1
|
Kang D, Yan Y, Han IL, Lee J, McCullough K, Li G, Wang ZL, He P, Wang D, Klaus S, Zheng P, Srinivasan V, Bott C, Gu AZ. Molecular evidence of internal carbon-driven partial denitrification in a mainstream pilot A-B system coupled with side-stream EBPR treating municipal wastewater. WATER RESEARCH 2024; 265:122247. [PMID: 39178593 DOI: 10.1016/j.watres.2024.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Achieving mainstream short-cut nitrogen removal via nitrite has become a carbon and energy efficient way, but still remains challenging for low-strength municipal wastewaters. This study integrated sidestream enhanced biological phosphorus removal system in a pilot-scale adsorption/bio-oxidation (A-B) process (named A-B-S2EBPR system) and nitrite accumulation was successfully achieved for treating the municipal wastewater. Nitrite could accumulate to 5.5 ± 0.3 mg N/L in the intermittently aerated tanks of B-stage with the nitrite accumulation ratio (NAR) of 79.1 ± 6.5 %. The final effluent concentration and removal efficiency of total inorganic nitrogen (TIN) were 4.6 ± 1.8 mg N/L and 84.9 ± 5.6 %, respectively. In-situ process performance of nitrogen conversions, routine batch nitrification/denitrification activity tests and functional gene abundance of nitrifiers collectively suggested that the nitrite accumulation was mainly caused by partial denitrification rather than out-selection of nitrite oxidizing bacteria (NOB). Moreover, the single-cell Raman spectroscopy analysis first demonstrated that there was a specific microbial population that could utilize polyhydroxyalkanoates (PHA) as the potential internal carbon source during the partial denitrification process. The integration of S2EBPR brings unique features to the conventional A-B process, such as extended anaerobic retention time, lower oxidation-reduction potential (ORP), much higher and complex volatile fatty acids (VFAs) etc., which can largely reshape the microbial communities. The dominant genera were Acinetobacter and Comamonadaceae, which accounted for (17.8 ± 15.5)% and (6.7 ± 3.4)%, respectively, while the relative abundance of conventional nitrifiers was less than 0.2%. This study provides insights into phylogenetic and phenotypic shifts of microbial communities when incorporating S2EBPR into the sustainable A-B process to achieve mainstream short-cut nitrogen removal.
Collapse
Affiliation(s)
- Da Kang
- School of Civil and Environmental Engineering, Cornell University, USA; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, PR China; Department of Environmental Engineering, Zhejiang University, PR China
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, USA
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Kester McCullough
- Hampton Roads Sanitation District, Virginia Beach, USA; Modeleau, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Zijian Leo Wang
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, PR China
| | | | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, PR China
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, USA.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, USA.
| |
Collapse
|
2
|
Woo SG, Averesch NJH, Berliner AJ, Deutzmann JS, Pane VE, Chatterjee S, Criddle CS. Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks. Appl Environ Microbiol 2024; 90:e0060324. [PMID: 39058034 PMCID: PMC11338360 DOI: 10.1128/aem.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.
Collapse
Affiliation(s)
- Sung-Geun Woo
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Nils J. H. Averesch
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Aaron J. Berliner
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Bioengineering, University of
California, Berkeley,
California, USA
| | - Joerg S. Deutzmann
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Vince E. Pane
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Chemistry, Stanford University,
Stanford, California,
USA
| | - Sulogna Chatterjee
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Craig S. Criddle
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| |
Collapse
|
3
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Yu KH, Can F, Ergenekon P. Nitric oxide and nitrite removal by partial denitrifying hollow-fiber membrane biofilm reactor coupled with nitrous oxide generation as energy recovery. ENVIRONMENTAL TECHNOLOGY 2022; 43:2934-2947. [PMID: 33779527 DOI: 10.1080/09593330.2021.1910348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen oxide (NOx) emissions cause significant impacts on the environment and must therefore be controlled even more stringently. This requires the development of cost-effective removal strategies which simultaneously create value-added by-products or energy from the waste. This study aims to treat gaseous nitric oxide (NO) by hollow-fibre membrane biofilm reactor (HFMBfR) in the presence of nitrite (NO2-) and evaluate nitrous oxide (N2O) emissions formed as an intermediate product during the denitrification process. Accumulated N2O can be utilised in methane oxidation as an oxidant to produce energy. In the first stage of the study, the HFMBfR was operated by feeding only gaseous NO as the nitrogen source. During this period, the best performance was achieved with 92% NO removal efficiency (RE). In the second stage, both NO gas and NO2- were supplied to the system, and 91% NO and 99% NO2- reduction were achieved simultaneously with the maximum N2O generation of 386 ± 31 ppm. Lower influent carbon to nitrogen (C/N) ratios, such as 4.5 and 2.0, and higher NO2--N loading rate of 158 mg N day-1 favoured N2O generation. An improved NO removal rate and N2O accumulation were seen with the increasing amount of PO43- in the medium. The 16S rDNA sequencing analysis revealed that Alicycliphilus denitrificans and Pseudomonas putida were the dominant species. The study shows that an HFMBfR can be successfully used to eliminate both NO2- and gaseous NO and simultaneously generate N2O by adjusting the system parameters such as C/N ratio, NO2- and PO43- loading.
Collapse
Affiliation(s)
- Khin Hnin Yu
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Faruk Can
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Pınar Ergenekon
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
5
|
Wu L, Wang LK, Wei W, Ni BJ. Autotrophic denitrification of NO for effectively recovering N 2O through using thiosulfate as sole electron donor. BIORESOURCE TECHNOLOGY 2022; 347:126681. [PMID: 34999195 DOI: 10.1016/j.biortech.2022.126681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
To reclaim nitrous oxide (N2O) as an energy resource economically, this study developed an autotrophic denitrification-based system with thiosulfate (S2O32-) and nitric oxide (NO) as electron donor and acceptor, respectively. NO from flue gases is absorbed on Fe(II)EDTA to overcome its low solubility in liquid phase by forming Fe(II)EDTA-NO. Short-term batch tests and long-term continuous experiments were conducted to investigate the N2O production profile and NO conversion efficiency from thiosulfate-based denitrification under varied Fe (II)EDTA-NO conditions (5-20 mM). Up to 39% of NO was converted to gaseous N2O at 20 mM Fe(II)EDTA-NO amid batch test due to the inhibition of key enzymatic activities by NO and the acidic conditions following thiosulfate oxidation. Higher Fe(II)EDTA-NO levels induced lower enzymatic activities with N2OR being suppressed harder than NOR. Microbial diversity was reduced in the continuous thiosulfate-driven Fe(II)EDTA-NO-based denitrification system. NO-resistant bacteria and sulfide-tolerant denitrifiers were enriched, facilitating NO conversion to N2O thereafter.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Wu L, Wang LK, Wei W, Song L, Ni BJ. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnol Bioeng 2021; 119:257-267. [PMID: 34693996 DOI: 10.1002/bit.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Feng Z, Gu M, Sun Y, Wu G. Potential microbial functions and quorum sensing systems in partial nitritation and anammox processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1562-1575. [PMID: 33583099 DOI: 10.1002/wer.1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Diverse microbial communities coexist in the partial nitritation-anaerobic ammonium oxidation (PNA) process, in which nitrogen metabolism and information exchange are two important microbial interactions. In the PNA process, the existence of diverse microorganisms including nitrifiers, anammox bacteria, and heterotrophs makes it challenging to achieve a balanced relationship between anaerobic ammonium oxidation bacteria and ammonia oxidizing bacteria. In this study, potential microbial functions in nitrogen conversion and acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in PNA processes were examined. Candidatus_Kuenenia and Nitrosomonas were the key functional bacteria responsible for PNA, while Nitrospira was detected as the dominant nitrite oxidizing bacteria (NOB). Heterotrophs containing nxr might play a similar function to NOB. The AHLs-QS system was an important microbial communication pathway in PNA systems. N-octanoyl-L-homoserine lactone, N-decanoyl homoserine lactone, and N-dodecanoyl homoserine lactone were the main AHLs, which might be synthesized by nitrogen converting microorganisms and heterotrophs. However, only heterotrophs had the potential to sense and degrade AHLs, such as Saccharophagus (sensing) and Leptospira (degradation). These results provide comprehensive information about the possible microbial functions and interactions in the PNA system and clues for system optimization from a microbial perspective. PRACTITIONER POINTS: ●Potential functions of anammox bacteria, nitrifiers, and heterotrophs were revealed. ●Diverse nitrogen conversion and AHLs-quorum sensing related genes were detected. ●Anammox bacteria and AOB played important roles in the AHLs synthesis process. ●Heterotrophs could sense and degrade AHLs during information exchange.
Collapse
Affiliation(s)
- Zhaolu Feng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Mengqi Gu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuepeng Sun
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guangxue Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
8
|
Zhang X, Liu Y. Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward. BIORESOURCE TECHNOLOGY 2021; 334:125231. [PMID: 33962161 DOI: 10.1016/j.biortech.2021.125231] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In current biological nitrogen removal (BNR) processes, most of ammonium in municipal wastewater is biologically transformed to nitrogen gas, making ammonium recovery impossible. Thus, this article aims to provide a holistic review with in-depth discussions on (i) current BNR processes for municipal wastewater treatment, (ii) environmental and economic costs behind ammonium in municipal wastewater, (iii) state of the art of ammonium recovery from municipal wastewater including anaerobic membrane bioreactor turning municipal wastewater to a liquid fertilizer, capturing ammonium in phototrophic biomass, waste activated sludge for land application, bioelectrochemical systems, biological conversion of ammonium to nitrous oxide as a fuel oxidizer, and adsorption, (iv) feasibility and challenge of adsorption for ammonium recovery from municipal wastewater and (v) innovative municipal wastewater reclamation processes coupled with ammonium recovery. Moving forward, municipal wastewater reclamation and resource recovery should be addressed under the framework of circular economy.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
9
|
Nie H, Dang Y, Yan H, Sun D, Holmes DE. Enhanced recovery of nitrous oxide from incineration leachate in a microbial electrolysis cell inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa. BIORESOURCE TECHNOLOGY 2021; 333:125082. [PMID: 33878502 DOI: 10.1016/j.biortech.2021.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
High concentrations of nitrous oxide were recovered from partial nitrification treated leachate in a microbial electrolysis cell (MEC) inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa. N2O conversion efficiencies > 90% were achieved when a potential of 0.8 V was applied to the MEC. The ΔnosZ strain was enriched in the 0.8 V MEC, but Achromobacter dominated the non-current control. Nitric oxide reductase genes were highly expressed by ΔnosZ cells growing in the 0.8 V MEC, consistent with enhanced nitrous oxide production rates. Concentrations of phenazine derivatives and transcripts from phenazine biosynthesis genes were also high in the 0.8 V MEC. Phenazine derivatives are known to act as electron shuttles, enhance biofilm formation, and help ward off competitors, thereby increasing the survivability of the ΔnosZ strain in the MEC. These results show that applied current stabilized growth of the ΔnosZ strain in the reactor and allowed it to sustainably generate high concentrations of nitrous oxide.
Collapse
Affiliation(s)
- Hanbing Nie
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongkang Yan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
10
|
A review of partial nitrification in biological nitrogen removal processes: from development to application. Biodegradation 2021; 32:229-249. [PMID: 33825095 DOI: 10.1007/s10532-021-09938-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
To further reduce the energy consumption in the wastewater biological nitrogen removal process, partial nitrification and its integrated processes have attracted increasing attentions owing to their economy and efficiency. Shortening the steps of ammonia oxidation to nitrate saves a large amount of aeration, and the accumulated nitrite could be reduced by denitritation or anammox, which requires less electron donors compared with denitrification. Therefore, the strategies through mainstream suppression and sidestream inhibition for the achievement of partial nitrification in recent years are reviewed. Specifically, the enrichment strategies of functional microorganisms are obtained on the basis of their growth and metabolic characteristics under different selective pressures. Furthermore, the promising developments, current application bottlenecks and possible future trends of some biological nitrogen removal processes integrating partial nitrification are discussed. The obtained knowledge would provide a new idea for the fast realization of economic, efficient and long-term stable partial nitrification and biological nitrogen removal process.
Collapse
|
11
|
Wang LK, Chen X, Wei W, Xu Q, Sun J, Mannina G, Song L, Ni BJ. Biological Reduction of Nitric Oxide for Efficient Recovery of Nitrous Oxide as an Energy Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1992-2005. [PMID: 33430585 DOI: 10.1021/acs.est.0c04037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical absorption-biological reduction based on Fe(II)EDTA is a promising technology to remove nitric oxide (NO) from flue gases. However, limited effort has been made to enable direct energy recovery from NO through production of nitrous oxide (N2O) as a potential renewable energy rather than greenhouse gas. In this work, the enhanced energy recovery in the form of N2O via biological NO reduction was investigated by conducting short-term and long-term experiments at different Fe(II)EDTA-NO and organic carbon levels. The results showed both NO reductase and N2O reductase were inhibited at Fe(II)EDTA-NO concentration up to 20 mM, with the latter being inhibited more significantly, thus facilitating N2O accumulation. Furthermore, N2O accumulation was enhanced under carbon-limiting conditions because of electron competition during short-term experiments. Up to 47.5% of NO-N could be converted to gaseous N2O-N, representing efficient N2O recovery. Fe(II)EDTA-NO reduced microbial diversity and altered the community structure toward Fe(II)EDTA-NO-reducing bacteria-dominated culture during long-term experiments. The most abundant bacterial genus Pseudomonas, which was able to resist the toxicity of Fe(II)EDTA-NO, was significantly enriched, with its relative abundance increased from 1.0 to 70.3%, suggesting Pseudomonas could be the typical microbe for the energy recovery technology in NO-based denitrification.
Collapse
Affiliation(s)
- Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- College of Environment and Resources, Fuzhou University, Fujian 350116, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Giorgio Mannina
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, 90128 Palermo, Italy
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
12
|
Wang Z, Woo SG, Yao Y, Cheng HH, Wu YJ, Criddle CS. Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. WATER RESEARCH 2020; 173:115575. [PMID: 32058151 DOI: 10.1016/j.watres.2020.115575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a two-stage process for nitrogen removal and resource recovery: in the first, ammonia is oxidized to nitrite in an aerobic bioreactor; in the second, oxidation of polyhydroxyalkanoate (PHA) drives reduction of nitrite to nitrous oxide (N2O) which is stripped for use as a biogas oxidant. Because ammonia oxidation is well-studied, tests of CANDO to date have focused on N2O production in anaerobic/anoxic sequencing batch reactors. In these reactors, nitrogen is provided as nitrite; PHA is produced from acetate or other dissolved COD, and PHA oxidation is coupled to N2O production from nitrite. In a pilot-scale study, N2O recovery was affected by COD/N ratio, total cycle time, and relative time periods for PHA synthesis and N2O production. In follow-up bench-scale studies, different reactor cycle times were used to investigate these operational parameters. Increasing COD/N ratio improved nitrite removal and increased biosolids concentration. Shortening the anaerobic phase prevented fermentation of PHA and improved its utilization. Efficient PHA synthesis and utilization in the anaerobic phase correlated with high N2O production in the anoxic phase. Shortening the anoxic phase prevented reduction of N2O to N2. By shortening both phases, total cycle time was reduced from 24 to 12 h. This optimized operation enabled increased biomass concentrations, increased N2O yields (from 71 to 87%), increased N loading rates (from 0.1 to 0.25 kg N/m3-d), and shorter hydraulic residence times (from 10 to 2 days). Long-term changes in operational performance for the different bioreactor systems tested were generally similar despite significant differences in microbial community structure. Long-term operation at short anaerobic phases selected for a glycogen-accumulating community dominated by a Defluviicoccus-related strain.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Sung-Geun Woo
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Yinuo Yao
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA.
| |
Collapse
|
13
|
Wu L, Peng L, Wei W, Wang D, Ni BJ. Nitrous oxide production from wastewater treatment: The potential as energy resource rather than potent greenhouse gas. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121694. [PMID: 31776086 DOI: 10.1016/j.jhazmat.2019.121694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O), produced from wastewater treatment, is a potent greenhouse gas and has become a global concern in recent years. However, N2O has also been commonly used as a powerful oxidant for energy generation. As such, an increasing effort has been devoted to explore the energy potential of N2O from wastewater treatment processes recently. Nevertheless, the holistic knowledge on energy recovery from nitrogen in wastewater is still lacking for facilitating its further development. Striving for sustainable wastewater treatment, this review paper aimed to give the up-to-date status on several essential aspects regarding the N2O recovery as an energy resource rather than emission as a greenhouse gas, including energy production via N2O decomposition, main biotic N2O production sources, the potential bioprocesses used for N2O recovery, and the possible N2O harvesting strategies. We then put forward perspectives for N2O recovery and future challenges to improve our understanding of the energy generation, microbial processes involved and harvesting approaches in order to potentially achieve sustainable wastewater treatment via N2O recovery.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
14
|
Zhang Z, Zhang Y, Chen Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. BIORESOURCE TECHNOLOGY 2020; 298:122444. [PMID: 31784254 DOI: 10.1016/j.biortech.2019.122444] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
To maximize energy recovery, carbon capture followed by shortcut nitrogen removal is becoming the most promising route in biological wastewater treatment. As the intermediate of microbial denitrification, nitrite could serve as a substrate for anammox bacteria, while N2O is a combustion promoter that can increase 37% energy release from CH4 than O2. Therefore, the important advances in partial denitrification (PD) that produces nitrite or N2O as the main product using inorganic or organic electron donors were critically reviewed. Specifically, the enrichment strategies of PD microorganisms were obtained by analyzing the selection pressures, metabolism, physiology, and microbiology of these microorganisms. Furthermore, some prospective and promising processes integrating PD microorganisms and the bottlenecks of current applications were discussed. The obtained knowledge would provide new insights into the upgrading of current WWTPs involving commitment to achieve nitrogen removal from wastewaters more economically and environmentally friendly.
Collapse
Affiliation(s)
- Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
15
|
Nie H, Liu X, Dang Y, Ji Y, Sun D, Smith JA, Holmes DE. Efficient nitrous oxide recovery from incineration leachate by a nosZ-deficient strain of Pseudomonas aeruginosa. BIORESOURCE TECHNOLOGY 2020; 297:122371. [PMID: 31753601 DOI: 10.1016/j.biortech.2019.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, nitrous oxide was recovered from a lab-scale moving-bed biofilm reactor (MBBR) treating partial nitrification-treated leachate supplemented with a nosZ-deficient strain of Pseudomonas aeruginosa. Batch culture tests with the nosZ-deficient strain determined that the threshold for free nitrous acid (FNA) inhibition was 0.016 mg/L and that FNA concentrations above this threshold severely inhibited denitrification and transcription of genes from the dissimilatory nitrate reduction pathway (narG, nirS, and norB). High nitrite removal and N2O conversion efficiencies (>95%) were achieved with long-term operation of this MBBR. N2O accounted for the majority of biogas (80%) produced when the MBBR was fed partial nitrification-treated leachate with high nitrite concentrations and the drainage ratio was adjusted to 30%. Bacterial community analysis revealed that the nosZ-deficient Pseudomonas strain remained metabolically active and was primarily responsible for denitrification processes in the reactor. This study presents a promising method for N2O recovery from incineration leachate.
Collapse
Affiliation(s)
- Hanbing Nie
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanan Ji
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050, United States
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
16
|
Zhang M, Gu J, Liu Y. Engineering feasibility, economic viability and environmental sustainability of energy recovery from nitrous oxide in biological wastewater treatment plant. BIORESOURCE TECHNOLOGY 2019; 282:514-519. [PMID: 30878291 DOI: 10.1016/j.biortech.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Currently, the biological wastewater treatment has been challenged by their high energy consumption. An increasing effort has been devoted to exploring energy recovery from nitrous oxide (N2O) as a powerful fuel additive rather than as an unwanted byproduct during biological nitrogen removal. This review aims to offer a holistic and critical analysis of the ideas for N2O production and energy recovery in terms of engineering feasibility, economic viability and environmental sustainability. It turns out that the recoverable energy from N2O produced in municipal wastewater is below 0.03 kWh/m3, which is insignificant compared with the in-plant energy consumption, while complicated process configuration and high cost associated with harvesting and post-purification of N2O will be incurred. An environmental risk related to global climate change due to the emission of residual dissolved N2O is also concerned. Further effort on N2O production and recovery technologies is indeed required to improve the overall energy balance.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
17
|
Chen M, Zhou XF, Yu YQ, Liu X, Zeng RJX, Zhou SG, He Z. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. ENVIRONMENT INTERNATIONAL 2019; 127:353-360. [PMID: 30954721 DOI: 10.1016/j.envint.2019.03.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
N2O (Nitrous oxide, a booster oxidant in rockets) has attracted increasing interest as a means of enhancing energy production, and it can be produced by nitrate (NO3-) reduction in NO3--loading wastewater. However, conventional denitrification processes are often limited by the lack of bioavailable electron donors. In this study, we innovatively propose a self-photosensitized nonphototrophic Thiobacillus denitrificans (T. denitrificans-CdS) that is capable of NO3- reduction and N2O production driven by light. The system converted >72.1 ± 1.1% of the NO3--N input to N2ON, and the ratio of N2O-N in gaseous products was >96.4 ± 0.4%. The relative transcript abundance of the genes encoding the denitrifying proteins in T. denitrificans-CdS after irradiation was significantly upregulated. The photoexcited electrons acted as the dominant electron sources for NO3- reduction by T. denitrificans-CdS. This study provides the first proof of concept for sustainable and low-cost autotrophic denitrification to generate N2O driven by light. The findings also have strong implications for sustainable environmental management because the sunlight-triggered denitrification reaction driven by nonphototrophic microorganisms may widely occur in nature, particularly in a semiconductive mineral-enriched aqueous environment.
Collapse
Affiliation(s)
- Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Fang Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu-Qing Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jian-Xiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Campos JL, Crutchik D, Franchi Ó, Pavissich JP, Belmonte M, Pedrouso A, Mosquera-Corral A, Val del Río Á. Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2018.00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Fergala A, AlSayed A, Khattab S, Ramirez M, Eldyasti A. Development of Methane-Utilizing Mixed Cultures for the Production of Polyhydroxyalkanoates (PHAs) from Anaerobic Digester Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12376-12387. [PMID: 30339372 DOI: 10.1021/acs.est.8b04142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fundamental components required for scaling up the production of biogas-based biopolymers can be provided through a single process, that is, anaerobic digestion (AD). In this research, the possibility of enriching methane-utilizing mixed cultures from the AD process was explored as well as their capability to accumulate polyhydroxyalkanoates (PHAs). For almost 70 days of operation in a fed-batch cyclic mode, the specific growth rate was 0.078 ± 0.005 h-1 and the biomass yield was 0.7 ± 0.08 mg-VSS/mg-CH4. Adjusting the nitrogen levels in AD centrate resulted in results comparable to those obtained with a synthetic medium. The enriched culture could accumulate up to 51 ± 2% PHB. On the other hand, when the culturing medium was supplemented with valeric acid, the enriched bacteria were able to produce polyhydroxybutyrate- co-valerate (PHBV) up to 52 ± 6% with an HV percentage of 33 ± 5%. Increasing the valeric acid concentration in the culturing medium above 100 mg/L decreased the overall amount of PHBV by 60%, whereas the number of HV units incorporated was not affected. Changing the methane-to-oxygen ratio (M/O) from 1:1 to 4:1 caused an almost 80% decline in PHB accumulation. In addition, M/O had a significant effect on the fraction composition of PHBV at different valeric acid concentrations.
Collapse
Affiliation(s)
- Ahmed Fergala
- Department of Civil Engineering, Lassonde School of Engineering , York University , Toronto , Ontario Canada M3J 1P3
| | - Ahmed AlSayed
- Department of Civil Engineering, Lassonde School of Engineering , York University , Toronto , Ontario Canada M3J 1P3
| | - Saif Khattab
- Department of Chemical Engineering , Ryerson University , 350 Victoria Street , Toronto , Ontario Canada M5B 2K3
| | - Megan Ramirez
- Department of Environmental Engineering , Universidad International , Cuernavaca , Morelos , Mexico
| | - Ahmed Eldyasti
- Department of Civil Engineering, Lassonde School of Engineering , York University , Toronto , Ontario Canada M3J 1P3
| |
Collapse
|
20
|
Giang PT, Sakalli S, Fedorova G, Tilami SK, Bakal T, Najmanova L, Grabicova K, Kolarova J, Sampels S, Zamaratskaia G, Grabic R, Randak T, Zlabek V, Burkina V. Biomarker response, health indicators, and intestinal microbiome composition in wild brown trout (Salmo trutta m. fario L.) exposed to a sewage treatment plant effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1494-1509. [PMID: 29996446 DOI: 10.1016/j.scitotenv.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/17/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Concerns about the effect of sewage treatment plant (STP) effluent on the health of freshwater ecosystems have increased. In this study, a unique approach was designed to show the effect of an STP effluent-dominated stream on native wild brown trout (Salmo trutta L.) exposed under fully natural conditions. Zivny stream is located in South Bohemia, Czech Republic. The downstream site of Zivny stream is an STP-affected site, which receives 25% of its water from Prachatice STP effluent. Upstream, however, is a minimally polluted water site and it is considered to be the control site. Native fish were collected from the upstream site, tagged, and distributed to both upstream and downstream sites. After 30, 90, and 180days, fish were recaptured from both sites to determine whether the downstream site of the Zivny stream is associated with the effects of environmental pollution. Several biomarkers indicating the oxidative stress and antioxidant enzyme activities, cytochrome P450 activity, xenoestrogenic effects, bacterial composition, and lipid composition were investigated. Additionally, polar chemical contaminants (pharmaceuticals and personal care products (PPCPs)) were quantified using polar organic chemical integrative samplers (POCIS). Fifty-three PPCPs were detected in the downstream site; 36 of those were constantly present during the 180-day investigation period. Elevated hepatic 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) (after 90days) and blood plasma vitellogenin concentrations in males were detected in fish downstream of the STP effluent during all sampling events. An increase in the fishes' total fat content was also observed, but with low levels of ω-3 fatty acid in muscle tissue. Two bacterial taxa related to activated sludge were found in the intestines of fish from downstream. Our results show that Prachatice STP is a major source of PPCPs in the Zivny stream, which has biological consequences on fish physiology.
Collapse
Affiliation(s)
- Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Sarvenaz Khalili Tilami
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Tomas Bakal
- Institute of Microbiology AS CR, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Lucie Najmanova
- Institute of Microbiology AS CR, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Sabine Sampels
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic; Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic; Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| |
Collapse
|
21
|
Myung J, Flanagan JCA, Waymouth RM, Criddle CS. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 2017; 7:118. [PMID: 28587442 PMCID: PMC5459778 DOI: 10.1186/s13568-017-0417-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/28/2017] [Indexed: 01/06/2023] Open
Abstract
The first methanotrophic syntheses of polyhydroxyalkanoates (PHAs) that contain repeating units beyond 3-hydroxybutyrate and 3-hydroxyvalerate are reported. New PHAs synthesized by methanotrophs include poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), poly(3-hydroxybutyrate-co-5-hydroxyvalerate-co-3-hydroxyvalerate) (P(3HB-co-5HV-co-3HV)), and poly(3-hydroxybutyrate-co-6-hydroxyhexanoate-co-4-hydroxybutyrate) (P(3HB-co-6HHx-co-4HB)). This was achieved from a pure culture of Methylocystis parvus OBBP where the primary substrate is methane and the corresponding ω-hydroxyalkanoate monomers are added as a co-substrate after the cells are subjected to nitrogen-limited conditions.
Collapse
|
22
|
Wu J, He S, Liang Y, Li G, Li S, Chen S, Nadeem F, Hu J. Effect of phosphate additive on the nitrogen transformation during pig manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17760-17768. [PMID: 28602001 DOI: 10.1007/s11356-017-9285-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Previous studies revealed that phosphate, as an additive to composting, could significantly reduce NH3 emission and nitrogen loss through change of pH and nitrogen fixation to form ammonium phosphate. However, few studies have explored the influence of pH change and phosphate additive on NO x--N, NH4+-N, NH3, and N2O, which are dominate forms of nitrogen in composting. In this study, the equimolar H3PO4, H2SO4, and K2HPO4 were added into pig manure composting to evaluate the effect of H+ and PO43- on nitrogen transformation. As a result, we reached the conclusion that pH displays significant influence on adsorption from PO43- to NH4+. The NH4+-N concentration in H3PO4 treatment kept over 3 g kg-1DM (dry matter) which is obviously higher than that in H2SO4 treatment, and NH4+-N concentration in K2HPO4 treatment (pH>8.5) is lower than 0.5 g kg-1DM because adsorption capacity of PO43- is greatly weakened and NH4+-N rapidly transformed to NH3-N influenced by high pH value. The N2O emission of composting is significantly correlated with incomplete denitrification of NO x--N, and PO43- addition could raise NO x--N contents to restrict denitrification and further to promote N2O emission. The study reveals the influence mechanism of phosphate additive to nitrogen transformation during composting, presents theoretical basis for additive selection in nitrogen fixation, and lays foundation for study about nitrogen circulation mechanism during composting.
Collapse
Affiliation(s)
- Juan Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Environmental Monitoring Station of Baotou, Inner Mongolia, 014060, China
| | - Shengzhou He
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Liang
- Environmental Monitoring Station of Baotou, Inner Mongolia, 014060, China
| | - Guoxue Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Song Li
- Institute of Ecology and Rural Environment Planning, Chinese Academy for Environmental Planning, Beijing, China.
| | - Shili Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Faisal Nadeem
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingwei Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
Laboratory and field studies on a new sensor for dissolved N 2O. Anal Bioanal Chem 2017; 409:4719-4727. [PMID: 28577074 DOI: 10.1007/s00216-017-0418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Nitrous oxide (N2O) is a strong greenhouse gas, whose atmospheric concentration has been continuously increasing for more than 200 years. One major source is wastewater treatment plants (WWTPs), where N2O emissions should either be minimized or pushed to levels where exploitation in biogas combustion engines becomes efficient. Both these strategies require online control of the N2O concentrations in the liquid as well as in the gas phase. For this purpose, we propose a system for membrane extraction of the gas from the liquid phase, which then allows for a subsequent gas-phase analysis, which we perform by photoacoustic spectroscopy. We compare different theoretical calculations of the extraction efficiency, based either on a straightforward mathematical model or on a finite element simulation. The comparison of results with measurements produced on a well-defined model system shows good accordance. Based on the outcome, a field probe was developed and tested on a WWTP, yielding results comparable to the one achieved by GC reference analysis. Graphical abstract Gas extraction from liquids, e.g. from a wastewater treatment plant, for online gas monitoring.
Collapse
|
24
|
Gao H, Liu M, Griffin JS, Xu L, Xiang D, Scherson YD, Liu WT, Wells GF. Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4531-4540. [PMID: 28212019 DOI: 10.1021/acs.est.6b04896] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coupled aerobic-anoxic nitrous decomposition operation (CANDO) is a promising emerging bioprocess for wastewater treatment that enables direct energy recovery from nitrogen (N) in three steps: (1) ammonium oxidation to nitrite; (2) denitrification of nitrite to nitrous oxide (N2O); and (3) N2O conversion to N2 with energy generation. However, CANDO does not currently target phosphorus (P) removal. Here, we demonstrate that denitrifying polyphosphate-accumulating organism (PAO) enrichment cultures are capable of catalyzing simultaneous biological N and P removal coupled to N2O generation in a second generation CANDO process, CANDO+P. Over 7 months (>300 cycles) of operation of a prototype lab-scale CANDO+P sequencing batch reactor treating synthetic municipal wastewater, we observed stable and near-complete N removal accompanied by sustained high-rate, high-yield N2O production with partial P removal. A substantial increase in abundance of the PAO Candidatus Accumulibacter phosphatis was observed, increasing from 5% of the total bacterial community in the inoculum to over 50% after 4 months. PAO enrichment was accompanied by a strong shift in the dominant Accumulibacter population from clade IIC to clade IA, based on qPCR monitoring of polyphosphate kinase 1 (ppk1) gene variants. Our work demonstrates the feasibility of combining high-rate, high-yield N2O production for bioenergy production with combined N and P removal from wastewater, and it further suggests a putative denitrifying PAO niche for Accumulibacter clade IA.
Collapse
Affiliation(s)
| | - Miaomiao Liu
- Department of Civil and Environmental Engineering, University of Illinoisat Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinoisat Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
25
|
Myung J, Kim M, Pan M, Criddle CS, Tang SKY. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. BIORESOURCE TECHNOLOGY 2016; 207:302-307. [PMID: 26896714 DOI: 10.1016/j.biortech.2016.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase.
Collapse
Affiliation(s)
- Jaewook Myung
- Department of Civil and Environmental Engineering, Stanford University, CA, United States
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, CA, United States
| | - Ming Pan
- Department of Materials Science and Engineering, Stanford University, CA, United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, CA, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, CA, United States.
| |
Collapse
|
26
|
Myung J, Flanagan JC, Waymouth RM, Criddle CS. Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S. The Opportunity for High-Performance Biomaterials from Methane. Microorganisms 2016; 4:E11. [PMID: 27681905 PMCID: PMC5029516 DOI: 10.3390/microorganisms4010011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/18/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) biopolymers are widely recognised as outstanding candidates to replace conventional petroleum-derived polymers. Their mechanical properties are good and can be tailored through copolymer composition, they are biodegradable, and unlike many alternatives, they do not rely on oil-based feedstocks. Further, they are the only commodity polymer that can be synthesised intracellularly, ensuring stereoregularity and high molecular weight. However, despite offering enormous potential for many years, they are still not making a significant impact. This is broadly because commercial uptake has been limited by variable performance (inconsistent polymer properties) and high production costs of the raw polymer. Additionally, the main type of PHA produced naturally is poly-3-hydroxybutyrate (PHB), which has limited scope due to its brittle nature and low thermal stability, as well as its tendency to embrittle over time. Production cost is strongly impacted by the type of the feedstock used. In this article we consider: the production of PHAs from methanotrophs using methane as a cost-effective substrate; the use of mixed cultures, as opposed to pure strains; and strategies to generate a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (PHBV), which has more desirable qualities such as toughness and elasticity.
Collapse
Affiliation(s)
- Peter James Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | - Paul Douglas Jensen
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Paul Andrew Lant
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | - Gene Tyson
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
28
|
Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. J CHEM-NY 2016. [DOI: 10.1155/2016/3796352] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed:(1)minimization through the change of operational conditions,(2)treatment of the gaseous streams, and(3)prevention by applying new configurations and processes to remove both organic matter and pollutants. In current WWTPs, to modify the operational conditions of existing units reveals itself as possibly the most economical way to decrease N2O and CO2emissions without deterioration of effluent quality. Nowadays the treatment of the gaseous streams containing the GHG seems to be a not suitable option due to the high capital costs of systems involved to capture and clean them. The change of WWTP configuration by using microalgae or partial nitritation-Anammox processes to remove ammonia from wastewater, instead of conventional nitrification-denitrification processes, can significantly reduce the GHG emissions and the energy consumed. However, the area required in the case of microalgae systems and the current lack of information about stability of partial nitritation-Anammox processes operating in the main stream of the WWTP are factors to be considered.
Collapse
|
29
|
Myung J, Galega WM, Van Nostrand JD, Yuan T, Zhou J, Criddle CS. Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). BIORESOURCE TECHNOLOGY 2015; 198:811-818. [PMID: 26454368 DOI: 10.1016/j.biortech.2015.09.094] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Methane (CH4) is a readily available feedstock for production of polyhydroxyalkanoates (PHAs). The structure and PHA production capacity of a Methylocystis-dominated methanotrophic enrichment was stable in long-term operation (>175 days) when grown exponentially under non-aseptic conditions in fill-and-draw batch cultures with ammonium as nitrogen source. Cells harvested in the draw step were incubated in the absence of nitrogen with various combinations of CH4 and valerate to assess capacity for synthesis of poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). When fed CH4 alone, only P3HB was produced. When fed CH4 plus valerate, PHBV was synthesized. The mol% of 3-hydroxyvalerate (3HV) increased with added valerate. Oxidation of CH4 was required for valerate assimilation, and the fraction of CH4 oxidized increased with increased mol% 3 HV. By separating PHA accumulation from cell replication, tailored PHA-rich biomass can be generated by addition of co-substrate, while retaining a large inoculum for the next cycle of cell division.
Collapse
Affiliation(s)
- Jaewook Myung
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Wakuna M Galega
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Tong Yuan
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford, CA 94305, USA; William and Cloy Codiga Resource Recovery Center, Stanford, CA 94305, USA.
| |
Collapse
|