| | - Carolina D Freschi
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| | - Gian Paulo Giovanni Freschi
- a LAFFEQ, Institute of Science and Technology , Federal University of Alfenas, UNIFAL-MG , Poços de Caldas , MG , Brazil
| |
Collapse
|
17
|
Negro Silva LF, Lemaire M, Lemarié CA, Plourde D, Bolt AM, Chiavatti C, Bohle DS, Slavkovich V, Graziano JH, Lehoux S, Mann KK. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the Mouse Model and the Role of As3mt-Mediated Methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077001. [PMID: 28728140 PMCID: PMC5744679 DOI: 10.1289/ehp806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.
Collapse
Affiliation(s)
| | - Maryse Lemaire
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | | | - Alicia M Bolt
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | - D Scott Bohle
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Vesna Slavkovich
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Joseph H Graziano
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Medicine, and
| | - Koren K Mann
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Oncology
| |
Collapse
|
18
|
Cortés-Arriagada D, Toro-Labbé A. A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene. RSC Adv 2016. [DOI: 10.1039/c6ra03813a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Density functional theory calculations show the ability of silicon embedded graphene for the removal of methylated arsenic(iii, v) pollutants.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Nucleus Millennium Chemical Processes and Catalysis
- Laboratorio de Química Teórica Computacional (QTC)
- Departamento de Química-Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
| | - Alejandro Toro-Labbé
- Nucleus Millennium Chemical Processes and Catalysis
- Laboratorio de Química Teórica Computacional (QTC)
- Departamento de Química-Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
| |
Collapse
|