1
|
Huang SW, Yao YY, Zhang HX, Guo WY, Fang MH, Wang HB, Sun YJ, Li MH. Novel mechanisms for selenite biotransformation and selenium nanoparticles biogenesis in Acinetobacter sp. SX5 isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137694. [PMID: 39986103 DOI: 10.1016/j.jhazmat.2025.137694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The high biotoxicity of selenium (Se) has spurred research into its microbial biotransformation into less toxic Se nanoparticles (SeNPs). However, the molecular mechanisms underlying microbially driven selenite transformation remain largely unknown. In the present study, Acinetobacter sp. SX5, a bacterial strain with high Se reduction capacity, was isolated from soil. The biotransformation of selenite by SX5 and the molecular mechanisms underlying the formation of SeNPs were investigated. SX5 almost completely transformed 5.0 mM selenite into intracellular and extracellular spherical SeNPs within 48 h. Fourier-transform infrared spectroscopy indicated that lipids, proteins, and carbohydrates were present on the surface of these SeNPs. Transcriptomic data subsequently revealed the significant upregulation of genes related to redox homeostasis and arsenate, pyruvate, and butanoate metabolism pathways. Gene mutation/complementation analysis confirmed that arsenate reductase (arsC) and NAD(P)-dependent alcohol dehydrogenase (dhaT1) facilitated selenite reduction in vivo. In vitro assays found that arsC and dhaT1 catalyzed Se(IV) reduction with NADPH acting as co-factor. To the best of our knowledge, this study is the first to present evidence for the participation of arsC and dhaT1 in selenite reduction in vivo, providing important insights into the molecular mechanisms underlying the biotransformation of Se(IV) and the biogenesis of SeNPs using Se-reducing bacteria.
Collapse
Affiliation(s)
- Sheng-Wei Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Yuan-Yuan Yao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Xu Zhang
- School of Food and Bioengineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Wan-Ying Guo
- School of Food and Bioengineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Ming-Hui Fang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Hai-Bo Wang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Yu-Jun Sun
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Ming-Hao Li
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
2
|
de Bruyn AMH, Heddle CB, Ings J, Gürleyük H, Brix KV, Luoma SN, Arnold MC. Development of a bioaccumulation model for selenium oxyanions and organoselenium in stream biota. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:363-374. [PMID: 39919232 DOI: 10.1093/etojnl/vgae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
Selenium (Se) occurs in natural surface waters as a variety of inorganic and organic chemical species, typically dominated by the oxyanions selenate and selenite. Organoselenium species, although hypothesized to be more bioavailable than oxyanions, have rarely been identified or quantified in natural waters and little is known about their fate or bioaccumulative potential. We studied spatial patterns of bioaccumulation in relation to aqueous Se speciation over 5 years at more than 100 locations near coal mine operations in southeast British Columbia, Canada. We used a sequential approach to fitting bioaccumulation model coefficients, first using sites with no detectable organic Se species (< 0.01 µg L-1) to describe the bioaccumulation of selenate and selenite, then applying those relationships to the remaining sites to infer the bioavailability of detectable organoselenium species. Our analysis indicated that the methylated species methylseleninic acid was the most bioaccumulative form, followed by dimethylselenoxide. Organoselenium species were associated primarily with mine sedimentation ponds and are presumed to be products of Se metabolism by algae and bacteria. Highly bioavailable organoselenium species exported from the ponds appear to be responsible for enhanced Se bioaccumulation in biota in downstream lotic reaches, with this influence diminishing with distance from ponds as concentrations decline. Our findings indicate that managing biological productivity in mine sedimentation ponds could help manage Se risk in the receiving environment.
Collapse
Affiliation(s)
| | | | | | | | - Kevin V Brix
- EcoTox LLC, Miami, FL, United States
- Rosenstiel School of Marine, Atmospheric, and Earth Science, Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Samuel N Luoma
- Institute of the Environment, University of California, Davis, CA, United States
| | | |
Collapse
|
3
|
Liu S, Abu Bakar Saddique M, Liang Y, Guan G, Su H, Hu B, Yang S, Luo X, Ren M. Microalgae: A good carrier for biological selenium enrichment. BIORESOURCE TECHNOLOGY 2025; 416:131768. [PMID: 39521184 DOI: 10.1016/j.biortech.2024.131768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Selenium is a crucial micronutrient for human well-being, with significant contributions to antioxidant, anti-ageing, and antiviral activities. However, over one billion people globally struggle with selenium deficiency, leading to a pressing need for selenium supplementation. Conventional selenium-enrich food from plants and animals provides challenges in achieving precise selenium supplementation. Thus, it is crucial to discover selenium carriers that can be cultured in a controlled environment. Multiple studies have shown that microalgae are excellent carriers for selenium enrichment due to their rapid growth, suitability for plant consumption, ease of industrialization, high efficiency in converting organic selenium, and many others. This review focuses on single-celled microalgae, comprehensively reviewing their metabolic pathway, biological transformation, and valuable forms of selenium. Additionally, it forecasts the current application status and prospects of selenium-enriched microalgae in agriculture and global human health. This review provides a reference for the industrial supply of precise selenium-rich raw materials.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Yiming Liang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Ge Guan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Haotian Su
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Beibei Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Songqi Yang
- Gansu Microalgae Technology Innovation Center, Hexi University, Zhangye 734000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China.
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China.
| |
Collapse
|
4
|
Pi K, Van Cappellen P, Li H, Gan Y, Tong L, Zhong X, Wang Y. Soil respiration induces co-emission of greenhouse gases and methylated selenium from cold-region Mollisols: Significance for selenium deficiency. ENVIRONMENT INTERNATIONAL 2024; 188:108758. [PMID: 38781702 DOI: 10.1016/j.envint.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 μg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.
Collapse
Affiliation(s)
- Kunfu Pi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada
| | - Hongyan Li
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, 100037 Beijing, China
| | - Yiqun Gan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Xinlin Zhong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
5
|
Firrincieli A, Tornatore E, Piacenza E, Cappelletti M, Saiano F, Pavia FC, Alduina R, Zannoni D, Presentato A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. CHEMOSPHERE 2024; 354:141712. [PMID: 38484991 DOI: 10.1016/j.chemosphere.2024.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Enrico Tornatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze Ed. 4, 90128, Palermo, Italy.
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128, Palermo, Italy.
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
6
|
Zhang X, Yang X, Ruan J, Chen H. Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169923. [PMID: 38199344 DOI: 10.1016/j.scitotenv.2024.169923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Applying selenium (Se) fertilizer is the only way to alleviate soil Se deficiency. Although effects of nanoselenium foliar application on plant growth and stress resistance have been extensively investigated, soil application of nanoselenium on soil microorganisms and their relationship with crop quality and soil health remains unclear. In this study, a steady-state homogeneous nanoparticle of epigallocatechin gallate Se (ESe) was synthesized, and a pot experiment was conducted applying ESe at five concentrations (0, 1, 10, 50, and 100 mg kg-1) to the tea planattion soil. The study revealed a significant increase in Se concentration in soil and tea with ESe application and identified 2.43-7.8 mg kg-1 as the safe and optimal range for soil application. Specifically, the moderate dose of ESe improved the tea quality [reduced tea polyphenols (TP), increased free amino acids (AA), and reduced TP/AA] and soil quality index (SQI). Besides, in marure tea leaves, antioxidant enzyme activities [promote catalase (CAT) superoxide dismutase (SOD), and peroxidase (POD)] increased, while level of oxidative stress [malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2-)] decreased with ESe application. The 16S rRNA of the soil bacteria showed that ESe application significantly changed the community structure of soil bacteria but did not alter the diversity of the bacteria and the abundance of dominant taxa (phylum and genus levels). Statistical analysis of the taxonomic and functional profiles (STAMP) detected 21 differential taxa (genus level), mainly low-abundance ones, under the ESe application. Linear regression and random forest (RF) modeling revealed that the low-abundance bacterial taxa were significantly correlated with SQI (R2 = 0.28, p < 0.01) and tea quality (R2 = 0.23-0.37, p < 0.01). Thus, the study's findings suggest that ESe application affects soil and tea quality by modulating the low-abundance taxa in soil. The study also highlights the crucial role of low-abundance bacterial taxa of the rhizosphere in regulating soil functions under the ESe application.
Collapse
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiangde Yang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
7
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
8
|
Klaczek CE, Goss GG, Glover CN. Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters. CONSERVATION PHYSIOLOGY 2024; 12:coad108. [PMID: 38293640 PMCID: PMC10823350 DOI: 10.1093/conphys/coad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Concentrations of selenium that exceed regulatory guidelines have been associated with coal mining activities and have been linked to detrimental effects on aquatic ecosystems and the organisms therein. Although the major route of selenium uptake in macroinvertebrates is via the diet, the uptake of waterborne selenite (HSeO3-), the prominent form at circumneutral pH, can be an important contributor to selenium body burden and thus selenium toxicity. In the current study, radiolabelled selenite (Se75) was used to characterize the mechanism of selenite uptake in the water flea, Daphnia magna. The concentration dependence (1-32 μM) of selenite uptake was determined in 1-hour uptake assays in artificial waters that independently varied in bicarbonate, chloride, sulphate, phosphate and selenate concentrations. At concentrations representative of those found in highly contaminated waters, selenite uptake was phosphate-dependent and inhibited by foscarnet, a phosphate transport inhibitor. At higher concentrations, selenite uptake was dependent on waterborne bicarbonate concentration and inhibited by the bicarbonate transporter inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid). These findings suggest that concentrations of phosphate in coal mining-affected waters could alter selenite uptake in aquatic organisms and could ultimately affect the toxic impacts of selenium in such waters.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Dr., Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
9
|
Liu Y, Schäffer A, Martinez M, Lenz M. Environmental selenium volatilization is possibly conferred by promiscuous reactions of the sulfur metabolism. CHEMOSPHERE 2023; 345:140548. [PMID: 37890793 DOI: 10.1016/j.chemosphere.2023.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Selenium deficiency affects many million people worldwide and volatilization of biogenically methylated selenium species to the atmosphere may limit Se entering the food chain. However, there is very little systematic data on volatilization at nanomolar concentrations prevalent in pristine natural environments. Pseudomonas tolaasii cultures efficiently methylated Se at these concentrations. Nearly perfect linear correlations between the spiked Se concentrations and Dimethylselenide, Dimethyldiselenide, Dimethylselenylsulfide and 2-hydroxy-3-(methylselanyl)propanoic acid were observed up to 80 nM. The efficiency of methylation increased linearly with increasing initial Se concentration, arguing that the enzymes involved are not constitutive, but methylation proceeds promiscuously via pathways of S methylation. From the ratio of all methylated Se and S species, one can conclude that between 0.30% and 3.48% of atoms were Se promiscuously methylated at such low concentrations. At concentrations higher than 640 nM (∼50 μg/L) a steep increase in methylation and volatilization was observed, which suggested the induction of specific enzymes. Promiscuous methylation at low environmental concentrations calls into question that view that methylated Se in the atmosphere is a result of a purposeful Se metabolism serving detoxification. Rather, the concentrations of methylated Se in the atmosphere may be "coincidental" i.e., determined by the activity of S cycling microorganisms. Further, a steep increase in methylation efficiency when surpassing a certain threshold concentration (here ∼50 μg/L) calls into question that natural methylation can be estimated from high Se spikes in laboratory systems, yet highlights the possibility of using bacterial methylation as an effective remediation strategy for media higher concentrated in Se.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Mathieu Martinez
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland; Wageningen University, Department of Environmental Technology, Bornse Weilanden 9, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Mendes MP, Cupe-Flores B, Liber K. Sampling method and season influence selenium dynamics at the base of a boreal lake food chain. ENVIRONMENTAL RESEARCH 2023; 234:116157. [PMID: 37196689 DOI: 10.1016/j.envres.2023.116157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Few studies have investigated the potential influence of sampling method and season on Se bioaccumulation at the base of the aquatic food chain. In particular, the effects of low water temperature associated with prolonged ice-cover periods on Se uptake by periphyton and further transfer to benthic macroinvertebrates (BMI) have been overlooked. Such information is crucial to help improve Se modelling and risk assessment at sites receiving continuous Se inputs. To date, this seems to be the first study to address these research questions. Here, we examined potential differences related to sampling methods (artificial substrates vs. grab samples) and seasons (summer vs. winter) on Se dynamics in the benthic food chain of a boreal lake (McClean Lake) receiving continuous low-level Se input from a Saskatchewan uranium milling operation. During summer 2019, water, sediment grab samples and artificial substrates were sampled from 8 sites with varying mill-treated effluent exposure. In winter 2021, water and sediment grab samples were sampled at 4 locations in McClean Lake. Water, sediment, and biological samples were subsequently analyzed for total Se concentrations. Enrichment functions (EF) in periphyton and trophic transfer factors (TTF) in BMI were calculated for both sampling methods and seasons. Periphyton collected with artificial substrates (Hester-Dendy samplers and glass plates) exhibited significantly higher mean Se concentrations (2.4 ± 1.5 μg/g d.w) than periphyton collected from the surface of sediment grab samples (1.1 ± 1.3 μg/g d.w). Selenium concentrations in periphyton sampled in winter (3.5 ± 1.0 μg/g d.w) were significantly greater than summer (1.1 ± 1.3 μg/g d.w). Nevertheless, Se bioaccumulation in BMI was similar between seasons, possibly suggesting that invertebrates are not actively feeding in winter. Further investigations are necessary to verify if peak Se bioaccumulation in BMI takes place in spring, coinciding with the reproductive and developmental windows of some fish species.
Collapse
Affiliation(s)
- Maíra P Mendes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Wang F, Li Y, Yang R, Zhang N, Li S, Zhu Z. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus. BIORESOURCE TECHNOLOGY 2023:129313. [PMID: 37302765 DOI: 10.1016/j.biortech.2023.129313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yuanhong Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Rundong Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Na Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.
| |
Collapse
|
13
|
Wu Y, Zuo C, Zhang W, Zhang L. Selenium alleviates cadmium and copper toxicity in Gracilaria lemaneiformis (rhodophyta) with contrasting detoxification strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106545. [PMID: 37120956 DOI: 10.1016/j.aquatox.2023.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se) is a beneficial element for plants, and can be used to mitigate the toxicity of heavy metals. However, the detoxification of Se in macroalgae, a crucial part of aquatic ecosystem productivity, has rarely been reported. In the present study, a red macroalga Gracilaria lemaneiformis was exposed to non-essential metal cadmium (Cd) or essential metal copper (Cu) with addition of different levels of Se. We then examined the changes in growth rate, metal accumulation, metal uptake rate, subcellular distribution, as well as thiol compound induction in this alga. Se addition alleviated Cd/Cu-induced stress in G. lemaneiformis by regulating cellular metal accumulation and intracellular detoxification. Specifically, supplementation of low-level Se displayed a significant decrease in Cd accumulation, and thus alleviated the growth inhibition induced by Cd. This may be caused by the inhibitory effect of endogenous Se instead of exogenous Se on Cd uptake. Although Se addition increased bioaccumulation of Cu in G. lemaneiformis, the important intracellular metal chelators, phytochelatins (PCs), were massively induced to alleviate Cu-induced growth inhibition. High-dose Se addition did not deteriorate but failed to normalize the growth of algae under metal stress conditions. Reduction in Cd accumulation or induction of PCs by Cu could not suppress the toxicity of Se above safe levels. Se addition also altered metal subcellular distribution in G. lemaneiformis, which might affect the subsequent metal trophic transfer. Our results demonstrated that the detoxification strategies of Se between Cd and Cu were different in macroalgae. Elucidating the protective mechanisms of Se against metal stress may help us better apply Se to regulate metal accumulation, toxicity, and transfer in aquatic environment.
Collapse
Affiliation(s)
- Yun Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Chenchen Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
14
|
Liakh I, Harshkova D, Hrouzek P, Bišová K, Aksmann A, Wielgomas B. Green alga Chlamydomonas reinhardtii can effectively remove diclofenac from the water environment - A new perspective on biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131570. [PMID: 37163898 DOI: 10.1016/j.jhazmat.2023.131570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The use of unicellular algae to remove xenobiotics (including drugs) from wastewaters is one of the rapidly developing areas of environmental protection. Numerous data indicate that for efficient phycoremediation three processes are important, i.e. biosorption, bioaccumulation, and biotransformation. Although biosorption and bioaccumulation do not raise any serious doubts, biotransformation is more problematic since its products can be potentially more toxic than the parent compounds posing a threat to organisms living in a given environment, including organisms that made this transformation. Thus, two questions need to be answered before the proper algae strain is chosen for phycoremediation, namely what metabolites are produced during biotransformation, and how resistant is the analyzed strain to a mixture of parent compound and metabolites that appear over the course of culture? In this work, we evaluated the remediation potential of the model green alga Chlamydomonas reinhardtii in relation to non-steroidal anti-inflammatory drugs (NSAIDs), as exemplified by diclofenac. To achieve this, we analysed the susceptibility of C. reinhardtii to diclofenac as well as its capability to biosorption, bioaccumulation, and biotransformation of the drug. We have found that even at a relatively high concentration of diclofenac the algae maintained their vitality and were able to remove (37.7%) DCF from the environment. A wide range of phase I and II metabolites of diclofenac (38 transformation products) was discovered, with many of them characteristic rather for animal and bacterial biochemical pathways than for plant metabolism. Due to such a large number of detected products, 18 of which were not previously reported, the proposed scheme of diclofenac transformation by C. reinhardtii not only significantly contributes to broadening the knowledge in this field, but also allows to suggest possible pathways of degradation of xenobiotics with a similar structure. It is worth pointing out that a decrease in the level of diclofenac in the media observed in this study cannot be fully explained by biotransformation (8.4%). The mass balance analysis indicates that other processes (total 22%), such as biosorption, a non-extractable residue formation, or complete decomposition in metabolic cycles can be involved in the diclofenac disappearance, and those findings open the prospects of further research.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Darya Harshkova
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
15
|
Lown L, Vernaz JE, Dunham-Cheatham SM, Gustin MS, Hiibel SR. Phase partitioning of mercury, arsenic, selenium, and cadmium in Chlamydomonas reinhardtii and Arthrospira maxima microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121679. [PMID: 37088257 DOI: 10.1016/j.envpol.2023.121679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
As the global human population increases, demand for protein will surpass our current production ability without an increase in land use or intensification. Microalgae cultivation offers a high yield of protein, and utilization of wastewater from municipal or agricultural sources in place of freshwater for microalgae aquaculture may increase the sustainability of this practice. However, wastewater from municipal and agricultural sources may contain contaminants, such as mercury (Hg), cadmium (Cd), selenium (Se), and arsenic (As). Association of these elements with algal biomass may present an exposure risk to product consumers, while volatilization may present an exposure hazard to industry workers. Thus, the partitioning of these elements should be evaluated before wastewater can be confidently used in an aquaculture setting. This study explored the potential for exposure associated with Arthrospira maxima and Chlamydomonas reinhardtii aquaculture in medium contaminated with 0.33 μg Hg L-1, 60 μg As L-1, 554 μg Se L-1, and 30 μg Cd L-1. Gaseous effluent from microalgae aquaculture was analyzed for Hg, As, Se, and Cd to quantify volatilization. A mass balance approach was used to describe the partitioning of elements between biomass, medium, and gas phases at the end of exponential growth. Contaminants were recovered predominantly in medium and biomass, regardless of microalgae strain. In the case of Hg, 48 ± 2% was associated with A. maxima biomass and 55 ± 8% with C. reinhardtii when Hg was present as the only contaminant, but this increased to 85 ± 11% in C. reinhardtii biomass when As, Se, and Cd were also present. A small and highly variable abiotic volatilization of Hg was observed in the gas phase of both A. maxima and C. reinhardtii cultures. Evidence presented herein suggests that utilizing wastewater containing Hg, Cd, Se, and As for microalgae cultivation may present health hazards to consumers.
Collapse
Affiliation(s)
- Livia Lown
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA
| | - Joshua E Vernaz
- Chemical and Materials Engineering, University of Nevada, Reno, USA
| | | | - Mae S Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA
| | - Sage R Hiibel
- Chemical and Materials Engineering, University of Nevada, Reno, USA.
| |
Collapse
|
16
|
Pi K, Van Cappellen P, Tong L, Gan Y, Wang Y. Loss of Selenium from Mollisol Paddy Wetlands of Cold Regions: Insights from Flow-through Reactor Experiments and Process-Based Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6228-6237. [PMID: 37026466 DOI: 10.1021/acs.est.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mollisols are critical agricultural resources for securing global food supply. Due to its health importance, selenium (Se) fate in the Mollisols attracts growing concerns. Land use change from conventional drylands to paddy wetlands impacts Se bioavailability in the vulnerable Mollisol agroecosystems. The underlying processes and mechanisms however remain elusive. Here, results of flow-through reactor experiments with paddy Mollisols from northern cold-region sites indicate that continuous flooding with surface water for 48 d induced redox zonation that facilitated the loss of Mollisol Se by up to 51%. Further process-based biogeochemical modeling suggests largest degradation rates of dissolved organic matter (DOM) in 30 cm deep Mollisols that contained the highest-level labile DOM and organic-bound Se. Electron shunting from degradation of Se-bearing DOM coupled to reductive dissolution of Se-adsorbed Fe oxides accounts mainly for Se(IV) release into the pore water. Consequent changes in DOM molecular composition make the reservoir of organic-bound Se vulnerable to flooding-induced redox zonation and likely enhance Se loss through destruction of thiolated Se and emission of gaseous Se from the Mollisol layer. This study highlights a neglected scenario where the speciation-driven loss of bioavailable Se from the paddy wetlands can be a significant consequence in the cold-region Mollisol agroecosystems.
Collapse
Affiliation(s)
- Kunfu Pi
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
- Water Institute, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
17
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Proteomics Provide Insight into the Interaction between Selenite and the Microalgae Dunaliella salina. Processes (Basel) 2023. [DOI: 10.3390/pr11020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Dunaliella salina is currently one of the most commercially valuable microalgae species in the world. In reponse to selenite, D. salina is a microalgae with a high selenium content, thereby increasing its value, which is crucial for increasing its economic value as a nutrional supplement. However, the effects of selenite on D. salina are still unclear, and its molecular mechanism of the response to selenite stress is also elusive. Here, in order to study the effects of selenite on D. salina and the corresponding regulatory mechanism, we characterized the physiological phenotypes of D. salina under different selenite concentrations and carried out a quantitative proteomic study. The results showed that the effective concentration for 50% growth inhibition (EC50) of the algae was 192.7 mg/L after 11 days of cultivation. When selenite concentration was lower than 100 mg/L, selenite did not hinder the growth of D. salina in the early stage, but shortened the cell growth cycle, although cell growth was significantly inhibited when the concentration of selenium was higher than 250 mg/L. Bioaccumulation experiments showed that the content of intracellular selenium in D. salina cells reached the highest level under the treatment with 50 mg/L selenite, and the contents of total selenium and organic selenium in D. salina cells were 499.77 μg/g and 303.01 μg/g (dry weight), respectively. Proteomic analysis revealed that a series of proteins related to stress responses, amino acid metabolism and energy production pathways were profoundly altered by the selenite treatment. Glutathione peroxidase (GPX7), a selenium-containing protein, was identified in the group given the selenium treatment. Moreover, proteins involved in photoreactions and oxidative phosphorylation were significantly upregulated, indicating that D. salina effectively balanced the energy demand and energy production under selenite stress. This study provides novel insights into the responses to selenite of D. salina, a microalgae candidate as a biological carrier of selenium and would be helpful for the development of industrial strains rich in selenium.
Collapse
|
19
|
Guimarães BO, Van der Graaf Y, Kunert I, Wijffels RH, Barbosa MJ, D'Adamo S. Effect of phosphorus limitation on Se uptake efficiency in the microalga Nannochloropsis oceanica. BIORESOURCE TECHNOLOGY 2023; 367:128239. [PMID: 36332861 DOI: 10.1016/j.biortech.2022.128239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are considered an efficient accumulator and promising source of Se for feed additive purposes. This study aimed at investigating, for the first time, the effect of phosphorus limitation on Se accumulation and uptake efficiency in N.oceanica. A range of phosphorus concentrations (0-2470 µM) were tested in either the presence or absence of sodium selenite (0, 5, 30 µM). Se accumulation was increased up to 16-fold and Se uptake efficiency was increased up to 3.6-fold under phosphorus growth-limiting concentrations. N.oceanica was then cultivated in a 1.8L flat-panel photobioreactor in batch operation under two phosphorus growth-limiting concentrations (250 and 750 µM) where the accumulation of Se in the microalgal biomass, as well as its presence in the spent medium were analysed. This study is the first to investigate the effect of phosphorus limitation for increasing Se accumulation in microalgae, and to prevent the release of Se in wastewater.
Collapse
Affiliation(s)
- Bárbara O Guimarães
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Youp Van der Graaf
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Isabelle Kunert
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H Wijffels
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Maria J Barbosa
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Sarah D'Adamo
- Wageningen University and Research (WUR), Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
20
|
Zhang G, Chen X, Li F, Que W, Qian J, Fang J, Ding T. Effects of environmental factors on selenite volatilization by freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158539. [PMID: 36075407 DOI: 10.1016/j.scitotenv.2022.158539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The accumulation and volatilization of Se by algae in surface water are important parts of the biogeochemical cycle of selenium but are also variable and complex. Experiments with 5-8 day of exposure under various temperatures, solution pH values, lighting regimes, and different initial Se concentrations were carried out to study the change in Se accumulation and volatilization behavior of algae. The study showed that algae accumulated and volatilized more Se under harsher environments, such as a lower pH, a shorter lighting time, and a higher Se load. The maximum average daily volatilization rate of Se was 234 ± 23 μg Se (g algae·d)-1, much greater than the values of previous studies. Therefore, in some Se-polluted water environments, when the pH of lakes is acidic, Se emissions to the atmosphere are much higher than currently estimated. Both the accumulation rate (Raccu) and volatilization rate (Rvol) of Se by algae were significantly negatively correlated with final pH, final OD, and residual Se in solution (Cres). Moreover, multiple linear regression equations were used to estimate the rates of Se accumulation and volatilization. This study provides theoretical basis data to quantify the contribution of selenium metabolism by algae to selenium biogeochemistry and a technical reference for the treatment of Se-containing wastewater.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Weiyan Que
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Junjie Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jingjing Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
21
|
Guimarães BO, Villarreal-Toribio B, García-Barrera T, Arias-Borrego A, Gremmen P, Wijffels RH, Barbosa MJ, D'Adamo S. Effect of sulphur on selenium accumulation and speciation in Nannochloropsis oceanica. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
22
|
Oldach MD, Graves SD, Janz DM. Differential selenium uptake by periphyton in boreal lake ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119304. [PMID: 35430311 DOI: 10.1016/j.envpol.2022.119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The largest and most variable step of selenium (Se) assimilation into aquatic ecosystems is the rapid uptake of aqueous Se by primary producers. These organisms can transfer more harmful forms of Se to higher trophic levels via dietary pathways, although much uncertainty remains around this step of Se assimilation due to site-specific differences in water chemistry, hydrological and biogeochemical characteristics, and community composition. Thus, predictions of Se accumulation are difficult, and boreal lake systems are relatively understudied. To address these knowledge gaps, five static-renewal field experiments were performed to examine the bioaccumulation of low, environmentally relevant concentrations of Se, as selenite, by naturally grown periphyton from multiple boreal lakes. Periphyton rapidly accumulated Se at low aqueous Se concentrations, with tissue Se concentrations ranging from 8.0 to 24.9 μg/g dry mass (dm) in the 1-2 μg Se/L treatments. Enrichment functions ranged from 2870 to 12 536 L/kg dm in the 4 μg Se/L treatment, to 11 867-22 653 L/kg dm in the 0.5 μg Se/L treatment among lakes. Periphyton Se uptake differed among the five study lakes, with periphyton from mesotrophic lakes generally accumulating more Se than periphyton from oligotrophic lakes. Higher proportions of charophytes and greater dissolved inorganic carbon in more oligotrophic lakes corresponded to less periphyton Se uptake. Conversely, increased proportions of bacillariophytes and total dissolved phosphorus in more mesotrophic lakes corresponded to greater periphyton Se uptake. Periphyton community composition and water chemistry variables were correlated, limiting interpretation of differences in periphyton Se accumulation among lakes. The results of this research provide insight on the biodynamics of Se assimilation at the base of boreal lake food webs at environmentally relevant concentrations, which can potentially inform ecological risk assessments in boreal lake ecosystems in North America.
Collapse
Affiliation(s)
- Mikayla D Oldach
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Stephanie D Graves
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M Janz
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada; Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Jian L, Zhang T, Lin L, Xiong J, Shi H, Wang J. Transfer and accumulation of trace elements in seawater, sediments, green turtle forage, and eggshells in the Xisha Islands, South China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50832-50844. [PMID: 35239116 DOI: 10.1007/s11356-022-19354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Chemical pollutants present a substantial threat to the survival of the green turtle (Chelonia mydas). In this study, the concentrations of 12 trace elements (TEs) in seawater, sediments, and green turtle forage and eggshells from the Xisha Islands in the South China Sea, along with their patterns of transfer and accumulation, were identified. The results revealed that the median TE concentrations in seawater and sediments were lower than the first-grade limit values of the national standard in China, indicating a low ecological risk. The concentrations (μg·g-1) of TEs in forage ranged from 0.05-0.69, 3.43-14.4, 157-2391, 27.9-124, 2.05-9.39, 0.30-9.78, 2.01-80.50, 0.18-5.76, 0.06-0.98, 2.00-18.4, 0.02-0.24, and 0.01-0.09 for Cr, Mn, Sr, Fe, Ni, Cu, Zn, Se, Cd, As, Pb, and Hg, respectively. Seawater, sediments, turtle forage, and eggshells exhibited different TE profiles, which were driven by Hg, Sr, Cr, and Pb in seawater and sediments; Fe and Ni in sediments; Cd and As in forage; and Zn, Se, and Cu in eggshells. The contents of Cu, Zn, and Se increased slightly with trophic level, indicating that they were transferred through dietary pathways. Although Cd and As appeared to bioaccumulate in green turtle forage, it was not transferred to their eggshells, which may be related to the excretion and metabolism process in the mother's body. Thus, eggshells may be a poor bioindicator for the exposure of female green turtles to these toxic elements.
Collapse
Affiliation(s)
- Li Jian
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Jinfang Xiong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
24
|
Žižić M, Stanić M, Aquilanti G, Bajuk-Bogdanović D, Branković G, Rodić I, Živić M, Zakrzewska J. Biotransformation of selenium in the mycelium of the fungus Phycomyces blakesleeanus. Anal Bioanal Chem 2022; 414:6213-6222. [PMID: 35759022 DOI: 10.1007/s00216-022-04191-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se+4 indicate the formation of SeNPs and volatile methylated selenium compounds. SEM-EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se+4 led to the predominant formation of Se-S-containing organic molecules, while 10 mM Se+4 induced production of biomethylated selenide (Se-2) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se8 chains, together with trigonal Se polymer chain, Se8 and Se6 ring structures, were detected by Raman spectroscopy.
Collapse
Affiliation(s)
- Milan Žižić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Marina Stanić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | | | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Goran Branković
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Ivanka Rodić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
25
|
Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res 2022; 55:17. [PMID: 35382884 PMCID: PMC8981825 DOI: 10.1186/s40659-022-00378-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
Collapse
Affiliation(s)
- Janine Kessi
- Until 2018 - Dept of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Raymond J. Turner
- Dept of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Davide Zannoni
- Dept of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Quantitative proteome analysis revealed metabolic changes in Arthrospira platensis in response to selenium stress. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
O. Guimarães B, de Boer K, Gremmen P, Drinkwaard A, Wieggers R, H. Wijffels R, J. Barbosa M, D'Adamo S. Selenium enrichment in the marine microalga Nannochloropsis oceanica. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Zhou C, Huang JC, Gan X, He S, Zhou W. Selenium uptake, volatilization, and transformation by the cyanobacterium Microcystis aeruginosa and post-treatment of Se-laden biomass. CHEMOSPHERE 2021; 280:130593. [PMID: 33932907 DOI: 10.1016/j.chemosphere.2021.130593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3-100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2-33.0%, with 19.1-33.2% as elemental Se, while organo-Se remained dominant (93.6-95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0-70.5%) predominant in the residue.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Li J, Otero-Gonzalez L, Michiels J, Lens PNL, Du Laing G, Ferrer I. Production of selenium-enriched microalgae as potential feed supplement in high-rate algae ponds treating domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 333:125239. [PMID: 33940503 DOI: 10.1016/j.biortech.2021.125239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
This study assessed the selenium (Se) removal efficiency of two pilot-scale high-rate algae ponds (HRAPs) treating domestic wastewater and investigated the production of Se-enriched microalgae as potential feed supplement. The HRAP-Se had an average Se, NH4+-N, total phosphorus and COD removal efficiency of, respectively, 43%, 93%, 77%, and 70%. Inorganic Se taken up by the microalgae was mainly (91%) transformed to selenoamino acids, and 49-63% of Se in the Se-enriched microalgae was bioaccessible for animals. The crude protein content (48%) of the microalgae was higher than that of soybeans, whereas the essential amino acid content was comparable. Selenium may induce the production of the polyunsaturated fatty acids omega-3 and omega-6 in microalgae. Overall, the production of Se-enriched microalgae in HRAPs may offer a promising alternative for upgrading low-value resources into high-value feed supplements, supporting the drive to a circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601 DA Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Zhu TT, Tian LJ, Yu SS, Yu HQ. Roles of cation efflux pump in biomineralization of cadmium into quantum dots in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125248. [PMID: 33951868 DOI: 10.1016/j.jhazmat.2021.125248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a typical and widely present toxic heavy metals in environments. Biomineralization of Cd ions could alleviate the toxicity and produce valuable products in certain waste streams containing selenite. However, the impact of the intrinsic Cd(II) efflux system on the biotransformation process remains unrevealed. In this work, the significance of the efflux system on Cd biomineralization was evaluated by constructing engineered Escherichia coli strains, including ΔzntA with suppressed Cd(II) efflux system and pYYDT-zntA with strengthened Cd(II) efflux system. Compared to the wild type (WT), 20% more Cd ions were accumulated in ΔzntA and 17% less were observed in pYYDT-zntA in the presence of selenite as determined by inductively coupled plasma atomic emission spectrometer. Through combination with X-ray absorption fine structure analysis, it was discovered that 50% higher production of CdSxSe1-x quantum dots (QDs) was achieved in the ΔzntA cells than that in the WT cells. Moreover, the ΔzntA cells exhibited the same viability as the WT cells and the pYYDT-zntA cells because accumulated Cd ions were transformed into biocompatible QDs. In addition, the biosynthesized QDs had a uniform particle size (3.82 ± 0.53 nm) and a long fluorescence lifetime (45.6 ns), which could potentially be utilized for bio-imaging. These results not only elucidate the significance of Cd(II) efflux system in the biotransformation of Cd ions and selenite, but also provide a promising way to recover Cd and Se as valuable products in certain waste streams.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Sulfur Amino Acid Status Controls Selenium Methylation in Pseudomonas tolaasii: Identification of a Novel Metabolite from Promiscuous Enzyme Reactions. Appl Environ Microbiol 2021; 87:e0010421. [PMID: 33811024 PMCID: PMC8174768 DOI: 10.1128/aem.00104-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. “Bottom-up” models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions—if they occur in the environment—will help to improve atmospheric Se models and thus predict drivers of Se deficiency.
Collapse
|
32
|
Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. BIOSENSORS-BASEL 2021; 11:bios11040115. [PMID: 33920129 PMCID: PMC8069876 DOI: 10.3390/bios11040115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
Selenium (Se) is an element with many commercial applications as well as an essential micronutrient. Dietary Se has antioxidant properties and it is known to play a role in cancer prevention. However, the general population often suffers from Se deficiency. Green algae, such as Chlorella vulgaris, cultivated in Se-enriched environment may be used as a food supplement to provide adequate levels of Se. We used Raman microspectroscopy (RS) for fast, reliable, and non-destructive measurement of Se concentration in living algal cells. We employed inductively coupled plasma-mass spectrometry as a reference method to RS and we found a substantial correlation between the Raman signal intensity at 252 cm−1 and total Se concentration in the studied cells. We used RS to assess the uptake of Se by living and inactivated algae and demonstrated the necessity of active cellular transport for Se accumulation. Additionally, we observed the intracellular Se being transformed into an insoluble elemental form, which we further supported by the energy-dispersive X-ray spectroscopy imaging.
Collapse
|
33
|
Zhang B, Duan G, Fang Y, Deng X, Yin Y, Huang K. Selenium(Ⅳ) alleviates chromium(Ⅵ)-induced toxicity in the green alga Chlamydomonas reinhardtii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116407. [PMID: 33433342 DOI: 10.1016/j.envpol.2020.116407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The wide range of industrial applications of chromium (Cr) has led to an increasing risk of water contamination by Cr(Ⅵ). However, efficient methods to remove or decrease the toxicity of Cr(Ⅵ) in situ are lacking. The main aim of this study was to investigate the mechanisms by which selenite alleviates chromium(Ⅵ)-induced toxicity in Chlamydomonas reinhardtii. Our results showed that K2Cr2O7 had toxic effects on both the structure and physiology of C. reinhardtii in a dose-dependent manner. Adding selenite significantly alleviated chromium accumulation and toxicity in cells. RNA-seq data showed that the expression level of selenoproteins such as SELENOH was significantly increased. Both SELENOH-amiRNA knockdown mutants and selenoh insertional mutant produced more reactive oxygen species (ROS) and grew slower than the wild type, suggesting that SELENOH can reduce chromium toxicity by decreasing the levels of ROS produced by Cr(Ⅵ). We also demonstrated that selenite can reduce the absorption of Cr(Ⅵ) by cells but does not affect the process of Cr(Ⅵ) adsorption and efflux. This information on the molecular mechanism by which selenite alleviates Cr(Ⅵ) toxicity can be used to increase the bioremediation capacity of algae and reduce the human health risks associated with Cr(Ⅵ) toxicity.
Collapse
Affiliation(s)
- Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangqian Duan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yingying Fang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yongguang Yin
- University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
34
|
Zhu TT, Tian LJ, Yu HQ. Phosphate-Suppressed Selenite Biotransformation by Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10713-10721. [PMID: 32786571 DOI: 10.1021/acs.est.0c02175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biotransformation of selenite to valuable elemental selenium nanoparticles (Se0) is a promising avenue to remediate seleniferous environments and simultaneously recover selenium (Se). However, the underlying oxyanion competition and selenite transformation mechanism in prokaryotes are poorly understood. In this work, the impacts of phosphate on selenite uptake and transformation were elucidated with Escherichia coli and its mutant deficient in phosphate transport as model microbial strains. Selenite uptake was inhibited by phosphate in E. coli. Moreover, the transformation of internalized Se was shifted from Se0 to toxic organo-Se with elevated phosphate levels, as evidenced by the linear combination fit analysis of the Se K-edge X-ray absorption near-edge structure. Such a phosphate-regulated selenite biotransformation process was mainly assigned to the competitive uptake of phosphate and selenite, which was primarily mediated by a low affinity phosphate transporter (PitA). Under phosphate-deficient conditions, the cells not only produced abundant Se0 nanoparticles but also maintained good cell viability. These findings provide new insights into the phosphate-regulated selenite biotransformation by prokaryotes and contribute to the development of new processes for bioremediating Se-contaminated environments, as well as bioassembly of Se0.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
35
|
Zou H, Huang JC, Zhou C, He S, Zhou W. Mutual effects of selenium and chromium on their removal by Chlorella vulgaris and associated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138219. [PMID: 32251888 DOI: 10.1016/j.scitotenv.2020.138219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The release of selenium (Se) and chromium (Cr) into the environment from anthropogenic activities has posed a hazard to aquatic ecosystems. In this study, we used Chlorella vulgaris for Se/Cr bioremediation and evaluated their mutual effects on the removal efficiency. Our results found C. vulgaris highly effective in removing selenite-Se(IV) (49.5 ± 1.9%), selenate-Se(VI) (93.0 ± 0.5%), chromic nitrate-Cr(III) (89.0 ± 3.2%) and dichromate-Cr(VI) (88.1 ± 1.3%) over a 72 h period. Cr(VI) significantly impeded Se removal, particularly for selenate, due to competition between both for algal uptake, whereas Cr(III) obviously enhanced Se removal, increasing Se volatilization by ~29%. Similarly, Se significantly increase Cr removal rates, with a maximum of 94.6 ± 0.2% for the algal co-exposed to Se(IV) and Cr(III). To reduce residual pollutants in the alga, we applied combustion as a post-treatment to burn off >99% of the biomass Se for all Se treatments, whereas most of the biomass Cr (54.7-81.6%) remained in the ash at significantly higher levels (~7430 μg Cr/g DW). For toxicity, our speciation analysis found organo-Se (SeCys and SeMet) dominant in the alga exposed to Se, particularly selenite. No Cr(VI) but Cr(III) forms were detected in all Cr-exposed alga. Elemental Se disappeared from all Se-exposed alga in the presence of Cr(VI), while Se resulted in the emergence of Cr-acetate in all Cr(III)-treated alga. After combustion, mineral Se, particularly elemental Se dominated most of the ash; likewise, elemental Cr, along with Cr2O3, was found in all the ash. Overall, our research would contribute to developing a low ecotoxic algal treatment system for Se/Cr contaminated water.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
36
|
Zhou C, Huang JC, Zheng L, He S, Zhou W. Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114288. [PMID: 32155550 DOI: 10.1016/j.envpol.2020.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9-74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3-100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40-87.24 μg Cr/g DW) or adults (19.41-50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7-94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1-1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China.
| | - Lixin Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| |
Collapse
|
37
|
Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism. PLANTS 2020; 9:plants9040528. [PMID: 32325841 PMCID: PMC7238072 DOI: 10.3390/plants9040528] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 01/11/2023]
Abstract
Selenium (Se) uptake by primary producers is the most variable and important step in determining Se concentrations at higher trophic levels in aquatic food webs. We gathered data available about the Se bioaccumulation at the base of aquatic food webs and analyzed its relationship with Se concentrations in water. This important dataset was separated into lotic and lentic systems to provide a reliable model to estimate Se in primary producers from aqueous exposure. We observed that lentic systems had higher organic selenium and selenite concentrations than in lotic systems and selenate concentrations were higher in lotic environments. Selenium uptake by algae is mostly driven by Se concentrations, speciation and competition with other anions, and is as well influenced by pH. Based on Se species uptake by algae in the laboratory, we proposed an accurate mechanistic model of competition between sulfate and inorganic Se species at algal uptake sites. Intracellular Se transformations and incorporation into selenoproteins as well as the mechanisms through which Se can induce toxicity in algae has also been reviewed. We provided a new tool for risk assessment strategies to better predict accumulation in primary consumers and consequently to higher trophic levels, and we identified some research needs that could fill knowledge gaps.
Collapse
|
38
|
Rosenfeld CE, Sabuda MC, Hinkle MAG, James BR, Santelli CM. A Fungal-Mediated Cryptic Selenium Cycle Linked to Manganese Biogeochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3570-3580. [PMID: 32083848 DOI: 10.1021/acs.est.9b06022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selenium (Se) redox chemistry is a determining factor for its environmental toxicity and mobility. Currently, millions of people are impacted by Se deficiency or toxicity, and in geologic history, several mass extinctions have been linked to extreme Se deficiency. Importantly, microbial activity and interactions with other biogeochemically active elements can drastically alter Se oxidation state and form, impacting its bioavailability. Here, we use wet geochemistry, spectroscopy, and electron microscopy to identify a cryptic, or hidden, Se cycle involving the reoxidation of biogenic volatile Se compounds in the presence of biogenic manganese [Mn(III, IV)] oxides and oxyhydroxides (hereafter referred to as "Mn oxides"). Using two common environmental Ascomycete fungi, Paraconiothyrium sporulosum and Stagonospora sp., we observed that aerobic Se(IV and VI) bioreduction to Se(0) and Se(-II) occurs simultaneously alongside the opposite redox biomineralization process of mycogenic Mn(II) oxidation to Mn oxides. Selenium bioreduction produced stable Se(0) nanoparticles and organoselenium compounds. However, mycogenic Mn oxides rapidly oxidized volatile Se products, recycling these compounds back to soluble forms. Given their abundance in natural systems, biogenic Mn oxides likely play an important role mediating Se biogeochemistry. Elucidating this cryptic Se cycle is essential for understanding and predicting Se behavior in diverse environmental systems.
Collapse
Affiliation(s)
- Carla E Rosenfeld
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| | - Margaret A G Hinkle
- Department of Geology, Washington & Lee University, Lexington, Virginia 24450, United States
| | - Bruce R James
- Department of Environmental Science & Technology, University of Maryland - College Park, College Park, Maryland 20742, United States
| | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| |
Collapse
|
39
|
Fischer S, Krause T, Lederer F, Merroun ML, Shevchenko A, Hübner R, Firkala T, Stumpf T, Jordan N, Jain R. Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121146. [PMID: 31771888 DOI: 10.1016/j.jhazmat.2019.121146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the impact of microorganisms on the mobility of selenium (Se) is important for predicting the fate of toxic Se in the environment and improving wastewater treatment technologies. The bacteria strain Bacillus safensis JG-B5T, isolated from soil in a uranium mining waste pile, can influence the Se speciation in the environment and engineered systems. However, the mechanism and conditions of this process remain unknown. This study found that the B. safensis JG-B5T is an obligate aerobic microorganism with an ability to reduce 70% of 2.5 mM selenite to produce red spherical biogenic elemental selenium nanoparticles (BioSeNPs). Only extracellular production of BioSeNPs was observed using transmission electron microscopy. The two-chamber reactor experiments, genome analysis and corona proteins identified on BioSeNPs suggested that the selenite reduction process was primarily mediated through membrane-associated proteins, like succinate dehydrogenase. Extracellular presence and low colloidal stability of BioSeNPs as indicated by ζ-potential measurements, render B. safensis JG-B5T an attractive candidate in wastewater treatment as it provides easy way of recovering Se while maintaining low Se discharge. As this microorganism decreases Se mobility, it will affect Se bioavailability in the environment and decreases its toxicity.
Collapse
Affiliation(s)
- Sarah Fischer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas Krause
- Technische Universität Dresden, Institute of Microbiology, Chair of Molecular Biotechnology, 01062 Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mohamed L Merroun
- University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada, Spain
| | - Anna Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Tamas Firkala
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Rohan Jain
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
40
|
Mylenko M, Vu DL, Kuta J, Ranglová K, Kubáč D, Lakatos G, Grivalský T, Caporgno MP, da Câmara Manoel JA, Kopecký J, Masojídek J, Hrouzek P. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1654-1665. [PMID: 31935099 DOI: 10.1021/acs.jafc.9b06196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae accumulate bioavailable selenium-containing amino acids (Se-AAs), and these are useful as a food supplement. While this accumulation has been studied in phototrophic algal cultures, little data exists for heterotrophic cultures. We have determined the Se-AAs content, selenium/sulfur (Se/S) substitution rates, and overall Se accumulation balance in photo- and heterotrophic Chlorella cultures. Laboratory trials revealed that heterotrophic cultures tolerate Se doses ∼8-fold higher compared to phototrophic cultures, resulting in a ∼2-3-fold higher Se-AAs content. In large-scale experiments, both cultivation regimes provided comparable Se-AAs content. Outdoor phototrophic cultures accumulated up to 400 μg g-1 of total Se-AAs and exhibited a high level of Se/S substitution (5-10%) with 30-60% organic/total Se embedded in the biomass. A slightly higher content of Se-AAs and ratio of Se/S substitution was obtained for a heterotrophic culture in pilot-scale fermentors. The data presented here shows that heterotrophic Chlorella cultures provide an alternative for Se-enriched biomass production and provides information on Se-AAs content and speciation in different cultivation regimes.
Collapse
Affiliation(s)
- Mykola Mylenko
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Dai Long Vu
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jan Kuta
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Karolína Ranglová
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Agriculture , University of South Bohemia , Branišovská 1160/31 , 370 05 České Budějovice , Czech Republic
| | - David Kubáč
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Gergely Lakatos
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Tomáš Grivalský
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Martin Pablo Caporgno
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - João Artur da Câmara Manoel
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Science , University of South Bohemia , Branišovská 1760 , 370 05 České Budějovice , Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| |
Collapse
|
41
|
Romero I, de Francisco P, Gutiérrez JC, Martín-González A. Selenium cytotoxicity in Tetrahymena thermophila: New clues about its biological effects and cellular resistance mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:850-865. [PMID: 30947056 DOI: 10.1016/j.scitotenv.2019.03.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Selenium is an essential micronutrient but at high concentrations can produce severe cytotoxicity and genomic damage. We have evaluated the cytotoxicity, ultrastructural and mitochondrial alterations of the two main selenium inorganic species; selenite and selenate, in the eukaryotic microorganism Tetrahymena thermophila. In this ciliate, selenite is more toxic than selenate. Their LC50 values were calculated as 27.65 μM for Se(IV) and 56.88 mM for Se(VI). Significant levels of peroxides/hydroperoxides are induced under low-moderate selenite or selenate concentrations. Se(VI) exposures induce an immediate mitochondrial membrane depolarization. Selenium treated cells show an intense vacuolization and some of them present numerous discrete and small electrondense particles, probably selenium deposits. Mitochondrial fusion, an intense swelling in peripheral mitochondria and mitophagy are detected in selenium treated cells, especially in those exposed to Se (IV). qRT-PCR analysis of diverse genes, encoding relevant antioxidant enzymes or other proteins, like metallothioneins, involved in an environmental general stress response, have shown that they may be crucial against Se(IV) and/or Se (VI) cytotoxicity.
Collapse
Affiliation(s)
- Ivan Romero
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Patricia de Francisco
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain..
| |
Collapse
|
42
|
Liu Z, Wang Q, Zou D, Yang Y. Effects of selenite on growth, photosynthesis and antioxidant system in seaweeds, Ulva fasciata (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta). ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Kieliszek M, Błażejak S, Piwowarek K, Brzezicka K. Equilibrium modeling of selenium binding from aqueous solutions by Candida utilis ATCC 9950 yeasts. 3 Biotech 2018; 8:388. [PMID: 30175025 PMCID: PMC6111034 DOI: 10.1007/s13205-018-1415-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022] Open
Abstract
The study investigated the effectiveness of selenium binding from its salt solution by Candida utilis ATCC 9950 yeast biomass cultured on a medium prepared from the agro-food industry wastes, containing an available source of carbon and nitrogen. Selenium binding by C. utilis yeast strain after 48 h of culturing at 28 °C from aqueous solutions with the addition of 30 mg Se/L reached a value of 2.28 mg Se/g of yeast biomass. The kinetics of selenium binding by the yeasts showed a better fit for the pseudo-second-order kinetic model compared to the pseudo-first-order one. Accumulation stability data were analyzed using the Freundlich and Langmuir isotherm models. The presence of competing anions such as SO 4 2 - , and HPO 4 2 - at a concentration of 0.5 mM resulted in about 35% reduction of selenium binding by the examined C. utilis strain. FTIR analysis showed that sulfur compounds were involved in selenium biosorption by the yeast. Compounds containing ammonium groups appeared to be very important for selenium binding. The results of the study demonstrated that the yeast can be used to effectively bind selenium from aqueous solution. At the same time, it gives the opportunity to obtain a biomass rich in this deficient element, which can also be used in dietary supplement production.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Kamil Piwowarek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Katarzyna Brzezicka
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
44
|
Ponton DE, Fortin C, Hare L. Organic selenium, selenate, and selenite accumulation by lake plankton and the alga Chlamydomonas reinhardtii at different pH and sulfate concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2112-2122. [PMID: 29672902 DOI: 10.1002/etc.4158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) concentrations measured in lake planktonic food chains (microplankton <64 μm, copepods, and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate, or selenomethionine at various H+ ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate >> selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate, whereas the uptake of selenomethionine remained unchanged. Although the pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using the present laboratory measurements of Se uptake in microplankton and of natural Se concentrations in lake water allowed us to model Se concentrations in a lake pelagic food chain. Environ Toxicol Chem 2018;37:2112-2122. © 2018 SETAC.
Collapse
Affiliation(s)
- Dominic E Ponton
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| | - Claude Fortin
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| | - Landis Hare
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| |
Collapse
|
45
|
Zhong Y, Cheng JJ. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10875-10883. [PMID: 29179543 DOI: 10.1021/acs.jafc.7b04246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L-1) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L-1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
| | - Jay J Cheng
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
- Department of Biological and Agricultural Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
46
|
Babaei A, Ranglová K, Malapascua JR, Masojídek J. The synergistic effect of Selenium (selenite, -SeO 32-) dose and irradiance intensity in Chlorella cultures. AMB Express 2017; 7:56. [PMID: 28265976 PMCID: PMC5339263 DOI: 10.1186/s13568-017-0348-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/02/2022] Open
Abstract
Microalgae are able to metabolize inorganic selenium (Se) to organic forms (e.g. Se-proteins); nevertheless at certain Se concentration culture growth is inhibited. The aim of this work was to confirm the hypothesis that the limit of Se tolerance in Chlorella cultures is related to photosynthetic performance, i.e. depends on light intensity. We studied the relation between the dose and irradiance to find the range of Se tolerance in laboratory and outdoor cultures. At low irradiance (250 µmol photons m−2 s−1), the daily dose of Se below 8.5 mg per g of biomass (<20 µM) partially stimulated the photosynthetic activity (relative electron transport rate) and growth of Chlorella cultures (biomass density of ~1.5 g DW L−1) compared to the control (no Se added). It was accompanied by substantial Se incorporation to microalgae biomass (~0.5 mg Se g−1 DW). When the Se daily dose and level of irradiance were doubled (16 mg Se g−1 DW; 500 µmol photons m−2 s−1), the photosynthetic activity and growth were stimulated for several days and ample incorporation of Se to biomass (7.1 mg g−1 DW) was observed. Yet, the same Se daily dose under increased irradiance (750 µmol photons m−2 s−1) caused the synergistic effect manifested by significant inhibition of photosynthesis, growth and lowered Se incorporation to biomass. In the present experiments Chl fluorescence techniques were used to monitor photosynthetic activity for determination of optimal Se doses in order to achieve efficient incorporation without substantial inhibition of microalgae growth when producing Se-enriched biomass.
Collapse
|
47
|
Silva Junior EC, Wadt LHO, Silva KE, Lima RMB, Batista KD, Guedes MC, Carvalho GS, Carvalho TS, Reis AR, Lopes G, Guilherme LRG. Natural variation of selenium in Brazil nuts and soils from the Amazon region. CHEMOSPHERE 2017; 188:650-658. [PMID: 28923728 DOI: 10.1016/j.chemosphere.2017.08.158] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 05/07/2023]
Abstract
Brazil nut tree (Bertholletia excelsa) is native of the Amazon rainforest. Brazil nuts are consumed worldwide and are known as the richest food source of selenium (Se). Yet, the reasoning for such Se contents is not well stablished. We evaluated the variation in Se concentration of Brazil nuts from Brazilian Amazon basin, as well as soil properties, including total Se concentration, of the soils sampled directly underneath the trees crown, aiming to investigate which soil properties influence Se accumulation in the nuts. The median Se concentration in Brazil nuts varied from 2.07 mg kg-1 (in Mato Grosso state) to 68.15 mg kg-1 (in Amazonas state). Therefore, depending on its origin, a single Brazil nut could provide from 11% (in the Mato Grosso state) up to 288% (in the Amazonas state) of the daily Se requirement for an adult man (70 μg). The total Se concentration in the soil also varied considerably, ranging from <65.76 to 625.91 μg kg-1, with highest Se concentrations being observed in soil samples from the state of Amazonas. Se accumulation in Brazil nuts generally increased in soils with higher total Se content, but decreased under acidic conditions in the soil. This indicates that, besides total soil Se concentration, soil acidity plays a major role in Se uptake by Brazil nut trees, possibly due to the importance of this soil property to Se retention in the soil.
Collapse
Affiliation(s)
- E C Silva Junior
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | - L H O Wadt
- Embrapa Rondônia, Porto Velho, RO, CEP: 76815-800, Brazil
| | - K E Silva
- Embrapa Amazônia Ocidental, Manaus, AM, CEP: 69010-970, Brazil
| | - R M B Lima
- Embrapa Amazônia Ocidental, Manaus, AM, CEP: 69010-970, Brazil
| | - K D Batista
- Embrapa Roraima, Boa Vista, RR, CEP: 69301-970, Brazil
| | - M C Guedes
- Embrapa Amapá, Macapá, AP, CEP: 68903-419, Brazil
| | - G S Carvalho
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | - T S Carvalho
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | - A R Reis
- Engenharia de Biossistemas, São Paulo State University, Tupã, SP, CEP: 17602-496, Brazil
| | - G Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | - L R G Guilherme
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil.
| |
Collapse
|
48
|
Schiavon M, Ertani A, Parrasia S, Vecchia FD. Selenium accumulation and metabolism in algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:1-8. [PMID: 28554051 DOI: 10.1016/j.aquatox.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro PD, Italy
| | - Sofia Parrasia
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, 35131, Italy
| | | |
Collapse
|
49
|
Rosenfeld CE, Kenyon JA, James BR, Santelli CM. Selenium (IV,VI) reduction and tolerance by fungi in an oxic environment. GEOBIOLOGY 2017; 15:441-452. [PMID: 28044397 DOI: 10.1111/gbi.12224] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/07/2016] [Indexed: 05/27/2023]
Abstract
Microbial processes are known to mediate selenium (Se) oxidation-reduction reactions, strongly influencing Se speciation, bioavailability, and transport throughout the environment. While these processes have commonly been studied in anaerobic bacteria, the role that aerobic fungi play in Se redox reactions could be important for Se-rich soil systems, dominated by microbial activity. We quantified fungal growth, aerobic Se(IV, VI) reduction, and Se immobilization and volatilization in the presence of six, metal-tolerant Ascomycete fungi. We found that the removal of dissolved Se was dependent on the fungal species, Se form (i.e., selenite or selenate), and Se concentration. All six species grew and removed dissolved Se(IV) or Se(VI) from solution, with five species reducing both oxyanions to Se(0) biominerals, and all six species removing at least 15%-20% of the supplied Se via volatilization. Growth rates of all fungi, however, decreased with increasing Se(IV,VI) concentrations. All fungi removed 85%-93% of the dissolved Se(IV) within 10 d in the presence of 0.01 mm Se(IV), although only about 20%-30% Se(VI) was removed when grown with 0.01 mm Se(VI). Fungi-produced biominerals were typically 50- to 300-nm-diameter amorphous or paracrystalline spherical Se(0) nanoparticles. Our results demonstrate that activity of common soil fungi can influence Se form and distribution, and these organisms may therefore play a role in detoxifying Se-polluted environments.
Collapse
Affiliation(s)
- C E Rosenfeld
- Department of Mineral Sciences, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
- Department of Earth Science and BioTechnology Institute, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - J A Kenyon
- Department of Mineral Sciences, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
- MIT/WHOI Joint Program in Oceanography, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - B R James
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - C M Santelli
- Department of Mineral Sciences, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
- Department of Earth Science and BioTechnology Institute, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
50
|
Schiavon M, Pilon-Smits EAH. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. THE NEW PHYTOLOGIST 2017; 213:1582-1596. [PMID: 27991670 DOI: 10.1111/nph.14378] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 05/20/2023]
Abstract
Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | |
Collapse
|