1
|
Liu W, Kong L, Qian F, Jin Z, Lai J, Song Y. Selective oxidation of aminotrismethylene phosphonate (ATMP) by UV-Cu (II)/H 2O 2 system: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137877. [PMID: 40107105 DOI: 10.1016/j.jhazmat.2025.137877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/12/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Phosphonates are important water-soluble organic phosphorus compounds that are widely present in contaminated water bodies. Their oxidation and conversion to orthophosphate are often prerequisite steps for achieving deep removal of total phosphorus from water. In this study, aminotrismethylene phosphonate (ATMP) was used as a representative phosphonate, under alkaline pH conditions, we innovatively employed the UV-Cu (II)/H₂O₂ system to achieve selective oxidation of ATMP and efficient conversion to orthophosphate. Under conditions of UV irradiation, trace amount of Cu (II) (0.020 mM), and 2 mM H₂O₂, 97.43 % of ATMP (0.10 mM) was converted into orthophosphate within 30 min at pH= 8.5. Furthermore, the UV-Cu (II)/H₂O₂ system was unaffected by the presence of common cations, anions, humic acid and partial competitive ligands. The results indicated that hydroxyl radicals, singlet oxygen and trivalent copper Cu (III) were the primary active species participating in the oxidation process. The complexation of Cu (II) with ATMP, promoted the intramolecular electron transfer process, thereby improving the selectivity of the process and increasing the conversion rate to orthophosphate. Further validation involved adding H₂O₂ to concentrated reverse osmosis water with existing trace Cu (II), confirming its effectiveness in degrading ATMP and highlighting its potential for removing phosphonate scale inhibitors.
Collapse
Affiliation(s)
- Wenfang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhe Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junxi Lai
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yonghui Song
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Li F, Guo R, Qiu Y, Liu Z, Tao L, Yang S, Chen J, Yang H. Enhanced anticancer activity of graphene oxide quantum dot@Cu nanocomposites via cation-π interactions. Phys Chem Chem Phys 2025; 27:7076-7083. [PMID: 40105730 DOI: 10.1039/d5cp00352k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Despite extensive efforts in the exploration of anticancer drugs, enhancing their anticancer activity and simultaneously overcoming drug resistance remains a challenge. Here, based on cation-π interactions, we prepared graphene oxide quantum dot@Cu (GOQD@Cu) nanocomposites and observed a transition in the valence state of copper ions from Cu2+ to Cu+ on the graphite surface. As a result, the anticancer activity of GOQD@Cu nanocomposites against HeLa cells exhibited a 2-fold and 1.6-fold enhancement compared to that of individual GOQD and Cu2+, respectively. This enhancement can be attributed to the high reactivity of Cu+ in the nanocomposites and the strengthened electrostatic interaction between the positively charged GOQD@Cu nanocomposites and negatively charged cell membranes. Furthermore, the treatment with GOQD@Cu nanocomposites significantly increased the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential (MMP). Additionally, enhanced anticancer activity was observed for other graphene-based materials with various cations (Fe3+, Zn2+ and K+). Our studies offer innovative insights for the design of novel nano-anticancer therapeutics.
Collapse
Affiliation(s)
- Fangxiao Li
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ran Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yinwei Qiu
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Zhengyang Liu
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Lingling Tao
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Shouning Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junjie Chen
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Huayan Yang
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Lee J, Kim J, Kim S, Kim T, Lee KM, Cho J, Choi JW, Kim JY, Jeong YW, Park HJ, Lee C. Enhanced virucidal activity of facet-engineered Cu-doped TiO 2 nanorods under visible light illumination. WATER RESEARCH 2025; 268:122579. [PMID: 39383801 DOI: 10.1016/j.watres.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Crystal facet engineering has emerged as a promising approach to enhance photocatalytic activity of semiconductors by preferentially accumulating charge carriers (electrons and holes) on specific facets. This facilitates efficient electron and hole transfer across the semiconductor/cocatalyst interface, enabling their transport to the cocatalyst surface for redox reactions. In this study, three Cu-doped TiO2 nanorods with small, medium, and large ratios of reductive {110} to oxidative {111} facets were synthesized (namely Cu-TiO2-SR, Cu-TiO2-MR, and Cu-TiO2-LR, respectively). These materials were comparatively evaluated for the inactivation of phiX174 bacteriophage under visible light illumination. Notably, Cu-TiO2-LR demonstrated an outstanding inactivation rate of phiX174 (0.42 log inactivation/min), approximately 11.8 times higher than that of Cu-TiO2-SR. Photo- and electrochemical analyses revealed that Cu-TiO2-LR exhibited superior electron/hole separation efficiency, leading to enhanced Cu redox reactions. Various experiments, encompassing viral inactivation tests with different additives, protein oxidation assays, and DNA damage assessments, indicated that Cu(III) is the major virucidal species responsible for the phiX174 inactivation by illuminated Cu-TiO2-LR. Under visible light illumination, Cu-TiO2-LR also showed excellent reusability and minimal activity loss in the presence of humic acid and inorganic anions, as well as general microbicidal effects on other viral and bacterial species.
Collapse
Affiliation(s)
- Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Cho J, Kang D, Kong U, Lee J, Kim J, Lee C. Enhanced bactericidal effects of povidone-iodine in the presence of silver ions. CHEMOSPHERE 2024; 368:143734. [PMID: 39536830 DOI: 10.1016/j.chemosphere.2024.143734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The rising prevalence of antibiotic-resistant infections worldwide necessitates the development of innovative antimicrobial systems for effective pathogen control. This study investigates the synergistic bactericidal effects of a combined system comprising povidone-iodine (PVP-I) and silver ions (Ag(I)). The PVP-I/Ag(I) system exhibited enhanced bactericidal activity against four key surrogate bacterial species: two Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). Our experiments revealed that Ag(I) interacts with iodide ions (I-) to form silver iodide (AgI). This reaction promotes the formation of hypoiodous acid (HOI), a more potent bactericidal agent than other reactive iodine species (RIS), by shifting the equilibrium of RIS released from PVP-I. Under representative conditions ([PVP-I]0 = 1 mg/L, [Ag(I)]0 = 5 μM, pH = 7.3), the concentration of HOI in the PVP-I/Ag(I) system was 2.4-3.9 times higher than in the PVP-I system alone, aligning with theoretical predictions. The bactericidal efficacy of the PVP-I/Ag(I) system was influenced by pH variations, affecting HOI formation. This system represents a promising tool for rapid and effective microbial control, potentially enhancing public health outcomes.
Collapse
Affiliation(s)
- Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongwoo Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Uimin Kong
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Park EJ, Lee KM, Kim T, Lee D, Kim MS, Lee C. Trivalent Copper Ion-Mediated Dual Oxidation in the Copper-Catalyzed Fenton-Like System in the Presence of Histidine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10852-10862. [PMID: 38843408 DOI: 10.1021/acs.est.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The Cu(II)/H2O2 system is recognized for its potential to degrade recalcitrant organic contaminants and inactivate microorganisms in wastewater. We investigated its unique dual oxidation strategy involving the selective oxidation of copper-complexing ligands and enhanced oxidation of nonchelated organic compounds. L-Histidine (His) and benzoic acid (BA) served as model compounds for basic biomolecular ligands and recalcitrant organic contaminants, respectively. In the presence of both His and BA, the Cu(II)/H2O2 system rapidly degraded His complexed with copper ions within 30 s; however, BA degraded gradually with a 2.3-fold efficiency compared with that in the absence of His. The primary oxidant responsible was the trivalent copper ion [Cu(III)], not hydroxyl radical (•OH), as evidenced by •OH scavenging, hydroxylated BA isomer comparison with UV/H2O2 (a •OH generating system), electron paramagnetic resonance, and colorimetric Cu(III) detection via periodate complexation. Cu(III) selectively oxidized His owing to its strong chelation with copper ions, even in the presence of excess tert-butyl alcohol. This selectivity extended to other copper-complexing ligands, including L-asparagine and L-aspartic acid. The presence of His facilitated H2O2-mediated Cu(II) reduction and increased Cu(III) production, thereby enhancing the degradation of BA and pharmaceuticals. Thus, the Cu(II)/H2O2 system is a promising option for dual-target oxidation in diverse applications.
Collapse
Affiliation(s)
- Erwin Jongwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Sik Kim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Lee KM, Joo H, Park EJ, Kim J, Lee Y, Yoon J, Lee C. Electrochemical production of hydroxylamine from nitrate on metal electrodes: A comparative study of selectivity and efficiency. CHEMOSPHERE 2024; 353:141537. [PMID: 38408568 DOI: 10.1016/j.chemosphere.2024.141537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Despite the great potential of electrochemical nitrate reduction as a hydroxylamine production method, this strategy has not been sufficiently examined, and the effects of electrode material type on the selectivity and efficiency of this reduction remain underexplored. To bridge this gap, the present study evaluated six metals (Ag, Cu, Ni, Sn, Ti, and Zn) as cathode materials for the electrochemical reduction of nitrate to hydroxylamine, showing that the selectivity of hydroxylamine production was maximal for Sn, while the corresponding faradaic and energy utilization efficiencies were maximal for Ti. Although all tested materials favored nitrate reduction over hydrogen evolution, the disparity in the onset potentials of these reactions did not adequately explain the variations in nitrate removal efficiency, which was found to be influenced by material resistance and charge-transfer properties. The rate constants of elementary nitrate reduction steps determined from the time-dependent concentrations of nitrate and its reduction products (nitrous acid, hydroxylamine, and ammonium) were used to calculate the selectivity and efficiency of hydroxylamine production for each electrode. In turn, these selectivities and efficiencies were correlated with the density functional theory-computed adsorption energies of a key hydroxylamine precursor on different electrodes to afford a volcano-type plot with Ti and Sn at its pinnacle. Thus, this study introduces valuable descriptors and methods for the further screening of electrocatalysts for hydroxylamine generation and the establishment of more environmentally friendly hydroxylamine production techniques utilizing sustainable electricity.
Collapse
Affiliation(s)
- Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwajoo Joo
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Erwin Jongwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yunjeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeyong Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Kim J, Lee J, Kim S, Kim T, Lee KM, Lee D, Cho J, Kim JY, Jeong YW, Park HJ, Lee JC, Lee C. Virucidal activity of Cu-doped TiO 2 nanoparticles under visible light illumination: Effect of Cu oxidation state. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133525. [PMID: 38237436 DOI: 10.1016/j.jhazmat.2024.133525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Copper (Cu) is an effective antimicrobial material; however, its activity is inhibited by oxidation. Titanium dioxide (TiO2) photocatalysis prevents Cu oxidation and improves its antimicrobial activity and stability. In this study, the virucidal efficacy of Cu-doped TiO2 nanoparticles (Cu-TiO2) with three different oxidation states of the Cu dopant (i.e., zero-valent Cu (Cu0), cuprous (CuI), and cupric (CuII) oxides) was evaluated for the phiX174 bacteriophage under visible light illumination (Vis/Cu-TiO2). CuI-TiO2 exhibited superior virucidal activity (5 log inactivation in 30 min) and reusability (only 11 % loss of activity in the fifth cycle) compared to Cu0-TiO2 and CuII-TiO2. Photoluminescence spectroscopy and photocurrent measurements showed that CuI-TiO2 exhibited the highest charge separation efficiency and photocurrent density (approximately 0.24 μA/cm2) among the three materials, resulting in the most active redox reactions of Cu. Viral inactivation tests under different additives and viral particle integrity analyses (i.e., protein oxidation and DNA damage analyses) revealed that different virucidal species played key roles in the three Vis/Cu-TiO2 systems; Cu(III) was responsible for the viral inactivation by Vis/CuI-TiO2. The Vis/CuI-TiO2 system exhibited substantial virucidal performance for different viral species and in different water matrices, demonstrating its potential practical applications. The findings of this study offer valuable insights into the design of effective and sustainable antiviral photocatalysts for disinfection.
Collapse
Affiliation(s)
- Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Wu G, Wang J, Wan Q, Cao S, Huang T, Lu J, Ma J, Wen G. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced disinfection of bacteria and fungal spores by transition metal ions-activated peroxymonosulfate. WATER RESEARCH 2023; 243:120378. [PMID: 37482005 DOI: 10.1016/j.watres.2023.120378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Peroxymonosulfate(PMS)-based advanced oxidation process have been recognized as efficient disinfection processes. This study comprehensively investigated the role of sulfate radical (SO4•-) and hydroxyl radical (•OH)-driven disinfection of bacteria and fungal spores by the PMS/metals ions (Me(II)) systems and modeled the CT value based on the relationship between survival and ∫[Radical]dt, with the aim to provide an accurate and quantitative kinetic data of inactivation processes. The results indicated that •OH played a more central role than SO4•- in the inactivation process, and bacteria were more vulnerable to radical attack than fungal spores due to the differences in antioxidant mechanisms and external structures. The k value of •OH -induced inactivation of E. coli was approximately 3-fold higher than that of A. niger, and the shoulder length of •OH -induced inactivation of E. coli was closely 52-fold shorter than that of A. niger after treated with the PMS/Co(II) system. The morphological and biochemical changes revealed that PMS/Me(II) treatment caused membrane damage, intracellular ROS accumulation and esterase activity loss in microorganisms. This study significantly improved the understanding of the contribution of radicals in the process of microbial inactivation by PMS/Me(II) and would provide important implications for the further development of technologies to cope with the highly resistant fungal spores in drinking water.
Collapse
Affiliation(s)
- Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
9
|
Li H, Zhang L, Zhang X, Zhu G, Zheng D, Luo S, Wu M, Li WH, Liu FQ. Self-Enhanced Antibacterial and Antifouling Behavior of Three-Dimensional Porous Cu 2O Nanoparticles Functionalized by an Organic-Inorganic Hybrid Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38808-38820. [PMID: 37526484 DOI: 10.1021/acsami.3c06905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.
Collapse
Affiliation(s)
- Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Dongchen Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shuwen Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Wu
- Offshore Oil Production Plant of Sinopec Shengli Oilfield Company, Dongying 257237, China
| | - Wei-Hua Li
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
10
|
Gu Y, Sun Y, Zheng W. Novel strategy for copper precipitation from cupric complexes wastewater: Catalytic oxidation or reduction self-decomplexation? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131183. [PMID: 36966623 DOI: 10.1016/j.jhazmat.2023.131183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cupric (Cu(II)) complexes in industrial wastewater are responsible for the failure of conventional alkaline precipitation, but the properties of cuprous (Cu(I)) complexes at alkaline circumstance have not been focused. This report proposed a novel strategy for the remediation of Cu(II)-complexed wastewater by coupling alkaline precipitation with green benign reductant, namely, hydroxylamine hydrochloride (HA). This remediation process (HA-OH) exhibits superior Cu removal efficiency that cannot be achieved with the same dosage of oxidants (3 mM). The possibility of Cu(I) activated O2 catalysis and self-decomplexation precipitation were investigated, and the results identified that 1O2 was generated from Cu(II)/Cu(I) cycle, but it was insufficient to annihilate organic ligands. Cu(I) self-decomplexation was the dominate mechanism of Cu removal. For real industrial wastewater, HA-OH process can realize the efficient Cu2O precipitation and Cu recovery. This novel strategy utilized intrinsic pollutant in wastewater without introducing other metals, complicated materials, and expensive equipment, broadening the insight for the remediation of Cu(II)-complexed wastewater.
Collapse
Affiliation(s)
- Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Shang D, Zheng W, Zhao P, Li Y, Xie L, Zhang J, Zhan S, Hu W. Investigation on the reaction kinetic mechanism of polydopamine-loaded copper as dual-functional catalyst in heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 325:138339. [PMID: 36893871 DOI: 10.1016/j.chemosphere.2023.138339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton (HEF) process has been regarded as a promising method in environmental remediation. However, the reaction kinetic mechanism of the HEF catalyst for simultaneous production and activation of H2O2 remained confounded. Herein, the copper supported on polydopamine (Cu/C) was synthesized by a facile method and employed as a bifunctional HEFcatalyst, and the catalytic kinetic pathways were deeply investigated by using rotating ring-disk electrode (RRDE) voltammetry based on the Damjanovic model. Experimental results substantiated that a two-electron oxygen reduction reaction (2e- ORR) and a sequential Fenton oxidation reaction were proceeded on 1.0-Cu/C, where metallic copper played a crucial role in the fabrication of 2e- active sites as well as utmost H2O2 activation to produce highly reactive oxygen species (ROS), resulting in the high H2O2 productivity (52.2%) and the almost complete removal of contaminant ciprofloxacin (CIP) after 90 min. The work not only expanded the idea of reaction mechanism on Cu-based catalyst in HEF process but also provided a promising catalyst for pollutants degradation in wastewater treatment.
Collapse
Affiliation(s)
- Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Peng Zhao
- China National Offshore Oil Corporation, Tianjin Branch, Tianjin, 300452, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
12
|
Yuan Y, Chen S, Yao B, Chen A, Peng L, Luo S, Zhou Y. Fe 3+-cysteine enhanced persulfate fenton-like process for quinclorac degradation: A wide pH tolerance and reaction mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115447. [PMID: 36758919 DOI: 10.1016/j.envres.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
A green, high-efficiency, and wide pH tolerance water remediation process has been urgently acquired for the increasingly exacerbating contaminated water. In this study, a Fe3+/persulfate (Fe3+/PS) system was employed and enhanced with a green natural ligand cysteine (Cys) for the degradation of quinclorac (QNC). The introduction of Cys into the Fe3+/PS system widened the effective pH range to 9 with a superior removal rate for QNC. The mechanism revealed that the Fe3+/Cys/PS system can enhance the ability of degrading QNC by accelerating the Fe3+/Fe2+ redox cycle, maintaining Fe2+ concentration and thereby generating more HO• and SO4•-. The impact factors (i.e., pH, concentrations of PS, Fe3+ and Cys) were optimized as well. This work provides a promising strategy with high catalytic activity and wide pH tolerance for organic contaminated water remediation.
Collapse
Affiliation(s)
- Yawen Yuan
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Shutong Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Peng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Soliman MYM, Medema G, van Halem D. Enhanced virus inactivation by copper and silver ions in the presence of natural organic matter in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163614. [PMID: 37086991 DOI: 10.1016/j.scitotenv.2023.163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Natural organic matter (NOM) is present in water matrix that serves as a drinking water source. This study examined the effect of low and high NOM concentrations on inactivation kinetics of a model RNA virus (MS2) and a model DNA virus (PhiX 174) by copper (Cu2+) and/or silver (Ag+) ions. Cu and Ag are increasingly applied in household water treatment (HHWT) systems. However, the impact of NOM on their inactivation kinetics remains elusive despite its importance for their application. The presence of NOM in water led to faster virus inactivation by Cu2+ but slower by Ag+. The fastest inactivation kinetics of MS2 (Kobs = 4.8 h-1) were observed by Cu in water containing high NOM (20 mg C/L). Meanwhile, for PhiX 174, the fastest inactivation kinetics (av. Kobs = 3.5 h-1) were observed by Cu and Ag synergism in water containing high NOM. Altogether, it can be concluded that the combination of Cu and Ag is promising as a virus disinfectant in treatment options allowing for multiple hours of residence time such as safe water storage tanks.
Collapse
Affiliation(s)
- Mona Y M Soliman
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - Gertjan Medema
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Doris van Halem
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
14
|
Yu K, Warsaba R, Yazdani-Ahmadabadi H, Lange D, Jan E, Kizhakkedathu JN. Antibacterial and Antiviral Coating on Surfaces through Dopamine-Assisted Codeposition of an Antifouling Polymer and In Situ Formed Nanosilver. ACS Biomater Sci Eng 2023; 9:329-339. [PMID: 36516234 DOI: 10.1021/acsbiomaterials.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.
Collapse
|
15
|
Zhang T, Zhang J, Yu Y, Li J, Zhou Z, Li C. Synthesis of CuO/GO-DE Catalyst and Its Catalytic Properties and Mechanism on Ciprofloxacin Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4305. [PMID: 36500928 PMCID: PMC9740731 DOI: 10.3390/nano12234305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A new catalyst, copper oxide/graphene oxide-diatomaceous earth (CuO/GO-DE), was prepared by the ultrasonic impregnation method. The optimal conditions for catalyst preparation were explored, and its structure and morphology were characterized by BET, XRD, SEM, TEM, FTIR, Raman and XPS. By taking ciprofloxacin as the target pollutant, the performance and reusability of CuO/GO-DE to degrade antibiotic wastewater was evaluated, and the optimal operating conditions were obtained. The main oxidizing substances in the catalytic system under different pH conditions were analyzed, as well as the synergistic catalytic oxidation mechanism. The intermediate products of ciprofloxacin degradation were identified by LC-MS, and the possible degradation process of ciprofloxacin was proposed.
Collapse
|
16
|
Tang Z, Ma D, Chen Q, Wang Y, Sun M, Lian Q, Shang J, Wong PK, He C, Xia D, Wang T. Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129373. [PMID: 35728326 DOI: 10.1016/j.jhazmat.2022.129373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.
Collapse
Affiliation(s)
- Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China; Institute of Environmental Health and Pollution Control, School of Environmental Science & Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Tianqi Wang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
17
|
Liu X, Zhai Y, Liu G, Liu X, Wang B, Wang Z, Zhu Y, Fan Y, Shi H, Xu M. Mechanistic insights into enhanced waste activated sludge dewaterability with Cu(II) and Cu(II)/H 2O 2 treatment: Radical and non-radical pathway. CHEMOSPHERE 2022; 288:132549. [PMID: 34653483 DOI: 10.1016/j.chemosphere.2021.132549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Without extra adjustment of pH, the effects of cupric ions (Cu(II)) and hydrogen peroxide (H2O2) alone or in combination on sludge dewatering were studied. It showed good dewatering capability after treated by Cu(II) and Cu(II)/H2O2, which indicated by the capillary suction times (CST) decreased from 120.8 ± 4.7 s (control) to about 40 s, and the water content (Wc) of sludge cake dropped by about 10%. The results showed that the extracellular polymeric substances (EPS) were destroyed, which characterized by a significant decrease in the biopolymers' concentrations in tightly-bound EPS. Meanwhile, more rough and porous microstructures and higher zeta potentials were obtained after conditioned. Based on the changes of physicochemical properties of sludge, the variations of EPS, and the identification of reactive species, two distinct mechanisms of improved sludge dewatering were postulated. As for Cu(II) treatment, it was mainly due to the surface charge neutralization, strong cytotoxicity of Cu(I) produced by intracellular reduction of Cu(II), and pH decline caused by Cu(II) hydrolysis that improved sludge dewatering performance, which could be noted as a "non-radical pathway". When in combination with H2O2, hydroxyl radicals (·OH) produced by Cu(II)-catalyzed Fenton-like process played a dominant role in degrading sludge flocs and EPS, which could be regarded as a "radical pathway".
Collapse
Affiliation(s)
- Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ya Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuwei Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Haoran Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Xu
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| |
Collapse
|
18
|
Li C, Goetz V, Chiron S. Copper oxide/peroxydisulfate system for urban wastewater disinfection: Performances, reactive species, and antibiotic resistance genes removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150768. [PMID: 34648831 DOI: 10.1016/j.scitotenv.2021.150768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, copper oxide (CuO) catalyzed peroxydisulfate (PDS) system was investigated for the inactivation of a broad range of pathogenic microorganisms from urban wastewater. Complete inactivation of Escherichia coli, Enterococcus, F-specific RNA bacteriophages from secondary treated wastewater was achieved after a short time (15-30 min) treatment with CuO (10 g/L)/PDS (1 mM) system, but spores of sulfite-reducing bacteria took 120 min. No bacterial regrowth occurred during storage after treatment. Significant reduction of the pathogens was explained by the generation of the highly selective Cu(III) oxidant, as the predominant reactive species, which could quickly oxidize guanine through a one-electron oxidation pathway. Additionally, the potential of the CuO (10 g/L)/PDS (1 mM) system to inactivate antibiotic-resistant bacteria and antibiotic resistance genes (ARB&Gs) was explored. Sulfamethoxazole-resistant E. coli was used as the model ARB and a 3.2 log of reduction was observed after 10 min of treatment. A considerable reduction (0.7-2.3 log) of selected ARGs including blaTEM, qnrS, emrB, sul1, and genes related to the dissemination of antibiotic resistance, including the Class 1 integron-integrase (intI1), and the insertion sequence (IS613) was achieved after 60 min treatment. All these findings indicated the promising applicability of the CuO/PDS system as a disinfection technology for wastewater reuse in agriculture.
Collapse
Affiliation(s)
- Chan Li
- UMR5151 HydroSciences Montpellier, University of Montpellier, IRD, 15 Ave Charles Flahault, 34093 Montpellier cedex 5, France
| | - Vincent Goetz
- PROMES-CNRS UPR 8521, PROcess Material and Solar Energy, Rambla de la Thermodynamique, 66100 Perpignan, France
| | - Serge Chiron
- UMR5151 HydroSciences Montpellier, University of Montpellier, IRD, 15 Ave Charles Flahault, 34093 Montpellier cedex 5, France.
| |
Collapse
|
19
|
Sun S, Shan C, Yang Z, Wang S, Pan B. Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/H 2O 2: Performance, Mechanism, and Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:634-641. [PMID: 34902966 DOI: 10.1021/acs.est.1c06471] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphonate is an important category of highly soluble organophosphorus in contaminated waters, and its oxidative transformation into phosphate is usually a prerequisite step to achieve the in-depth removal of the total phosphorus. Currently, selective oxidation of phosphonate into phosphate is urgently desired as conventional advanced oxidation processes suffer from severe matrix interferences. Herein, we employed 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a model phosphonate and demonstrated its efficient and selective oxidation by the Cu(II)/H2O2 process at alkaline pH. In the presence of trace Cu(II) (0.020 mM), 90.8% of HEDP (0.10 mM) was converted to phosphate by H2O2 in 30 min at pH 9.5, whereas negligible conversion was observed by UV/H2O2 or a Fenton reaction (pH = 3.0). The oxidation of HEDP by Cu(II)/H2O2 was insignificantly affected by natural organic matters (10.0 mg TOC/L) and various anions including chloride, sulfate, and nitrate (10.0 mM). The complexation of Cu(II) with HEDP coupling Cu(III) produced in situ enabled an intramolecular electron transfer process, which features high selective oxidation. Selective degradation of HEDP was further validated by adding stoichiometric H2O2 into an industrial effluent, where the existing Cu(II) could serve as the catalyst. This study also provides a successful case to trigger selective oxidation of trace pollutants of concern upon synergizing with the nature of the contaminated water.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Luo H, Zeng Y, Cheng Y, He D, Pan X. Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149506. [PMID: 34375868 DOI: 10.1016/j.scitotenv.2021.149506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Iron oxychloride (FeOCl) is a known effective iron-based catalyst and has been used in advanced oxidation processes (AOPs). This study intends to achieve more facile free radicals generation from peroxymonosulfate (PMS) activation by exploring the Fe(III)/Fe(II) cycle of FeOCl in the presence of hydroxylamine (HA). With 0.2 g/L FeOCl, 1.5 mM PMS, and 1 mM HA, the PMS/FeOCl/HA system could effectively achieve 98.88% of the oxidative degradation of 5 mg/L ciprofloxacin (CIP) in 15 min and quickly inactivate 99.99% of E. coli (108 CFU/mL) in 5 min at near-neutral pH. HA played an important role in promoting the Fe(III)/Fe(II) cycle, thereby greatly improving the oxidation activity of the system. The reactive oxygen species (ROS) such as HO, SO4- and O2- were identified as the dominated free radicals produced in the system. The intermediate products of CIP detected by liquid chromatograph-mass spectrometer (LC-MS) and three possible degradation pathways of CIP were proposed. The presence of common anions in the PMS/FeOCl/HA system, including HCO3-, Cl-, SO42-, and NO3-, enhanced the degradation efficiency of CIP to varying degrees at the concentrations of 10 mM. Moreover, FeOCl maintained a high degradation capability for CIP after several recycles. This work offers a new promising means of catalyzing the PMS-based AOPs in the degradation of refractory organics.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Sainz de Baranda C, Riquelme E, Cañizares P, Rodrigo MA, Sáez C. A review on disinfection technologies for controlling the antibiotic resistance spread. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149150. [PMID: 34303979 DOI: 10.1016/j.scitotenv.2021.149150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotic-resistant bacteria (ARB) in water bodies poses a sanitary and environmental risk. These ARB and other mobile genetic elements can be easily spread from hospital facilities, the point in which, for sure, they are more concentrated. For this reason, novel clean and efficient technologies are being developed for allowing to remove these ARB and other mobile genetic elements before their uncontrolled spread. In this paper, a review on the recent knowledge about the state of the art of the main disinfection technologies to control the antibiotic resistance spread from natural water, wastewater, and hospital wastewater (including urine matrices) is reported. These technologies involve not only conventional processes, but also the recent advances on advanced oxidation processes (AOPs), including electrochemical advanced oxidation processes (EAOPs). This review summarizes the state of the art on the applicability of these technologies and also focuses on the description of the disinfection mechanisms by each technology, highlighting the promising impact of EAOPs on the remediation of this important environmental and health problem.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Caridad Sainz de Baranda
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
22
|
Boas D, Reches M. A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating. Front Bioeng Biotechnol 2021; 9:736679. [PMID: 34746103 PMCID: PMC8564293 DOI: 10.3389/fbioe.2021.736679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The health, economy, and quality of life all over the world are greatly affected by bacterial infections and viral outbreaks. Bacterial cells and viruses, such as influenza, can spread through contaminated surfaces and fomites. Therefore, a possible way to fight these pathogens is to utilize antibacterial and antiviral coatings, which reduce their numbers on contaminated surfaces. Here, we present a novel short peptide that can self-assemble, adhere to various surfaces, and bind different metal ions such as copper, which provides the surface with antibacterial and antiviral properties. For these functions, the peptide incorporates the amino acid 3,4-dihydroxyphenylalanine (DOPA), which provides the peptide with adhesive capabilities; a diphenylalanine motif that induces the self-assembly of the peptide; the metal-binding hexahistidine sequence. Our results demonstrate that the coating, which releases monovalent cuprous ions and hydrogen peroxide, provides the surfaces with significant antibacterial and antiviral properties. Additionally, the coating remains transparent, which is favorable for many objects and especially for display screens.
Collapse
Affiliation(s)
| | - Meital Reches
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Lai C, Shi X, Li L, Cheng M, Liu X, Liu S, Li B, Yi H, Qin L, Zhang M, An N. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145850. [PMID: 33631587 DOI: 10.1016/j.scitotenv.2021.145850] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Conventional water treatment methods are difficult to remove stubborn pollutants emerging from surface water. Advanced oxidation processes (AOPs) can achieve a higher level of mineralization of stubborn pollutants. In recent years, the Fenton process for the degradation of pollutants as one of the most efficient ways has received more and more attention. While homogeneous catalysis is easy to produce sludge and the catalyst cannot be cycled. In contrast, heterogeneous Fenton-like reaction can get over these drawbacks and be used in a wider range. However, the reduction of Fe (III) to Fe(II) by hydrogen peroxide (H2O2) is still the speed limit step when generating reactive oxygen species (ROS) in heterogeneous Fenton system, which restricts the efficiency of the catalyst to degrade pollutants. Based on previous research, this article reviews the strategies to improve the iron redox cycle in heterogeneous Fenton system catalyzed by iron materials. Including introducing semiconductor, the modification with other elements, the application of carbon materials as carriers, the introduction of metal sulfides as co-catalysts, and the direct reduction with reducing substances. In addition, we also pay special attention to the influence of the inherent properties of iron materials on accelerating the iron redox cycle. We look forward that the strategy outlined in this article can provide readers with inspiration for constructing an efficient heterogeneous Fenton system.
Collapse
Affiliation(s)
- Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xiaoxun Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ning An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
24
|
Ye Q, Xu H, Wang Q, Huo X, Wang Y, Huang X, Zhou G, Lu J, Zhang J. New insights into the mechanisms of tartaric acid enhancing homogeneous and heterogeneous copper-catalyzed Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124351. [PMID: 33144019 DOI: 10.1016/j.jhazmat.2020.124351] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The specific roles of tartaric acid (TA), as an eco-friendly ligand, in homogeneous and heterogeneous copper-catalyzed systems were systematically revealed and new mechanisms of TA enhancing the three Fenton-like processes were proposed to provide a theoretical significance in overcoming the deficiency of conventional Fenton processes. The results identified hydroxyl radical (•OH) as the main species responsible for the simultaneous decomposition of TA and metronidazole (MNZ) according to TOC removal. The ESR technique was used to detect superoxide radicals (•O2-), carbon-centered radical (•R) and hydrogen radical (•H) in the Cu2+/TA/H2O2 system, which contributed to the acceleration of the Cu2+/Cu+ redox cycle. The enhancing effect of TA on the homogeneous process was ascribed to the formation of a soluble complex with Cu2+, which favored the pH range extension, Cu+ oxidation, and radical generation. Moreover, the adsorption of TA on the catalysts surface promoted the consumption of H2O2, inducing •OH generation. The formed surface complex (≡Cu2+-TA) also accelerated the regeneration of ≡Cu+, which was confirmed by density functional theory (DFT) calculation and surface characterization analysis (SEM, XRD, and XPS). The possible degradation pathways of MNZ in TA-modified Fenton-like system were also clarified.
Collapse
Affiliation(s)
- Qian Ye
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Hao Xu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qingguo Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xiaowei Huo
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yunqi Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xue Huang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Guanyu Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
25
|
Subramanian G, Prakash H. Photo Augmented Copper-based Fenton Disinfection under Visible LED Light and Natural Sunlight Irradiation. WATER RESEARCH 2021; 190:116719. [PMID: 33316661 DOI: 10.1016/j.watres.2020.116719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/31/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Copper-based Fenton disinfection system (Cu(II)/H2O2) is an emerging advanced oxidation process (AOP). Previous works have used reducing agents and organic ligands to improve the disinfection efficiency of Cu(II)/H2O2 system. Here, we report visible light/Cu(II)/H2O2 system showed enhanced disinfection compared to Cu(II)/H2O2 system, without the need of reducing chemical agent or organic ligand. Energy-efficient LED array was used as a visible light source in the visible light/Cu(II)/H2O2 system. Under the optimized condition, pseudo-first-order inactivation rate constant (kobs) of E. coli by visible light/Cu(II)/H2O2 (0.613 ± 0.005 min-1) was about ~8 times greater than Cu(II)/H2O2 (0.08 ± 0.011 min-1). Scanning electron microscopy and Baclight Live/Dead assay proved enhanced cell membrane damage by visible light/Cu (II)/H2O2 in comparison with Cu(II)/H2O2. Based on the bovine serum albumin (BSA) degradation and OH˙ radical measurement by visible light/Cu(II)/H2O2, a ligand to metal charge transfer (LMCT) mechanism by Cu(II)-bacterial complex is proposed for enhanced disinfection. Electrical energy efficiency (E E,1) for a log reduction of E. coli and the total treatment cost of visible light/Cu(II)/H2O2 was determined to be 32.64 KWh/m3 and 350 ₹/m3 (3.9 €/m3 or 4.74 $/m3), respectively, indicating its cost-effectiveness. Disinfection efficiency by sunlight/Cu(II)/H2O2 system (solar irradiance; 746 ± 138 W/m2) was almost comparable to LED-based visible light/Cu(II)/H2O2 system, with total treatment cost estimated to be 80 ₹/m3 (0.9 €/m3 or 1.1 $/m3).
Collapse
Affiliation(s)
- Gokulakrishnan Subramanian
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India; Department of Chemistry, Presidency University, Bangalore 560064, India.
| | - Halan Prakash
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India.
| |
Collapse
|
26
|
Xue C, Peng Y, Chen A, Peng L, Luo S. Drastically inhibited nZVI-Fenton oxidation of organic pollutants by cysteine: Multiple roles in the nZVI/O 2/hv system. J Colloid Interface Sci 2021; 582:22-29. [PMID: 32810690 DOI: 10.1016/j.jcis.2020.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/24/2022]
Abstract
The influence of l-cysteine, a common aliphatic amino acid, on the zero-valent iron (nZVI)/O2 photo-Fenten degradation of rhodamine B (RhB) was investigated in this study. The oxidation rate of RhB in the nZVI/O2/hv system was 91.2% after 40 min under the illumination and oxygen conditions and pH of 3, but when cysteine was introduced into the system, the oxidization process was inhibited. The removal of RhB was only about 50% after 40 min at a cysteine concentration ≥50 μM. It was shown experimentally that, under dark conditions, only 40.5% and 19.8% RhB was removed by the nZVI/O2 and nZVI/O2/cysteine systems, respectively. Electron paramagnetic resonance (EPR) and iron dissolving experiments revealed that the addition of cysteine clearly reduced the production of hydroxyl radicals (OH) and Fe2+ and Fe3+. In addition, Fourier transform infrared spectroscopy (FTIR) demonstrated that cysteine could form hydrogen bonds on the iron surface. These results indicated that the main inhibition mechanism of cysteine was the alleviation of the oxidation of nZVI to Fe2+ and Fe3+ through wrapping the nZVI particles. Moreover, cystine (the oxidized form of CYS) could partly react with OH to regenerate cysteine, which resulted in competition with RhB for OH. Another possible reason for the inhibitory effect of cysteine was the prevention of light utilization. These findings indicate a non-negligible inhibitory trait for heterogeneous Fenton process in wastewater treatment when amino acids are present.
Collapse
Affiliation(s)
- Chao Xue
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanming Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
27
|
Duan J, Pang SY, Wang Z, Zhou Y, Gao Y, Li J, Guo Q, Jiang J. Hydroxylamine driven advanced oxidation processes for water treatment: A review. CHEMOSPHERE 2021; 262:128390. [PMID: 33182154 DOI: 10.1016/j.chemosphere.2020.128390] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Hydroxylamine (HA) driven advanced oxidation processes (HAOPs) for water treatment have attracted extensive attention due to the acceleration of reactive intermediates generation and the improvement on the elimination effectiveness of target contaminants. In this review, HAOPs were categorized into three parts: (1) direct reaction of HA with oxidants (e.g., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), ozone (O3), ferrate (Fe(VI)), periodate (IO4-)); (2) HA driven homogeneous Fenton/Fenton-like system (Fe(II)/peroxide/HA system, Cu(II)/O2/HA system, Cu(II)/peroxide/HA system, Ce(IV)/H2O2/HA system); (3) HA driven heterogeneous Fe/Cu-Fenton/Fenton-like system (iron-bearing material/peroxide/HA system, copper-bearing material/peroxide/HA system, bimetallic composite/peroxide/HA system). Degradation efficiency of the target pollutant, reactive intermediates, and effective pH range of various HAOPs were summarized. Further, corresponding reaction mechanism was elaborated. For the direct reaction of HA with oxidants, improvement of pollutants degradation was achieved through the generation of secondary reactive intermediates which had higher reactivity compared with the parent oxidant. For HA driven homogeneous and heterogeneous Fe/Cu-Fenton/Fenton-like system, improvement of pollutants degradation was achieved mainly via the acceleration of redox cycle of Fe(III)/Fe(II) or Cu(II)/Cu(I) and subsequent generation of reactive intermediates, which avoided the drawbacks of classical Fenton/Fenton-like system. In addition, HA driven homogeneous Fe/Cu-Fenton/Fenton-like system with heterogeneous counterpart were compared. Further, formation of oxidation products from HA in various HAOPs was summarized. Finally, the challenges and prospects in this field were discussed.
Collapse
Affiliation(s)
- Jiebin Duan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Zhen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Zhou
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yuan Gao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Juan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qin Guo
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
28
|
Kim T, Cho J, Cha D, Kim MS, Park EJ, Lee HJ, Lee C. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123305. [PMID: 32947709 DOI: 10.1016/j.jhazmat.2020.123305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 05/08/2023]
Abstract
The microbial inactivation by cupric ion (Cu(II)) in combination with hydrogen peroxide (H2O2) and hydroxylamine (HA) was investigated for twelve different microorganisms (five Gram-negative bacteria, three Gram-positive bacteria, and four bacteriophages). The inactivation efficacy, protein oxidation, and RNA (or DNA) damage were monitored during and after treatment by Cu(II), Cu(II)/HA, Cu(II)/H2O2 and Cu(II)/HA/H2O2. The rate of microbial inactivation by the (combined) microbicides generally increased in the order of Cu(II) < Cu(II)/H2O2 < Cu(II)/HA < Cu(II)/HA/H2O2; Cu(II)/HA/H2O2 resulted in 0.18-0.31, 0.10-0.18, and 0.55-3.83 log inactivation/min for Gram-negative bacteria, Gram-positive bacteria, and bacteriophages, respectively. The degrees of protein oxidation and RNA (or DNA) damage increased in the order of Cu(II) < Cu(II)/HA < Cu(II)/H2O2 < Cu(II)/HA/H2O2. In particular, Cu(II)/HA/H2O2 led to exceptionally fast inactivation of the viruses. Gram-positive bacteria tended to show higher resistance to microbicides than other microbial species. The microbicidal effects of the combined microbicides on the target microorganisms were explained by the roles of Cu(I) and Cu(III) generated by the redox reactions of Cu(II) with H2O2, HA, and oxygen. Major findings of this study indicate that Cu(II)-based combined microbicides are promising disinfectants for different waters contaminated by pathogenic microorganisms.
Collapse
Affiliation(s)
- Taewan Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongwon Cha
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min Sik Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, United States
| | - Erwin Jongwoo Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Jin Lee
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Changha Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Soliman MY, Medema G, Bonilla BE, Brouns SJ, van Halem D. Inactivation of RNA and DNA viruses in water by copper and silver ions and their synergistic effect. WATER RESEARCH X 2020; 9:100077. [PMID: 33225254 PMCID: PMC7663217 DOI: 10.1016/j.wroa.2020.100077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 05/19/2023]
Abstract
Cu and Ag have been used as bactericidal agents since ancient times, yet their antiviral capacity in water remains poorly understood. This study tested the effect of copper (Cu) and silver (Ag) on model RNA and DNA viruses MS2 and PhiX 174 in solution at pH 6-8. Cu caused MS2 inactivation with similar rates at pH 6 and 7 but was inert towards PhiX 174 regardless of pH. Ag inactivated both viruses, causing denaturation of MS2 and loss of capsid spikes in PhiX 174. Ag inactivation rates were pH dependent and increased with increasing pH. At pH 8, 6.5 logs of PhiX were inactivated after 3 h and 3 logs of MS2 after only 10 min. The combined use of Cu and Ag revealed synergy in disinfecting MS2 at pH ≥ 7. Although metal concentrations used were higher than the desired values for drinking water treatment, the results prove a promising potential of Cu and Ag combinations as efficient viricidal agents.
Collapse
Affiliation(s)
- Mona Y.M. Soliman
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628, CN Delft, the Netherlands
- Corresponding author.
| | - Gertjan Medema
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628, CN Delft, the Netherlands
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Boris Estrada Bonilla
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
- Fagenbank, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Stan J.J. Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
- Fagenbank, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Doris van Halem
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628, CN Delft, the Netherlands
| |
Collapse
|
30
|
Wang Y, Wu Y, Yu Y, Pan T, Li D, Lambropoulou D, Yang X. Natural polyphenols enhanced the Cu(II)/peroxymonosulfate (PMS) oxidation: The contribution of Cu(III) and HO •. WATER RESEARCH 2020; 186:116326. [PMID: 32854031 DOI: 10.1016/j.watres.2020.116326] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Copper ion (Cu(II)) in water or wastewater has been reported to trigger peroxymonosulfate (PMS) oxidation of organic contaminants (OCs). However, this process can only work in alkaline condition, which limits its potential application. In this study, we found that the introduction of natural polyphenols in the Cu(II)/PMS process can significantly promote the degradation of tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants, in the pH range of 4.3-9.0. With gallic acid (GA) as a representative natural polyphenol, the degradation of TBBPA by GA/Cu(II)/PMS process reached 84.6% in 10 min at initial pH of 4.3 (without pH adjustment), which was 2.2 times higher than that by Cu(II)/PMS process. Multiple reactive oxidants, including Cu(III), hydroxyl radical (HO•) and singlet oxygen, were generated in this process among which Cu(III) and HO• contributed to TBBPA degradation with Cu(III) playing the dominant role. GA accelerated the reduction of Cu(II) to Cu(I) due to the strong chelation and electron-donating capacity of ortho-hydroxyl groups in GA, and then Cu(I) was quickly oxidized by PMS to Cu(III) which can be further acid-catalyzed to produce HO•. TBBPA transformation mainly proceeded through electron abstraction, oxidative debromination and ring-opening reaction pathways. The feasibility of in-situ utilizing natural organic matter (NOM, enriched with polyphenol moieties) to accelerate the degradation of TBBPA by Cu(II)/PMS process in surface water and wastewater was confirmed. The findings of this study indicate that the coupling of NOM and Cu(II), which are present in contaminated water or wastewater, can potentially improve PMS oxidation of OCs in a wide range of pH.
Collapse
Affiliation(s)
- Yu Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yafei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dantong Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Copper phosphide: A dual-catalysis-center catalyst for the efficient activation of peroxydisulfate and degradation of Orange II. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Wang L, Xu H, Jiang N, Wang Z, Jiang J, Zhang T. Trace Cupric Species Triggered Decomposition of Peroxymonosulfate and Degradation of Organic Pollutants: Cu(III) Being the Primary and Selective Intermediate Oxidant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4686-4694. [PMID: 32129609 DOI: 10.1021/acs.est.0c00284] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Activation of persulfates to degrade refractory organic pollutants is currently a hot topic of advanced oxidation. Developing simple and effective activation approaches is crucial for the practical application of persulfates. We report in this research that trace cupric species (Cu(II) in several μM) can efficiently trigger peroxymonosulfate (PMS) oxidation of various organic pollutants under slightly alkaline conditions. The intermediate oxidant dominating this process was investigated with electron paramagnetic resonance (EPR), chemical probing, and in situ Raman spectroscopy. Unlike conventional PMS activation, which generates sulfate radical, hydroxyl radical, or singlet oxygen as major oxidants, Cu(III) was confirmed to be the primary and selective intermediate oxidant during the Cu(II)/PMS oxidation. Hydroxyl radical is the secondary intermediate oxidant formed from the reaction of Cu(III) with OH-. Hybrid oxidation by the two oxidants imparts Cu(II)/PMS with high efficiency in the degradation of a series of pollutants. The results of this work suggest that, with no need of introducing complex catalysts, trace Cu(II) inherent in or artificially introduced to some water or wastewater can effectively trigger PMS oxidation of organic pollutants.
Collapse
Affiliation(s)
- Lihong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Haodan Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Ning Jiang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Zimeng Wang
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
33
|
Li ZY, Wang L, Liu YL, Zhao Q, Ma J. Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study. WATER RESEARCH 2020; 168:115093. [PMID: 31606557 DOI: 10.1016/j.watres.2019.115093] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Hydroxylamine showed an outstanding performance on enhancing the oxidation of pollutants in Fe(II) involved advanced oxidation processes, while the detailed reaction schemes have not been fully revealed. Specific functions of hydroxylamine in the oxidation of benzoic acid with Fe(II)/persulfate (PDS) system were explored. With the addition of hydroxylamine, degradation kinetics of benzoic acid deviated from both two-stage kinetics and pseudo first order kinetics, but could be interpreted well with binomial regression analysis. Degradation rate constant (kobs) of benzoic acid was calculated and showed the same variation trend with [hydroxylamine][Fe(III)]2/([Fe(II)][H+])2, the value of which was changed during reaction processes. A detailed kinetic model for simulating the degradation profile of benzoic acid with hydroxylamine acceleration was proposed for the first time and indicated that interactions of hydroxylamine and Fe(III) were fast equilibrium reactions, which was a dominant factor influencing the oxidation kinetics of benzoic acid in Fe(II)/hydroxylamine/PDS system. Comparative study showed that when 1.4 mM of ascorbic acid was added into Fe(II)/PDS system, degradation kinetics of benzoic acid was similar to that enhanced by hydroxylamine. However, when 0.6 mM or 1.0 mM of ascorbic acid was added, oxidation kinetics still presented as the two-stage profile. Kinetic simulations indicated that Fe(II) was produced slower from Fe(III)-ascorbic acid complexes than that with hydroxylamine, which caused the difference in oxidation kinetics. This study could improve our understanding about the effect of hydroxylamine and other reductants in promoting pollutants elimination in Fe(II)/PDS system.
Collapse
Affiliation(s)
- Zhuo-Yu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yu-Lei Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
34
|
Gu Y, Xiao F, Luo L, Zhou X, Zhou X, Li J, Li Z. Bacterial Disinfection by CuFe 2O 4 Nanoparticles Enhanced by NH 2OH: A Mechanistic Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E18. [PMID: 31861627 PMCID: PMC7022556 DOI: 10.3390/nano10010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Many disinfection technologies have emerged recently in water treatment industry, which are designed to inactivate water pathogens with extraordinary efficiency and minimum side effects and costs. Current disinfection processes, including chlorination, ozonation, UV irradiation, and so on, have their inherent drawbacks, and have been proven ineffective under certain scenarios. Bacterial inactivation by noble metals has been traditionally used, and copper is an ideal candidate as a bactericidal agent owing to its high abundance and low cost. Building on previous findings, we explored the bactericidal efficiency of Cu(I) and attempted to develop it into a novel water disinfection platform. Nanosized copper ferrite was synthesized, and it was reduced by hydroxylamine to form surface bound Cu(I) species. Our results showed that the generated Cu(I) on copper ferrite surface could inactivate E. coli at a much higher efficiency than Cu(II) species. Elevated reactive oxygen species' content inside the cell primarily accounted for the strong bactericidal role of Cu(I), which may eventually lead to enhanced oxidative stress towards cell membrane, DNA, and functional proteins. The developed platform in this study is promising to be integrated into current water treatment industry.
Collapse
Affiliation(s)
- Yu Gu
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Furen Xiao
- College of Materials Science and Engineering and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
| | - Liumin Luo
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Xiaoyu Zhou
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Xiaodong Zhou
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Jin Li
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Zhi Li
- California State University San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA;
| |
Collapse
|
35
|
Kim HE, Lee HJ, Kim MS, Kim T, Lee H, Kim HH, Cho M, Hong SW, Lee C. Differential Microbicidal Effects of Bimetallic Iron-Copper Nanoparticles on Escherichia coli and MS2 Coliphage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2679-2687. [PMID: 30698421 DOI: 10.1021/acs.est.8b06077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic iron-copper nanoparticles (Fe/Cu-NPs) were synthesized by a single-pot surfactant-free method in aqueous solution [via the reduction of ferrous ion to zerovalent iron nanoparticles (Fe-NPs) and the subsequent copper-coating by metal ion exchange]. The produced Fe/Cu-NPs formed aggregates of spherical nanoparticles (approximately 30-70 nm) of Fe-Cu core-shell structures with 11 wt % copper content. The microbicidal effects of Fe/Cu-NPs were explored on Escherichia coli and MS2 coliphage, surrogates for bacterial and viral pathogens, respectively. Fe/Cu-NPs exhibited synergistically enhanced activity for the inactivation of E. coli and MS2, compared to single-metal nanoparticles (i.e., Fe-NPs and Cu-NPs). Various experiments (microbial inactivation tests under different conditions, fluorescence staining assays, experiments using ELISA and qRT-PCR, etc.) suggested that Fe/Cu-NPs inactivate E. coli and MS2 via dual microbicidal mechanisms. Two biocidal copper species [Cu(I) and Cu(III)] can be generated by different redox reactions of Fe/Cu-NPs. It is suggested that E. coli is strongly influenced by the cytotoxicity of Cu(I), while MS2 is inactivated mainly due to the oxidative damages of protein capsid and RNA by Cu(III).
Collapse
Affiliation(s)
- Hyung-Eun Kim
- Center for Water Resource Cycle Research, KIST School , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Hye-Jin Lee
- Department of Chemical Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario Canada
| | - Min Sik Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP) , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Taewan Kim
- School of Urban and Environmental Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun , Ulsan 44919 , Republic of Korea
| | - Hongshin Lee
- School of Urban and Environmental Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun , Ulsan 44919 , Republic of Korea
| | - Hak-Hyeon Kim
- School of Urban and Environmental Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun , Ulsan 44919 , Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience , Chonbuk National University , 79 Gobong-ro , Iksan 54596 , Republic of Korea
| | - Seok-Won Hong
- Center for Water Resource Cycle Research, KIST School , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP) , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Republic of Korea
| |
Collapse
|
36
|
Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS. A mechanism study on the photocatalytic inactivation ofSalmonella typhimuriumbacteria by CuxO loaded rhodium–antimony co-doped TiO2nanorods. Photochem Photobiol Sci 2019; 18:1092-1100. [DOI: 10.1039/c8pp00460a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed photocatalytic inactivation mechanism forS. typhimurium, using a CuxO/Rh–Sb–TiO2NR was studied under visible light.
Collapse
Affiliation(s)
- Love Kumar Dhandole
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| | - Young-Seok Seo
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| | - Su-Gyeong Kim
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| | - Aerin Kim
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| | - Min Cho
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| | - Jum Suk Jang
- Division of Biotechnology
- Advanced Institute of Environment and Bioscience
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan
| |
Collapse
|
37
|
Yan J, Peng J, Lai L, Ji F, Zhang Y, Lai B, Chen Q, Yao G, Chen X, Song L. Activation CuFe 2O 4 by Hydroxylamine for Oxidation of Antibiotic Sulfamethoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14302-14310. [PMID: 30424608 DOI: 10.1021/acs.est.8b03340] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new potential oxidation process is provided by CuFe2O4/hydroxylamine (HA) system for degradation of antibiotics in water. The CuFe2O4/HA system can generate reactive oxygen species (ROS) for the degradation of sulfamethoxazole (SMX). The addition of radical scavengers, including benzoquinone (BQ) and catalase (CAT), inhibited the oxidation of SMX in CuFe2O4/HA system. Electron transfer in the CuFe2O4/HA system played a key function for the generation of ROS and the degradation of SMX. The main ROS, was the superoxide radical (O2•-) mainly generated from adsorbed oxygen (O2(A)), which came from the oxidation of the lattice oxygen (O2-(L)) in CuFe2O4. The CuFe2O4/HA system was effectively applicable for a broad pH range (approximately 5-10). In addition, the activation mechanism for CuFe2O4/HA system was studied with the target contaminant SMX. Finally, the degradation pathways of SMX were proposed under the optimal conditions in CuFe2O4/HA system.
Collapse
Affiliation(s)
- Jianfei Yan
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
| | - Jiali Peng
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
| | - Leiduo Lai
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
| | - Fangzhou Ji
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture , Chengdu 610041 , P. R. China
| | - Bo Lai
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
- Sino-German Centre for Water and Health Research , Sichuan University , Chengdu 610065 , P. R. China
- National Engineering Research Center for Flue Gas Desulfurization , Sichuan University , Chengdu 610065 , P. R. China
- Institute of Environmental Engineering , RWTH Aachen University , Aachen 52056, Germany
| | - Qixuan Chen
- Department of Environmental Science and Engineering, College of Architecture and Environment , Sichuan University , Chengdu 610065 , P. R. China
| | - Gang Yao
- Sino-German Centre for Water and Health Research , Sichuan University , Chengdu 610065 , P. R. China
- Institute of Environmental Engineering , RWTH Aachen University , Aachen 52056, Germany
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co. , Shanghai , 200335 , P. R. China
| | - Liping Song
- SCIEX Analytical Instrument Trading Co. , Shanghai , 200335 , P. R. China
| |
Collapse
|
38
|
Liu J, Dong C, Deng Y, Ji J, Bao S, Chen C, Shen B, Zhang J, Xing M. Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli. WATER RESEARCH 2018; 145:312-320. [PMID: 30165316 DOI: 10.1016/j.watres.2018.08.039] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
As a typical advanced oxidation technology, the Fenton reaction has been employed for the disinfection, owing to the strong oxidizability of hydroxyl radicals (·OH). However, the conventional Fenton system always exhibits a low H2O2 decomposition efficiency, leading to a low production yield of ·OH, which makes the disinfection effect unsatisfactory. Herein, we develop a molybdenum sulfide (MoS2) co-catalytic Fenton reaction for rapid and highly efficient inactivation of Escherichia coli K-12 (E. coli) and Staphylococcus aureus (S. aureus). As a co-catalyst in the Fe(II)/H2O2 Fenton system, MoS2 can greatly facilitate the Fe(III)/Fe(II) cycle reaction by the exposed Mo4+ active sites, which significantly improves the H2O2 decomposition efficiency for the ·OH production. As a result, the MoS2 co-catalytic Fenton system can reach up to 83.37% of inactivation rate of E. coli just in 1 min and 100% of inactivation rate within 30 min, which increased by 2.5 times than that of the conventional Fenton reaction. Furthermore, the ·OH as the primary reactive oxygen species (ROS) in MoS2 co-catalytic Fenton reaction was measured and verified by electron paramagnetic resonance (EPR) and photoluminescence (PL). It is demonstrated an increased amount of ·OH generated from the decomposition of H2O2 in the presence of MoS2, which is responsible for the rapid and efficient inactivation of E. coli and S. aureus. This study provides a new perspective for rapid and highly efficient inactivation of bacteria in environmental remediation.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chencheng Dong
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yuanxin Deng
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiahui Ji
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shenyuan Bao
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Cuirong Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Bin Shen
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jinlong Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Mingyang Xing
- National Engineering Laboratory for Industrial Wastewater Treatment, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
39
|
Li W, Zhou P, Zhang J, Zhang Y, Zhang G, Liu Y, Cheng X. Generation of reactive oxygen species by promoting the Cu(II)/Cu(I) redox cycle with reducing agents in aerobic aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1390-1399. [PMID: 30388095 DOI: 10.2166/wst.2018.416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study investigated the generation of reactive oxygen species (ROS) (O2 -•, H2O2, and HO•) by promoting the Cu(II)/Cu(I) redox cycle with certain reducing agents (RAs) in aerobic aqueous solution, and benzoic acid (BA) was employed as indicator for the hydroxyl radical (HO•). Hydroxylamine (HA) can reduce Cu(II) to Cu(I) to induce chain reactions of copper species resulting in the generation of the superoxide radical (O2 -•) and hydrogen peroxide (H2O2), and the intermediate Cu(I) can further activate H2O2 via a Fenton-like reaction to produce HO•, creating the remarkable BA degradation. O2 is indispensable, and unprotonated HA is the motive power in the O2/Cu/HA system. Moreover, pH is a crucial factor of the O2/Cu/HA system due to the protonated HA not being able to reduce Cu(II) into Cu(I). The oxidation of HA can be effectively induced by trace amounts of Cu(II), and both a higher HA dosage and a higher Cu(II) dosage can enhance H2O2 generation and BA degradation. In addition, some other RAs that can reduce Cu(II) into Cu(I) could replace HA in the O2/Cu/HA system to induce the generation of these ROS in aerobic aqueous solution.
Collapse
Affiliation(s)
- Wenshu Li
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Gucheng Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Yang Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Xin Cheng
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| |
Collapse
|
40
|
Lee H, Seong J, Lee KM, Kim HH, Choi J, Kim JH, Lee C. Chloride-enhanced oxidation of organic contaminants by Cu(II)-catalyzed Fenton-like reaction at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1174-1180. [PMID: 29050865 DOI: 10.1016/j.jhazmat.2017.10.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/08/2017] [Accepted: 10/09/2017] [Indexed: 05/21/2023]
Abstract
The Cu(II)-catalyzed Fenton-like reaction was found to be significantly accelerated in the presence of chloride ion (i.e., the Cu(II)/H2O2/Cl- system), enhancing the oxidative degradation of organic contaminants at neutral pH. The degradation of carbamazepine (a select target contaminant) by the Cu(II)/H2O2 system using 1μM Cu(II) and 10mM H2O2 was accelerated by 28-fold in the presence of 10,000mg/L Cl- at pH 7. The observed rate of carbamazepine degradation generally increased with increasing doses of Cu(II), H2O2, and Cl-, and exhibited an optimal value at around pH 7.5. Various other organic contaminants such as propranolol, phenol, acetaminophen, 4-chlorophenol, benzoic acid, and caffeine were also effectively degraded by the Cu(II)/H2O2/Cl- system. Experiments using oxidant probe compounds and electron paramagnetic spectroscopy suggested that cupryl (Cu(III)) species are the major reactive oxidants responsible for the degradation of these organic contaminants. The enhanced kinetics was further confirmed in natural seawater.
Collapse
Affiliation(s)
- Hongshin Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Juhee Seong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Ki-Myeong Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hak-Hyeon Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaemin Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Changha Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
41
|
Zhou P, Zhang J, Zhang Y, Zhang G, Li W, Wei C, Liang J, Liu Y, Shu S. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1209-1219. [PMID: 29174048 DOI: 10.1016/j.jhazmat.2017.11.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The ability of persulfate (PS) and peroxymonosulfate (PMS) activated by micron or nanoscale zero-valent copper (ZVC or nZVC) to degrade 2,4-dichlorophenol (2,4-DCP) was quantified under various conditions. Mechanism investigation revealed that PS and PMS accelerated the corrosion of ZVC or nZVC to release Cu+ under acidic conditions. The in-situ generated Cu+ further decomposed PS or PMS to produce SO4- and OH, which then dramatically degraded 2,4-DCP. The kobs for 2,4-DCP removal followed pseudo-first-order kinetics, kobs of ZVC/PMS and nZVC/PMS systems were 10∼30 times greater than these in ZVC/PS and nZVC/PS systems. The nZVC/PMS system was most effective to remove 2,4-DCP which even did better than the nZVI/PMS system, with rate constant values ranging from 0.041 to 1.855min-1. At higher pH ZVC is ineffective, but nZVC can activate PS and PMS to significantly degrade 2,4-DCP at pH up to 7.3. The 2,4-DCP degradation pathway was found to involve dechloridation, dehydrogenation, hydroxylation, ring open and mineralization. 56.7% and 45.3% of TOC removals were respectively obtained in the ZVC/PMS and nZVC/PMS systems within 120min. This study helps to comprehend the application of zero-valent metals in reactive radicals-based oxidation processes and the reactivity of Cu+ as an activator of PS and PMS.
Collapse
Affiliation(s)
- Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Gucheng Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Wenshu Li
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Chenmo Wei
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Juan Liang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Ya Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Shihu Shu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Lee HJ, Kim HE, Lee C. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes. WATER RESEARCH 2017; 110:83-90. [PMID: 27998786 DOI: 10.1016/j.watres.2016.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
Combinations of Cu(II) with hydroxylamine (HA) and hydrogen peroxide (H2O2) (i.e., Cu(II)/HA, Cu(II)/H2O2, and Cu(II)/HA/H2O2 systems) were investigated for the control of P. aeruginosa biofilms on reverse osmosis (RO) membranes. These Cu(II)-based disinfection systems effectively inactivated P. aeruginosa cells, exhibiting different behaviors depending on the state of bacterial cells (planktonic or biofilm) and the condition of biofilm growth and treatment (normal or pressurized condition). The Cu(II)/HA and Cu(II)/HA/H2O2 systems were the most effective reagents for the inactivation of planktonic cells. However, these systems were not effective in inactivating cells in biofilms on the RO membranes possibly due to the interactions of Cu(I) with extracellular polymeric substances (EPS), where biofilms were grown and treated in center for disease control (CDC) reactors. Different from the results using CDC reactors, in a pressurized cross-flow RO filtration unit, the Cu(II)/HA/H2O2 treatment significantly inactivated biofilm cells formed on the RO membranes, successfully recovering the permeate flux reduced by the biofouling. The pretreatment of feed solutions by Cu(II)/HA and Cu(II)/HA/H2O2 systems (applied before the biofilm formation) effectively mitigated the permeate flux decline by preventing the biofilm growth on the RO membranes.
Collapse
Affiliation(s)
- Hye-Jin Lee
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hyung-Eun Kim
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Changha Lee
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
43
|
Zhou P, Zhang J, Zhang Y, Liang J, Liu Y, Liu B, Zhang W. Activation of hydrogen peroxide during the corrosion of nanoscale zero valent copper in acidic solution. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Li T, Zhao Z, Wang Q, Xie P, Ma J. Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues. WATER RESEARCH 2016; 105:479-486. [PMID: 27668992 DOI: 10.1016/j.watres.2016.09.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Quinone-hydroquinone analogues have been proven to be efficient promoters of Fenton reactions by accelerating the Fe(III)/Fe(II) redox cycle along with self-destruction. However, so far there is little information on non-quinone-hydroquinone cocatalyst for Fenton reactions. This study found that cysteine, a common aliphatic amino acid, can strongly enhance Fenton degradation of organic pollutants by accelerating Fe(III)/Fe(II) redox cycle, as quinone-hydroquinone analogues do. Further, cysteine is superior to quinone-hydroquinone analogues in catalytic activity, H2O2 utilization and atmospheric limits. The cocatalysis mechanism based on the cycle of cysteine/cystine was proposed.
Collapse
Affiliation(s)
- Tuo Li
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing Mass Spectrum Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Xie
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahai Ma
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Zhou P, Liu B, Zhang J, Zhang Y, Zhang G, Wei C, Liang J, Liu Y, Zhang W. Radicals induced from peroxomonosulfate by nanoscale zero-valent copper in the acidic solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1946-1952. [PMID: 27789895 DOI: 10.2166/wst.2016.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A highly efficient advanced oxidation process for the degradation of benzoic acid (BA) during activation of peroxomonosulfate (PMS) by nanoscale zero-valent copper (nZVC) in acidic solution is reported. BA degradation was almost completely achieved after 10 min in the nZVC/PMS process at initial pH 3.0. PMS could accelerate the corrosion of nZVC in acidic to release Cu+ which can further activate PMS to produce reactive radicals. Both sulfate radical (SO4-•) and hydroxyl radical (•OH) were considered as the primary reactive oxidant in the nZVC/PMS process with the experiments of methyl (MA) and tert-butyl alcohol quenching. Acidic condition (initial pH ≤ 3.0) facilitated BA degradation and pH is a decisive factor to affect the oxidation capacity in the nZVC/PMS process. Moreover, BA degradation in the nZVC/PMS process followed the pseudo-first-order kinetics, and BA degradation efficiency increased with the increase of the nZVC dosage.
Collapse
Affiliation(s)
- Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Bei Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Gucheng Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Chenmo Wei
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Juan Liang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Ya Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Wei Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China E-mail:
| |
Collapse
|
46
|
Ding Y, Huang W, Ding Z, Nie G, Tang H. Dramatically enhanced Fenton oxidation of carbamazepine with easily recyclable microscaled CuFeO 2 by hydroxylamine: Kinetic and mechanism study. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Zhou P, Zhang J, Liu J, Zhang Y, Liang J, Liu Y, Liu B, Zhang W. Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions. RSC Adv 2016. [DOI: 10.1039/c6ra24431a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persulfate can accelerate the corrosion of nZVC to release Cu+ in the acidic aqueous condition, and the reactive radicals were generated through the further activation of persulfate by intermediate Cu+via a Fenton-like reaction.
Collapse
Affiliation(s)
- Peng Zhou
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jing Zhang
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jilong Liu
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yongli Zhang
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Juan Liang
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Ya Liu
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Bei Liu
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Wei Zhang
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|