1
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
2
|
Zepp RG, Acrey B, Davis MJB, Andrady AL, Locklin J, Arnold R, Okungbowa O, Commodore A. Weathering Effects on Degradation of Low-Density Polyethylene-Nanosilica Composite with Added Pro-oxidant. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:4184-4192. [PMID: 38516540 PMCID: PMC10953814 DOI: 10.1007/s10924-023-02864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 03/23/2024]
Abstract
Nanomaterials are increasingly used in polymer composites to enhance their properties, such as mechanical performance and durability, increased electrical conductivity, and improved optical clarity. Here results are presented of a study simulating effects of weathering on degradation of a nanosilica-low-density polyethylene (LDPE) composite. Release of nanosilica from LDPE composites is a potential source of toxic SiO2. Nanosilica based LDPE composites were weathered under carefully controlled conditions by exposure to simulated sunlight. The effects of an added pro-oxidant on weathering was examined. Weathering of the composites with pro-oxidant was determined by quantifying changes in infrared spectroscopic properties (Fourier transform infrared spectroscopy / FTIR); mechanical properties, atomic force microscopy (AFM), scanning electron microscopy and other procedures. Wavelength effects on weathering rates were determined in a series of irradiations using simulated solar radiation passed through light filters that blocked different parts of the ultraviolet spectral region. Rates and spectral irradiance were then analyzed to develop spectral weighting functions (SWFs) that quantify wavelength effects on the sunlight-induced weathering of the pro-oxidant amended composites.
Collapse
Affiliation(s)
- Richard G Zepp
- Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), U.S. Environmental Protection Agency (EPA), 960 College Station Rd, Athens, GA, USA
| | - Brad Acrey
- Laboratory Services and Applied Science Division (LSASD), U.S. Environmental Protection Agency, Region 4, Athens, GA, USA
| | - Mary J B Davis
- Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), U.S. Environmental Protection Agency (EPA), 960 College Station Rd, Athens, GA, USA
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jason Locklin
- Department of Chemistry, Faculty of Engineering, University of Georgia, Athens, GA, USA
| | - Rachelle Arnold
- Department of Chemistry, Faculty of Engineering, University of Georgia, Athens, GA, USA
| | - Osadolor Okungbowa
- Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), U.S. Environmental Protection Agency (EPA), 960 College Station Rd, Athens, GA, USA
| | - Adwoa Commodore
- Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), U.S. Environmental Protection Agency (EPA), 960 College Station Rd, Athens, GA, USA
| |
Collapse
|
3
|
Suazo-Hernández J, Arancibia-Miranda N, Mlih R, Cáceres-Jensen L, Bolan N, Mora MDLL. Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:572. [PMID: 36770533 PMCID: PMC9919586 DOI: 10.3390/nano13030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolás Arancibia-Miranda
- Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
4
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
5
|
Gupta G, Cappellini F, Farcal L, Gornati R, Bernardini G, Fadeel B. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1). Part Fibre Toxicol 2022; 19:33. [PMID: 35538581 PMCID: PMC9088059 DOI: 10.1186/s12989-022-00467-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). Methods The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. Results We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. Conclusions CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00467-w.
Collapse
Affiliation(s)
- Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Francesca Cappellini
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.
| |
Collapse
|
6
|
Carboni A, Slomberg DL, Nassar M, Santaella C, Masion A, Rose J, Auffan M. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16270-16282. [PMID: 34854667 DOI: 10.1021/acs.est.1c02221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, mesocosms have emerged as a useful tool for the environmental study of engineered nanomaterials (ENMs) as they can mimic the relevant exposure scenario of contamination. Herein, we analyzed the scientific outcomes of aquatic mesocosm experiments, with regard to their designs, the ENMs tested, and the end points investigated. Several mesocosm designs were consistently applied in the past decade to virtually mimic various contamination scenarios with regard to ecosystem setting as well as ENMs class, dose, and dosing. Statistical analyses were carried out with the literature data to identify the main parameters driving ENM distribution in the mesocosms and the potential risk posed to benthic and planktonic communities as well as global ecosystem responses. These analyses showed that at the end of the exposure, mesocosm size (water volume), experiment duration, and location indoor/outdoor had major roles in defining the ENMs/metal partitioning. Moreover, a higher exposure of the benthic communities is often observed but did not necessarily translate to a higher risk due to the lower hazard posed by transformed ENMs in the sediments (e.g., aggregated, sulfidized). However, planktonic organisms were generally exposed to lower concentrations of potentially more reactive and toxic ENM species. Hence, mesocosms can be complementary tools to existing standard operational procedures for regulatory purposes and environmental fate and risk assessment of ENMs. To date, the research was markedly unbalanced toward the investigation of metal-based ENMs compared to metalloid- and carbon-based ENMs but also nanoenabled products. Future studies are expected to fill this gap, with special regard to high production volume and potentially hazardous ENMs. Finally, to take full advantage of mesocosms, future studies must be carefully planned to incorporate interdisciplinary approaches and ensure that the large data sets produced are fully exploited.
Collapse
Affiliation(s)
- Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Mohammad Nassar
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- Laboratory of Microbial Ecology of the Rhizosphere, Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, ECCOREV FR 3098, F-13108 Saint Paul-Lez-Durance, France
| | - Armand Masion
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Jerome Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| | - Melanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| |
Collapse
|
7
|
Chowdhury NN, Cox AR, Wiesner MR. Nanoparticles as vectors for antibiotic resistance: The association of silica nanoparticles with environmentally relevant extracellular antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143261. [PMID: 33223180 DOI: 10.1016/j.scitotenv.2020.143261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 05/09/2023]
Abstract
A relevant but yet unconsidered subset of particles that may alter the fate of extracellular antibiotic resistance genes (eARGs) are nano-scale particles (NPs), which are ubiquitous in natural environments and have unique properties. In this study, sorption isotherms were developed describing the association of linear DNA fragments isolated from widespread eARGs (blaI and nptII) with either micon-sized kaolinite or silica nanoparticles (SNPs), to determine if sorption capacity was enhanced at the nanoscale. For each isotherm, eARG fragments were added at five starting concentrations (5-40 μg/mL) to mixed batch systems with 0.25 g of particles and nuclease-free water. Sorption was quantified by the removal of DNA from solution, as detected by a Qubit fluorimeter. Isotherms were developed for eARGs of various fragment lengths (508, 680 and 861 bp), guanine-cytosine (GC) contents (34%, 47% and 54%) and both double and single stranded eARGs, to assess the impact of DNA properties on particle association. Sorption isotherms were also developed in systems with added humic acid and/or CaCl2, to assess the impact of these environmental parameters on sorption. FTIR analysis was performed to analyze the conformation of sorbed eARGs. Desorption of eARGs was studied by quantifying the removal of eDNA from washed and vortexed post-sorption particles. Statistically significant irreversible sorption of eARGs to environmentally relevant NPs (humic acid functionalized silica nanoparticles) was demonstrated for the first time. Nano-emergent properties did not increase sorption capacity of eARGs, but led to a unique compressed conformation of sorbed eARGs. The addition of humic acid, increased CaCl2 concentration and small DNA fragment size favored sorption. NPs showed a slight preference for the sorption of single-stranded DNA over double-stranded DNA. These findings suggest that NP association with eARGs may be a significant and unique environmental phenomenon that could influence the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nadratun N Chowdhury
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.
| | - Akylah R Cox
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| |
Collapse
|
8
|
Amorim MJB, Scott-Fordsmand JJ. Plastic pollution - A case study with Enchytraeus crypticus - From micro-to nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116363. [PMID: 33385895 DOI: 10.1016/j.envpol.2020.116363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 05/23/2023]
Abstract
The concern about microplastic (a group of polymers) in the environment may cause us to overlook a more substantial problem: microplastics will fragment into nanoplastics. This fragmentation will lead to a high number of nanoplastics particles. Such nanoplastic can be taken up by cells, as opposed to microscale particles that are either not or to much less extend taken up. Fragmentation into nano will also release materials previously safely embedded in the polymer. We here present results from 25 OECD/ISO in vivo hazard tests, and beyond, e.g. extended exposure duration, with Enchytraeus crypticus, using pristine nano-scale materials (NMs) [CuO, Fe2O3, Organic Pigment, MWCNT], fragmented products (polymers) with these NMs embedded in the matrices (FP_NM), and fragmented polymers without NMs (FP) [covering the 4 major plastic types: Acrylic, Polyethylene, Polypropylene and Epoxy]. For example, MWCNTs induced a highly significant population decrease after extended period of 60 days, despite having no impact after 28 days' exposure, the standard OECD duration. We conclude, that the standard tests were not suitable to evaluate hazards of these plastic fragments, weathering/ageing of materials is recommended, and extension of test duration can add value to the testing of NMs. We must refocus the concern to testing with polymers (not only "plastics"), from micro-to nano-polymers, and from aquatic to terrestrial environments.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, 3810-193, Portugal.
| | | |
Collapse
|
9
|
Carboni A, Gelabert A, Charron G, Faucher S, Lespes G, Sivry Y, Benedetti MF. Mobility and transformation of CdSe/ZnS quantum dots in soil: Role of the capping ligands and ageing effect. CHEMOSPHERE 2020; 254:126868. [PMID: 32348924 DOI: 10.1016/j.chemosphere.2020.126868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The increasing application of Quantum Dots (QDs) is cause of concern for the potential negative effects for the ecosystem, especially in soils that may act as a sink. In this study, soil leaching experiments were performed in quartz sand packed columns to investigate the behavior of core-shell CdSe/ZnS QDs coated with either small ligands (TGA-QDs) or more complex polymers (POAMA-QDs). Fluorescence emission was compared to mass spectrometric measurements to assess the nanoparticles (NPs) state in both the leachate (transported species) and porous media (deposited amounts). Although both QDs were strongly retained in the column, large differences were observed depending on their capping ligand stability. Specifically, for TGA-QDs elution was negligible and the retained fraction accumulated in the top-columns. Furthermore, 74% of the NPs were degraded and 38% of the Se was found in the leachate in non-NPs state. Conversely, POAMA-QDs were recovered to a larger extent (78.1%), and displayed a higher transport along the soil profile. Further experiments with altered NPs showed that homo-aggregation of the QDs prior injection determined a reduced mobility but no significant changes in their stability. Eventually, ageing of the NPs in the column (15 days) caused the disruption of up to 92% of the original QDs and the immobilization of NPs and metals. These results indicate that QDs will accumulate in top-soils, where transformations phenomena will determine the overall transport, persistency and degradation of these chemicals. Once accumulated, they may act as a source for potentially toxic Cd and Se metal species displaying enhanced mobility.
Collapse
Affiliation(s)
- A Carboni
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France; Centre de Recherche et d'Enseignement de Géosciences de l'Environnement, Technopole Environnement Arbois-Mediterranee, BP80, 13545, Aix-en-Provence Cedex 04, Aix-en-Provence, France.
| | - A Gelabert
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - G Charron
- Laboratoire Matière et Systèmes Complexes (MSC), Univ. Paris Diderot, 75013, Paris, France
| | - S Faucher
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - G Lespes
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - Y Sivry
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - M F Benedetti
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| |
Collapse
|
10
|
A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Arch Toxicol 2020; 94:2463-2479. [DOI: 10.1007/s00204-020-02750-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/08/2020] [Indexed: 01/22/2023]
|
11
|
Brand SJ, Botha TL, Wepener V. Behavioural response as a reliable measure of acute nanomaterial toxicity in zebrafish larvae exposed to a carbon-based versus a metal-based nanomaterial. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1702098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sarel J Brand
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Research Chair in Nanotechnology for Water, Department of Applied Chemistry, University of Johannesburg, South Africa
| | - Tarryn L Botha
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Sousa VS, Ribau Teixeira M. Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136077. [PMID: 31863978 DOI: 10.1016/j.scitotenv.2019.136077] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The emergence of nanotechnologically-enabled materials, compounds or products inevitably leads to engineered nanoparticles (ENPs) released into surface waters. ENPs have already been detected in wastewater streams, drinking water sources and even in tap water at concentrations in the ng/L and μg/L range, making the latter a potential route for humans. The presence of ENPs in raw waters raises concerns over the possibility that ENPs might pose a hazard to the quality and security of drinking water and whether drinking water treatment plants (DWTPs) are prepared to handle this problem. Therefore, it is essential to critically evaluate if ENPs can be effectively removed through water treatment processes to control environmental and human health risks associated with their release. This review includes a summary of the available information on production, presence, potential hazards to human health and environment, and release and behaviour of metal-based ENPs in surface waters and drinking water. In addition, the most extensively studied water treatment processes to remove metal-based ENPs, specifically conventional and advanced processes, are discussed and highlighted in detail. Furthermore, this work identifies the research gaps regarding ENPs removal in DWTPs and discusses future aspects of ENPs in water treatment.
Collapse
Affiliation(s)
- Vânia Serrão Sousa
- CENSE, Center for Environmental and Sustainability Research, Portugal; University of Algarve, Faculty of Sciences and Technology, bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Center for Environmental and Sustainability Research, Portugal; University of Algarve, Faculty of Sciences and Technology, bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
13
|
Goodwin DG, Lai T, Lyu Y, Lu CY, Campos A, Reipa V, Nguyen T, Sung L. The Impacts of Moisture and Ultraviolet Light on the Degradation of Graphene Oxide/Polymer Nanocomposites. NANOIMPACT 2020; 19:10.1016/j.impact.2020.100249. [PMID: 33506141 PMCID: PMC7836096 DOI: 10.1016/j.impact.2020.100249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extent to which hydrophilic GO nanofillers regulate polymer degradation during exposure to a combination of ultraviolet (UV) radiation and moisture is presently unknown. Accordingly, this study systematically evaluated the effect of GO on polymer degradability under both humid UV and dry UV conditions. Both GO accumulation at the polymer nanocomposite (PNC) surface and GO release following degradation were also investigated. Different mass loadings of GO were incorporated into waterborne polyurethane (WBPU), a commonly used exterior coating, and the resulting GO/WBPU nanocomposites were exposed to precisely controlled accelerated weathering conditions using the NIST Simulated Photodegradation via High Energy Radiant Exposure (SPHERE) device. Thickness loss and infrared spectroscopy measurements indicated GO slightly improved the durability of WBPU under dry UV conditions but not under humid UV conditions. Raman spectroscopy, scanning electron microscopy, and atomic force microscopy modulus measurements indicated that GO accumulation occurred at and near the PNC surface under both conditions but to a more rapid extent under humid UV conditions. Minimal GO release occurred under dry UV conditions as measured with Raman spectroscopy of aqueous run-off from a simulated rain spray applied to degraded PNCs. In contrast, PNC surface transformations under humid UV conditions suggested that GO release occurred.
Collapse
Affiliation(s)
- David G. Goodwin
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Trinny Lai
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Yadong Lyu
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Chen Yuan Lu
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Alejandro Campos
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899 USA
| | - Tinh Nguyen
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Lipiin Sung
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| |
Collapse
|
14
|
Shafique M, Luo X. Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2493. [PMID: 31390752 PMCID: PMC6696398 DOI: 10.3390/ma12152493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
Abstract
Nanotechnology has received increasing attention and is being applied in the transportation vehicle field. With their unique physical and chemical characteristics, nanomaterials can significantly enhance the safety and durability of transportation vehicles. This paper reviews the state-of-the-art of nanotechnology and how this technology can be applied in improving the comfort, safety, and speed of transportation vehicles. Moreover, this paper systematically examines the recent developments and applications of nanotechnology in the transportation vehicle industry, including nano-coatings, nano filters, carbon black for tires, nanoparticles for engine performance enchantment and fuel consumption reduction. Also, it introduces the main challenges for broader applications, such as environmental, health and safety concerns. Since several nanomaterials have shown tremendous performance and have been theoretically researched, they can be potential candidates for applications in future environmental friendly transportation vehicles. This paper will contribute to further sustainable research and greater potential applications of environmentally friendly nanomaterials in healthier transportation vehicles to improve the transportation industry around the globe.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong
- Architecture and Civil Engineering Research Center, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Xiaowei Luo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong.
- Architecture and Civil Engineering Research Center, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
15
|
Masion A, Auffan M, Rose J. Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing? MATERIALS 2019; 12:ma12152447. [PMID: 31370318 PMCID: PMC6696399 DOI: 10.3390/ma12152447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Traditional aging protocols typically examine only the effects of a limited number of stresses, and relatively harsh conditions may trigger degradation mechanisms that are not observed in actual situations. Environmental aging is, in essence, the complex interaction of multiple mechanical, physicochemical and biological stresses. As yet, there is no (pre)standardized procedure that addresses this issue in a satisfactory manner. Mesocosm experiments can be designed to specifically cover the aging of nanomaterials while characterizing the associated exposure and hazard. The scenario of exposure and the life time of the nanomaterial appear as the predominant factors in the design of the experiment, and appropriate precautions need to be taken. This should the subject of guidance that may be divided into product/application categories.
Collapse
Affiliation(s)
- Armand Masion
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France.
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France.
| | - Mélanie Auffan
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France
- Civil and Environmental Engineering, Duke university, Durham, NC 27708, USA
| | - Jérôme Rose
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France
- Civil and Environmental Engineering, Duke university, Durham, NC 27708, USA
| |
Collapse
|
16
|
Characterisation of titanium oxide nanomaterials in sunscreens obtained by extraction and release exposure scenarios. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol 2019; 16:8. [PMID: 30760282 PMCID: PMC6374901 DOI: 10.1186/s12989-019-0291-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Neenu Singh
- Faculty of Health Sciences and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - John W Wills
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas S Wilkinson
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Andy P Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
18
|
Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractResearch on engineered nanomaterials (ENM) has progressed rapidly from the very early stages of studying their unique, size-dependent physicochemical properties and commercial exploration to the development of products that influence our everyday lives. We have previously reviewed various methods for synthesis, surface functionalization, and analytical characterization of ENM in a publication titled ‘Engineered Nanomaterials: Preparation, Functionalization and Characterization’. In this second, inter-linked document, we first provide an overview of important applications of ENM in products relevant to human healthcare and consumer goods, such as food, textiles, and cosmetics. We then highlight the challenges for the design and development of new ENM for bio-applications, particularly in the rapidly developing nanomedicine sector. The second part of this document is dedicated to nanotoxicology studies of ENM in consumer products. We describe the various biological targets where toxicity may occur, summarize the four nanotoxicology principles, and discuss the need for careful consideration of the biodistribution, degradation, and elimination routes of nanosized materials before they can be safely used. Finally, we review expert opinions on the risk, regulation, and ethical aspects of using engineered nanomaterials in applications that may have direct or indirect impact on human health or our environment.
Collapse
|
19
|
Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K. Advanced tools for the safety assessment of nanomaterials. NATURE NANOTECHNOLOGY 2018; 13:537-543. [PMID: 29980781 DOI: 10.1038/s41565-018-0185-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/05/2018] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENMs) have tremendous potential to produce beneficial technological impact in numerous sectors in society. Safety assessment is, of course, of paramount importance. However, the myriad variations of ENM properties makes the identification of specific features driving toxicity challenging. At the same time, reducing animal tests by introducing alternative and/or predictive in vitro and in silico methods has become a priority. It is important to embrace these new advances in the safety assessment of ENMs. Indeed, remarkable progress has been made in recent years with respect to mechanism-based hazard assessment of ENMs, including systems biology approaches as well as high-throughput screening platforms, and new tools are also emerging in risk assessment and risk management for humans and the environment across the whole life-cycle of nano-enabled products. Here, we highlight some of the key advances in the hazard and risk assessment of ENMs.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Danail Hristozov
- Department of Biology, University of Venice Ca Foscari, Venice, Italy
| | - Antonio Marcomini
- Department of Biology, University of Venice Ca Foscari, Venice, Italy
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health, Helsinki, Finland.
| |
Collapse
|
20
|
Hristozov D, Pizzol L, Basei G, Zabeo A, Mackevica A, Hansen SF, Gosens I, Cassee FR, de Jong W, Koivisto AJ, Neubauer N, Sanchez Jimenez A, Semenzin E, Subramanian V, Fransman W, Jensen KA, Wohlleben W, Stone V, Marcomini A. Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives. Nanotoxicology 2018; 12:747-765. [PMID: 29893192 DOI: 10.1080/17435390.2018.1472314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of nano-scale copper oxide (CuO) and basic copper carbonate (Cu2(OH)2CO3) in both ionic and micronized wood preservatives has raised concerns about the potential of these substances to cause adverse humans health effects. To address these concerns, we performed quantitative (probabilistic) human health risk assessment (HHRA) along the lifecycles of these formulations used in antibacterial and antifungal wood coatings and impregnations by means of the EU FP7 SUN project's Decision Support System (SUNDS, www.sunds.gd). The results from the risk analysis revealed inhalation risks from CuO in exposure scenarios involving workers handling dry powders and performing sanding operations as well as potential ingestion risks for children exposed to nano Cu2(OH)2CO3 in a scenario involving hand-to-mouth transfer of the substance released from impregnated wood. There are, however, substantial uncertainties in these results, so some of the identified risks may stem from the safety margin of extrapolation to fill data gaps and might be resolved by additional testing. Our stochastic approach successfully communicated the contribution of different sources of uncertainty in the risk assessment. The main source of uncertainty was the extrapolation from short to long-term exposure, which was necessary due to the lack of (sub)chronic in vivo studies with CuO and Cu2(OH)2CO3. Considerable uncertainties also stemmed from the use of default inter- and intra-species extrapolation factors.
Collapse
Affiliation(s)
- Danail Hristozov
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy.,b Greendecision Srl , Venice , Italy
| | - Lisa Pizzol
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy.,b Greendecision Srl , Venice , Italy
| | - Gianpietro Basei
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy
| | - Alex Zabeo
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy.,b Greendecision Srl , Venice , Italy
| | - Aiga Mackevica
- c Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Steffen Foss Hansen
- c Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Ilse Gosens
- d National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Flemming R Cassee
- d National Institute for Public Health and the Environment , Bilthoven , Netherlands.,e Institute of Risk Assessment Studies , Utrecht University , Netherlands
| | - Wim de Jong
- d National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | | | | | | | - Elena Semenzin
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy
| | - Vrishali Subramanian
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy
| | - Wouter Fransman
- i Netherlands Organisation for Applied Scientific Research TNO , Zeist , Netherlands
| | - Keld Alstrup Jensen
- f National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Wendel Wohlleben
- f National Research Centre for the Working Environment , Copenhagen , Denmark.,g BASF SE , Ludwigshafen , Germany
| | - Vicki Stone
- j School of Life Sciences, Nanosafety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Antonio Marcomini
- a Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari , Venice , Italy
| |
Collapse
|
21
|
Amorim MJB, Lin S, Schlich K, Navas JM, Brunelli A, Neubauer N, Vilsmeier K, Costa AL, Gondikas A, Xia T, Galbis L, Badetti E, Marcomini A, Hristozov D, Kammer FVD, Hund-Rinke K, Scott-Fordsmand JJ, Nel A, Wohlleben W. Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1514-1524. [PMID: 29376638 DOI: 10.1021/acs.est.7b04122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al. Meeting the Needs for Released Nanomaterials Required for Further Testing: The SUN Approach. Environmental Science & Technology, 2016 (50), 2747). The NEPs were composed of four matrices (epoxy, polyolefin, polyoxymethylene, and cement) with up to 5% content of three nanomaterials (carbon nanotubes, iron oxide, and organic pigment). Regardless of the type of nanomaterial or matrix used, it was observed that nanomaterials were only partially exposed at the NEP fragment surface, indicating that mostly the intrinsic and extrinsic properties of the matrix drove the NEP fragment toxicity. Ecotoxicity in multiple assays was done covering relevant media from terrestrial to aquatic, including sewage treatment plant (biological activity), soil worms (Enchytraeus crypticus), and fish (zebrafish embryo and larvae and trout cell lines). We designed the studies to explore the possible modulation of ecotoxicity by nanomaterial additives in plastics/polymer/cement, finding none. The results support NEPs grouping by the matrix material regarding ecotoxicological effect during the use phase. Furthermore, control results on nanomaterial-free polymer fragments representing microplastic had no significant adverse effects up to the highest concentration tested.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology and CESAM, University of Aveiro , 3810-193, Aveiro, Portugal
| | - Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai 200092, China
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Karsten Schlich
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - José M Navas
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Centra De la Coruña Km 7.5, E-28040 Madrid, Spain
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Nicole Neubauer
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Klaus Vilsmeier
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Anna L Costa
- National Research Council of Italy, Institute of Science and Technology for Ceramics (CNR-ISTEC) , Via Granarolo, 64, I-48018 Faenza, Italy
| | - Andreas Gondikas
- Department of Environmental Geosciences, University of Vienna , 1090 Vienna, Austria
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Liliana Galbis
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Centra De la Coruña Km 7.5, E-28040 Madrid, Spain
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna , 1090 Vienna, Austria
| | - Kerstin Hund-Rinke
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | | | - André Nel
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Wendel Wohlleben
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
- Department of Experimental Toxicology and Ecology, BASF SE , D-67056 Ludwigshafen, Germany
| |
Collapse
|
22
|
Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Sci Rep 2018; 8:1565. [PMID: 29371617 PMCID: PMC5785520 DOI: 10.1038/s41598-018-19275-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
For frequently used engineered nanomaterials (ENMs) CeO2-, SiO2-, and Ag, past, current, and future use and environmental release are investigated. Considering an extended period (1950 to 2050), we assess ENMs released through commercial activity as well as found in natural and technical settings. Temporal dynamics, including shifts in release due to ENM product application, stock (delayed use), and subsequent end-of-life product treatment were taken into account. We distinguish predicted concentrations originating in ENM use phase and those originating from end-of-life release. Furthermore, we compare Ag- and CeO2-ENM predictions with existing measurements. The correlations and limitations of the model, and the analytic validity of our approach are discussed in the context of massive use of assumptive model data and high uncertainty on the colloidal material captured by the measurements. Predictions for freshwater CeO2-ENMs range from 1 pg/l (2017) to a few hundred ng/l (2050). Relative to CeO2, the SiO2-ENMs estimates are approximately 1,000 times higher, and those for Ag-ENMs 10 times lower. For most environmental compartments, ENM pose relatively low risk; however, organisms residing near ENM 'point sources' (e.g., production plant outfalls and waste treatment plants), which are not considered in the present work, may be at increased risk.
Collapse
Affiliation(s)
- Bernd Giese
- University of Bremen, Faculty of Production Engineering, Department of Technology Design and Technology Development, Badgasteiner Str, 1 28359, Bremen, Germany
- University of Natural Resources and Life Sciences, Institute of Safety and Risk Sciences, Borkowskigasse 4, 1190, Vienna, Austria
| | - Fred Klaessig
- Pennsylvania Bio Nano Systems, Doylestown, Pennsylvania, 18901, United States
- Center for Environmental Implications of Nanotechnology (UC CEIN), University of California Santa Barbara, Santa Barbara, California, 93106-5131, United States
| | | | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Michael Steinfeldt
- University of Bremen, Faculty of Production Engineering, Department of Technology Design and Technology Development, Badgasteiner Str, 1 28359, Bremen, Germany
| | - Henning Wigger
- University of Bremen, Faculty of Production Engineering, Department of Technology Design and Technology Development, Badgasteiner Str, 1 28359, Bremen, Germany
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Arnim von Gleich
- University of Bremen, Faculty of Production Engineering, Department of Technology Design and Technology Development, Badgasteiner Str, 1 28359, Bremen, Germany
| | - Fadri Gottschalk
- ETSS AG, Engineering, technical and scientific services, CH-7558, Strada, Switzerland.
| |
Collapse
|
23
|
Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regul Toxicol Pharmacol 2017; 91:257-266. [DOI: 10.1016/j.yrtph.2017.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
|
24
|
Environmental Risk Assessment Strategy for Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101251. [PMID: 29048395 PMCID: PMC5664752 DOI: 10.3390/ijerph14101251] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.
Collapse
|
25
|
Neubauer N, Scifo L, Navratilova J, Gondikas A, Mackevica A, Borschneck D, Chaurand P, Vidal V, Rose J, von der Kammer F, Wohlleben W. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11669-11680. [PMID: 28988475 DOI: 10.1021/acs.est.7b02578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe2O3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).
Collapse
Affiliation(s)
- Nicole Neubauer
- BASF SE, Material Physics, GMC/R, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Lorette Scifo
- CEREGE UR 34 Aix Marseille University - CNRS - IRD , 13545, Marseille, Aix-en-Provence France
| | - Jana Navratilova
- University of Vienna , Department of Environmental Geosciences, 1090 Vienna, Austria
| | - Andreas Gondikas
- University of Vienna , Department of Environmental Geosciences, 1090 Vienna, Austria
| | - Aiga Mackevica
- Technical University of Denmark , Department of Environmental Engineering, 2800 Kgs. Lyngby, Denmark
| | - Daniel Borschneck
- CEREGE UR 34 Aix Marseille University - CNRS - IRD , 13545, Marseille, Aix-en-Provence France
| | - Perrine Chaurand
- CEREGE UR 34 Aix Marseille University - CNRS - IRD , 13545, Marseille, Aix-en-Provence France
| | - Vladimir Vidal
- CEREGE UR 34 Aix Marseille University - CNRS - IRD , 13545, Marseille, Aix-en-Provence France
| | - Jerome Rose
- CEREGE UR 34 Aix Marseille University - CNRS - IRD , 13545, Marseille, Aix-en-Provence France
| | - Frank von der Kammer
- University of Vienna , Department of Environmental Geosciences, 1090 Vienna, Austria
| | - Wendel Wohlleben
- BASF SE, Material Physics, GMC/R, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
26
|
Hu X, Kang W, Mu L. Aqueously Released Graphene Oxide Embedded in Epoxy Resin Exhibits Different Characteristics and Phytotoxicity of Chlorella vulgaris from the Pristine Form. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5425-5433. [PMID: 28437605 DOI: 10.1021/acs.est.7b00361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The environmental release of nanoparticles is attracting increasing attention. Graphene oxide (GO) embedded in epoxy resin (ER) is a popular composite that has been used in various fields, but the environmental release of GO-ER composites and the effects on organisms in the environment remain unknown. The present work found that GO-ER composites in water for 2-7 days resulted in the release of 0.3-2.1% GO-ER at nanoscale (2-3 nm thickness and approximately 70-130 nm lateral length). Interestingly, pristine GO quenched 30-45% hydroxyl and 12% nitroxide free radicals, whereas this capacity was not observed for the released particles from GO-ER. At environmentally relevant concentrations (μg/L), released GO-ER particles, but not GO or ER matrix, promoted algal reproduction by 34% and chlorophyll biosynthesis by 65-127% at 96 h. Released GO-ER entered algal cells and induced a slight increase in reactive oxygen species but did not elicit notable cell structure damage. The upregulated amino acids and phenylalanine metabolism, and the downregulated fatty acid biosynthesis contributed to algal growth promoted by released GO-ER. Previous studies of pristine nanoparticles were unable to reflect the environmental effects of released nanoparticles into the environment, and our research on the exposure-toxicological continuum adds important contributions to this field.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| |
Collapse
|
27
|
Hüffer T, Praetorius A, Wagner S, von der Kammer F, Hofmann T. Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2499-2507. [PMID: 28125881 DOI: 10.1021/acs.est.6b04054] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) have been identified as contaminants of emerging concern in aquatic environments and research into their behavior and fate has been sharply increasing in recent years. Nevertheless, significant gaps remain in our understanding of several crucial aspects of MP exposure and risk assessment, including the quantification of emissions, dominant fate processes, types of analytical tools required for characterization and monitoring, and adequate laboratory protocols for analysis and hazard testing. This Feature aims at identifying transferrable knowledge and experience from engineered nanoparticle (ENP) exposure assessment. This is achieved by comparing ENP and MPs based on their similarities as particulate contaminants, whereas critically discussing specific differences. We also highlight the most pressing research priorities to support an efficient development of tools and methods for MPs environmental risk assessment.
Collapse
Affiliation(s)
- Thorsten Hüffer
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Antonia Praetorius
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
- University of Vienna , Research Platform Nano-Norms-Nature, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Frank von der Kammer
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Thilo Hofmann
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
- University of Vienna , Research Platform Nano-Norms-Nature, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
28
|
Wohlleben W, Kingston C, Carter J, Sahle-Demessie E, Vázquez-Campos S, Acrey B, Chen CY, Walton E, Egenolf H, Müller P, Zepp R. NanoRelease: Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded carbon nanotubes. CARBON 2017; 113:346-360. [PMID: 30147114 PMCID: PMC6104645 DOI: 10.1016/j.carbon.2016.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses. We prepared 132 specimens of two polymer-MWCNT composites containing the same grade of MWCNTs used in earlier OECD hazard assessments but without UV stabilizer. We report on a pilot inter-laboratory comparison (ILC) with four labs (two US and two EU) aging by UV and rain, then shipping for analysis. Two labs (one US and one EU) conducted the release sampling and analysis by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), UltravioleteVisible Spectroscopy (UVeVis), Analytical Ultracentrifugation (AUC), and Asymmetric Flow Field Flow Fractionation (AF4). We compare results between aging labs, between analysis labs and between materials. Surprisingly, we found quantitative agreement between analysis labs for TEM, ICP-MS, UVeVis; low variation between aging labs by all methods; and consistent rankings of release between TEM, ICP-MS, UVeVis, AUC. Significant disagreement was related primarily to differences in aging, but even these cases remained within a factor of two.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | | - Janet Carter
- Occupational Safety and Health Administration (OSHA), USA
| | - E. Sahle-Demessie
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), National Risk Management Research Laboratory (NRMRL), Cincinnati, OH, USA
| | | | - Brad Acrey
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- Student Services Associate
| | - Chia-Ying Chen
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- National Research Council Associate
| | - Ernest Walton
- EPA, Region 4, Science and Ecosystem Support Division (SESD), Athens, GA, USA
| | - Heiko Egenolf
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Philipp Müller
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Richard Zepp
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- Corresponding author. (R. Zepp)
| |
Collapse
|
29
|
Mitrano DM, Nowack B. The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. NANOTECHNOLOGY 2017; 28:072001. [PMID: 28074782 DOI: 10.1088/1361-6528/28/7/072001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Assessing the risks of manufactured nanomaterials (MNM) has been almost exclusively focused on the pristine, as-produced materials with far fewer studies delving into more complex, real world scenarios. However, when considering a life-cycle perspective, it is clear that MNM released from commercial products during manufacturing, use and disposal are far more relevant both in terms of more realistic environmental fate and transport as well as environmental risk. The quantity in which the particles are released and their (altered) physical and chemical form should be identified and it is these metrics that should be used to assess the exposure and hazard the materials pose. The goal of this review is to (1) provide a rationale for using a life-cycle based approach when dealing with MNM transformations, (2) to elucidate the different chemical and physical forces which age and transform MNM and (3) assess the pros and cons of current analytical techniques as they pertain to the measurement of aged and transformed MNM in these complex release scenarios. Specifically, we will describe the possible transformations common MNM may undergo during the use or disposal of nano-products based on how these products will be used by the consumer by taking stock of the current nano-enabled products on the market. Understanding the impact of these transformations may help forecast the benefits and/or risks associated with the use of products containing MNM.
Collapse
Affiliation(s)
- Denise M Mitrano
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | |
Collapse
|
30
|
Rhiem S, Barthel AK, Meyer-Plath A, Hennig MP, Wachtendorf V, Sturm H, Schäffer A, Maes HM. Release of (14)C-labelled carbon nanotubes from polycarbonate composites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:356-365. [PMID: 27194367 DOI: 10.1016/j.envpol.2016.04.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites.
Collapse
Affiliation(s)
- Stefan Rhiem
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Anne-Kathrin Barthel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Asmus Meyer-Plath
- BAuA - Federal Institute for Occupational Safety and Health, Nöldnerstr. 40-42, 10317 Berlin, Germany
| | - Michael P Hennig
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Volker Wachtendorf
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Hanna M Maes
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|