1
|
Xiao Y, Goderis D, Reilly KS, Severud T, Pratt KA, Dvonch JT, Mason AJ, Ault AP. Aerosol Capture for Coupling to Microfluidics: A Miniaturized Low-Cost Device for Size-Resolved Particle Collection. Anal Chem 2025; 97:6222-6229. [PMID: 40079406 DOI: 10.1021/acs.analchem.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Inhaled aerosols impact human health by depositing harmful species in the lungs (e.g., metals and organic pollutants) and act as a key pathway for airborne disease transmission. Aerosol inhalation is highly size-dependent, with smaller particles (particulate matter <2.5 μm, PM2.5) depositing deeper in the lungs (e.g., alveoli) leading to strong correlations between PM2.5 and mortality, along with other respiratory and cardiovascular diseases. A longstanding challenge for detailed aerosol chemical analysis is that most PM2.5 health studies collect offline samples, which are subsequently analyzed offsite, requiring high-cost collectors and significant downstream effort and cost. Herein, we present a low-cost, miniature 3D-printed impactor coupled to a microfluidic channel to allow for downstream analysis of PM in liquid. After size-segregated collection of airborne particles within the device, water is flowed through a microfluidic channel that resuspends insoluble particles or dissolves soluble particles. Size-dependent collection efficiencies (50% cutoff diameters, d50's) for the supermicron (PM>1) impactor were 0.8 and 1.0 μm using monodisperse (polystyrene latex spheres) and polydisperse (red-fluorescent spheres) standards, respectively. Coarse (PM>2.5) impactor d50's were 2.4 and 2.6 μm, respectively. Optical photothermal infrared (O-PTIR) and Raman microspectroscopy confirmed collected particle composition. The sizes of re-entrained PSLs (1, 1.25, and 1.5 μm) were measured to have diameters of 1.0, 1.2, and 1.5 μm, respectively, with a Coulter Counter, indicating the successful downstream analysis of collected particles without modification during impaction and resuspension. Soluble particles (ammonium sulfate) were dissolved by the flowing water and measured with ion chromatography. This study shows that 3D-printed impactors are capable of collecting particles with a well-defined size cut, as well as nondestructively resuspending and chemically analyzing the particles. These 3D-printed devices are a miniaturized, low-cost (<$2) option that sets the stage for semicontinuous microfluidic analysis of size-selected aerosols to evaluate health impacts ranging from toxin exposure to disease transmission.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Derek Goderis
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kayleigh S Reilly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theo Severud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kerri A Pratt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Bachnak R, Narayan S, Moravec DB, Hauser BG, Dallas AJ, Dutcher CS. Influence of Aqueous Phase Salt and Oil Phase Surfactants and Viscosity on the Dynamic Interfacial Tension and Coalescence Timescales. J Phys Chem B 2024; 128:10986-10998. [PMID: 39445668 PMCID: PMC11552612 DOI: 10.1021/acs.jpcb.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Liquid-liquid separation is a critically important process in the treatment of emulsions that can occur in our environment, such as oily stormwater, shipboard bilgewater, or off-shore oil spill treatment. Effective filtration systems, including coalescing filters, are essential for mitigating these environmental pollutants. Achieving this requires a comprehensive understanding of liquid-liquid interface dynamics influenced by additives and surfactants. Furthermore, understanding the impact of surfactants on emulsion stability in saline environments is vital for optimizing filtration processes and ensuring the protection of marine and freshwater ecosystems. In this work, these effects are highlighted using measurements performed across a range of droplet size, surfactant concentration, viscosity ratios, and saline presence. Dynamic IFT measurements are conducted using the pendant drop method for water in light mineral oil, with and without salt in the water phase. The effect of salt addition is also highlighted by using microfluidic coalescence experiments, in which it was found that the addition of salt increases the dimensionless drainage time below the critical micelle concentration. The second focus of this work is to study the effect of bulk phase viscosity on the stability. Dynamic IFT measurements are performed at both millimeter and micrometer scales using pendant drop experiments and microfluidic tensiometry, respectively, involving light and heavy mineral oils with varying SPAN80 surfactant concentrations. The surfactant diffusivity and interfacial adsorption and desorption rates are then extracted by fitting a surfactant diffusion and equation of state equations to the dynamic IFT measurements. The results of the IFT decay, surfactant diffusivity, and adsorption rates are compared at two different viscosity ratios. This study also compares the times required for IFT relaxation with the film drainage times in water-in-oil systems. The comparison aids in comprehending the impact of competing timescales during film drainage. The findings presented in this paper offer valuable insights into the design and optimization of liquid-liquid filtration systems, especially when operating under challenging environmental conditions, such as in saline environments. The principles explored here can be applied to improving industrial water treatment and in the design of advanced filtration technologies for chemical and petrochemical industries, particularly those involving flow, contributing to more sustainable and efficient practices in handling emulsified waste streams.
Collapse
Affiliation(s)
- Rana Bachnak
- Department
of Mechanical Engineering, University of
Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Shweta Narayan
- Department
of Mechanical Engineering, University of
Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| | | | - Brad G. Hauser
- Donaldson
Company, Bloomington, Minnesota 55431, United States
| | | | - Cari S. Dutcher
- Department
of Mechanical Engineering, University of
Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
- Department
of Chemical Engineering and Material Science, University of Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
El Haber M, Gérard V, Kleinheins J, Ferronato C, Nozière B. Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. Chem Rev 2024; 124:10924-10963. [PMID: 39177157 PMCID: PMC11467905 DOI: 10.1021/acs.chemrev.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.
Collapse
Affiliation(s)
- Manuella El Haber
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Violaine Gérard
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Judith Kleinheins
- Institute
for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Corinne Ferronato
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Barbara Nozière
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
4
|
Yang N, Li T, Dong S, Zhang S, Jia Y, Mao H, Zhang Z, Zhang F, Pan X, Zhang X, Dong Z. Detection of airborne pathogens with single photon counting and a real-time spectrometer on microfluidics. LAB ON A CHIP 2022; 22:4995-5007. [PMID: 36440701 DOI: 10.1039/d2lc00934j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The common practice for monitoring pathogenic bioaerosols is to collect bioaerosols from air and then detect them, which lacks timeliness and accuracy. In order to improve the detection speed, here we demonstrate an innovative airflow-based optical detection method for directly identifying aerosol pathogens, and built a microfluidic-based counter composite spectrometer detection platform, which simplifies sample preparation and collection detection from two steps to one step. The method is based on principal component analysis and partial least squares discriminant analysis for particle species identification and dynamic transmission spectroscopy analysis, and single-photon measurement is used for particle counting. Compared with traditional microscopic counting and identification methods, the particle counting accuracy is high, the standard deviation is small, and the counting accuracy exceeds 92.2%. The setup of dynamic transmission spectroscopy analysis provides high-precision real-time particle identification with an accuracy rate of 93.75%. As the system is further refined, we also foresee potential applications of this method in agricultural disease control, environmental control, and infectious disease control in aerosol pathogen detection.
Collapse
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Taiwei Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Sizhe Dong
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Faculty of Science and Technology - ECE, Institute of Microelectronics, University of Macau, Macau 999078, China.
| | - Suliang Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Faculty of Science and Technology - ECE, Institute of Microelectronics, University of Macau, Macau 999078, China.
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Zhen Zhang
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Fu Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoqing Pan
- Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Xiaodong Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Zining Dong
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
5
|
Measurements of Static and Dynamic Bubble Surface Tension Using a Deformation-Based Microfluidic Tensiometer. J Phys Chem B 2021; 125:13916-13927. [PMID: 34919401 DOI: 10.1021/acs.jpcb.1c06710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The surface tension of bubbles is critical for processes involving mixed liquid-gas systems, from sea spray aerosol generation to firefighting foam aspiration. In particular, the size- and surfactant-dependent time scales of dynamic surface tension decay due to adsorption of surface-active chemicals at the curved interface significantly dictate the multiphase system dynamics. While size-dependent surfactant adsorption and interfacial dynamics have been well characterized for liquid-liquid systems using microfluidic platforms, application of microfluidic methods to liquid-gas systems has received less attention. This work uses a high-throughput microfluidic tensiometer to measure the static and dynamic surface tension of microscale bubbles compared with millimeter bubbles characterized by pendant drop. It is shown that the static surface tension measurements for surfactant-free interfaces with microfluidics show good agreement with pendant drop for most systems. At the same time, its accuracy can be affected by bubble pressure, inertia force at high Re, drag force, bubble expansion, and image processing limitation. In the presence of surfactants, the dynamic surface tension measurements show that both smaller bubbles and higher surfactant concentrations can lead to a much shorter time to reach equilibrium compared with pendant drop, similar to the observation for liquid-liquid interfaces. This work shows the potential of a microfluidic tensiometer to capture early time surface tension decay and accurately measure surface tension even in the presence of Marangoni stress tangential to the interface.
Collapse
|
6
|
Chang YP, Devi Y, Chen CH. Micro-droplet Trapping and Manipulation: Understanding Aerosol Better for a Healthier Environment. Chem Asian J 2021; 16:1644-1660. [PMID: 33999498 DOI: 10.1002/asia.202100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Understanding the physicochemical properties and heterogeneous processes of aerosols is key not only to elucidate the impacts of aerosols on the atmosphere and humans but also to exploit their further applications, especially for a healthier environment. Experiments that allow for spatially control of single aerosol particles and investigations on the fundamental properties and heterogeneous chemistry at the single-particle level have flourished during the last few decades, and significant breakthroughs in recent years promise better control and novel applications aimed at resolving key issues in aerosol science. Here we propose graphene oxide (GO) aerosols as prototype aerosols containing polycyclic aromatic hydrocarbons, and GO can behave as two-dimensional surfactants which could modify the interfacial properties of aerosols. We describe the techniques of trapping single particles and furthermore the current status of the optical spectroscopy and chemistry of GO. The current applications of these single-particle trapping techniques are summarized and interesting future applications of GO aerosols are discussed.
Collapse
Affiliation(s)
- Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan.,Aerosol Science Research Center, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Yanita Devi
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
7
|
Wang L, Qi W, Liu Y, Essien D, Zhang Q, Lin J. Recent Advances on Bioaerosol Collection and Detection in Microfluidic Chips. Anal Chem 2021; 93:9013-9022. [PMID: 34160193 DOI: 10.1021/acs.analchem.1c00908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioaerosols containing pathogenic microorganisms have posed a great threat to human and animal health. Effective monitoring of bioaerosols containing pathogenic viruses and bacteria is of great significance to prevent and control infectious diseases. This Feature summarizes recent advances on bioaerosol collection and detection based on microfluidic chips. Besides, the challenges and trends for bioaerosol collection and detection were also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.,Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Desmond Essien
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Qiang Zhang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Lee D, Shen AQ. Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows. MICROMACHINES 2021; 12:272. [PMID: 33800831 PMCID: PMC8000871 DOI: 10.3390/mi12030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022]
Abstract
Droplet microfluidics provides a versatile tool for measuring interfacial tensions between two immiscible fluids owing to its abilities of fast response, enhanced throughput, portability and easy manipulations of fluid compositions, comparing to conventional techniques. Purely homogeneous extension in the microfluidic device is desirable to measure the interfacial tension because the flow field enables symmetric droplet deformation along the outflow direction. To do so, we designed a microfluidic device consisting of a droplet production region to first generate emulsion droplets at a flow-focusing area. The droplets are then trapped at a stagnation point in the cross junction area, subsequently being stretched along the outflow direction under the extensional flow. These droplets in the device are either confined or unconfined in the channel walls depending on the channel height, which yields different droplet deformations. To calculate the interfacial tension for confined and unconfined droplet cases, quasi-static 2D Darcy approximation model and quasi-static 3D small deformation model are used. For the confined droplet case under the extensional flow, an effective viscosity of the two immiscible fluids, accounting for the viscosity ratio of continuous and dispersed phases, captures the droplet deformation well. However, the 2D model is limited to the case where the droplet is confined in the channel walls and deforms two-dimensionally. For the unconfined droplet case, the 3D model provides more robust estimates than the 2D model. We demonstrate that both 2D and 3D models provide good interfacial tension measurements under quasi-static extensional flows in comparison with the conventional pendant drop method.
Collapse
Affiliation(s)
- Doojin Lee
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Kaluarachchi CP, Lee HD, Lan Y, Lansakara TI, Tivanski AV. Surface Tension Measurements of Aqueous Liquid-Air Interfaces Probed with Microscopic Indentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2457-2465. [PMID: 33576233 DOI: 10.1021/acs.langmuir.0c03507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To elucidate the intricate role that the sea surface microlayer (SML) and sea spray aerosols (SSAs) play in climate, understanding the chemical complexity of the SML and how it affects the physical-chemical properties of the microlayer and SSA are important to investigate. While the surface tension of the SML has been studied previously using conventional experimental tools, accurate measurements must be localized to the thickness of the air-liquid interface of the SML. Here we explore the atomic force microscopy (AFM) capabilities to quantify the surface tension of aqueous solution droplets with (sub)micrometer indentation depths into the interface. Sample droplets of hexanoic acid at molar concentrations ranging from 0.1 to 80 mM and SML from a recent wave flume study were investigated. A constant-radius AFM nanoneedle was used to probe ca. 200 μL droplets with 0.3-1.2 μm indentation depths. As a comparison, the surface tension of bulk samples was also measured using a conventional force tensiometer. The data for the hexanoic acid show an excellent overlap between the AFM and force tensiometer surface tension measurements. For the surface tension measurements of the SML, however, the measured values from the AFM were 2.5 mN/m lower than that from the force tensiometer, which was attributed to the structural and chemical complexity of the SML, differences in the probing depth for each method, and the time scale required for the surface film to restructure as the needle is retracted away from the liquid surface. Overall, the study confirmed the accuracy of the AFM method in quantifying the surface tension of aqueous solutions over a wide range of concentrations for surface-active organic compounds. The methodology can be further used to reveal small, yet important, differences in the surface tension of complex air-liquid interfaces such as liquid systems where the type and concentration of surfactants vary with the distance from the air-liquid interface. For such complex systems, AFM measurements of the surface tension as a function of the probing depth and pulling rate may reveal a sublayer film structure of the liquid interface.
Collapse
Affiliation(s)
| | - Hansol D Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yiling Lan
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Roy P, Liu S, Dutcher CS. Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annu Rev Phys Chem 2021; 72:73-97. [PMID: 33607917 DOI: 10.1146/annurev-physchem-090419-105522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measurements of droplet phase and interfacial tension (IFT) are important in the fields of atmospheric aerosols and emulsion science. Bulk macroscale property measurements with similar constituents cannot capture the effect of microscopic length scales and highly curved surfaces on the transport characteristics and heterogeneous chemistry typical in these applications. Instead, microscale droplet measurements ensure properties are measured at the relevant length scale. With recent advances in microfluidics, customized multiphase fluid flows can be created in channels for the manipulation and observation of microscale droplets in an enclosed setting without the need for large and expensive control systems. In this review, we discuss the applications of different physical principles at the microscale and corresponding microfluidic approaches for the measurement of droplet phase state, viscosity, and IFT.
Collapse
Affiliation(s)
- Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Shihao Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA; .,Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Abstract
Aerosol droplets play a critical role in the development of weather patterns, yet are notoriously difficult to analyze because of their small size, transient nature and potentially complex composition. As a result, there has been a surge in recent years in the development of analysis techniques aimed at the study of aerosol droplets, namely of their surface tension properties, which are thought to play a great role in aerosol/cloud growth and subsequently having an impact on the resulting weather patterns. To capture the state of the field at this key time, we have collected and described some of the most relevant and influential studies, with a focus on those that have had the most impact. This review will present and describe the most used analytical techniques for studying the surface tension of micrometer-sized aqueous droplets, with a focus on historical trends and how the current techniques are posed to revolutionize the field.
Collapse
Affiliation(s)
- Derrick M Mott
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| |
Collapse
|
12
|
Chen Y, Narayan S, Dutcher CS. Phase-Dependent Surfactant Transport on the Microscale: Interfacial Tension and Droplet Coalescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14904-14923. [PMID: 33269588 DOI: 10.1021/acs.langmuir.0c02476] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-liquid emulsion systems are usually stabilized by additives, known as surfactants, which can be observed in various environments and applications such as oily bilgewater, water-entrained diesel fuel, oil production, food processing, cosmetics, and pharmaceuticals. One important factor that stabilizes emulsions is the lowered interfacial tension (IFT) between the fluid phases due to surfactants, inhibiting the coalescence. Many studies have investigated the surfactant transport behavior that leads to corresponding time-dependent lowering of the IFT. For example, the rate of IFT decay depends on the phase in which the surfactant is added (dispersed vs continuous) due in part to differences in the near-surface depletion depth. Other key factors, such as the viscosity ratio between the dispersed and continuous phases and Marangoni stress, will also have an impact on surfactant transport and therefore the coalescence and emulsion stability. In this feature article, the measurement techniques for dynamic IFT are first reviewed due to their importance in characterizing surfactant transport, with a specific focus on macroscale versus microscale techniques. Next, equilibrium isotherm models as well as dynamic diffusion and kinetic equations are discussed to characterize the surfactant and the time scale of the surfactant transport. Furthermore, recent studies are highlighted showing the different IFT decay rates and its long-time equilibrium value depending on the phase into which the surfactant is added, particularly on the microscale. Finally, recent experiments using a hydrodynamic Stokes trap to investigate the impact of interfacial surfactant transport, or "mobility", and the phase containing the surfactant on film drainage and droplet coalescence will be presented.
Collapse
|
13
|
Chen Y, Dutcher CS. Size dependent droplet interfacial tension and surfactant transport in liquid-liquid systems, with applications in shipboard oily bilgewater emulsions. SOFT MATTER 2020; 16:2994-3004. [PMID: 32125335 DOI: 10.1039/c9sm01892a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many liquid-liquid emulsions, including shipboard oily bilgewater (oil-in-water) and water entrained in diesel fuels (water-in-oil), are chemically stabilized by surfactants and additives and require treatment to destabilize and separate. The interfacial tension (IFT) of surfactant-laden interfaces between the continuous and dispersed phase, as well as the size of the dispersed droplets, are significant factors in determining emulsion stability. In particular, the timescale associated with a dynamic change in IFT due to surfactant transport is indicative of how fast the emulsion will stabilize. In the present work, the dynamic IFT of droplets at micro-scale (∼80 μm) and milli-scale (∼2 mm) is measured with simulated bilgewater with soluble surfactant systems. It is found that the IFT of micro-scale droplets decays faster than that of the milli-scale droplets due to smaller diffusion boundary layer thickness. The change in IFT was also studied for water-soluble surfactants added into the dispersed phase and continuous phase for both milli- and micro-scaled droplets. The results show that the IFT of micro-scale droplets decreases to the equilibrium value faster when the surfactant is in outer phase than in the inner phase, while the IFT does not change significantly for the milli-scale droplets. The observations are explained by the change in diffusion limited to kinetic limited surfactant transport. Finally, the surfactant diffusivities, adsorption and desorption rate constants are calculated using Langmuir's equation. The results presented here provide insight into the fundamental mechanism of the surfactant transport and helps improve mitigation strategies of oil-water emulsions.
Collapse
Affiliation(s)
- Yun Chen
- Department of Mechanical Engineering, University of Minnesota, MN 55455, USA.
| | | |
Collapse
|
14
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
15
|
Gorkowski K, Donahue NM, Sullivan RC. Aerosol Optical Tweezers Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated Atmospheric Particles. Chem 2020. [DOI: 10.1016/j.chempr.2019.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Riva M, Chen Y, Zhang Y, Lei Z, Olson NE, Boyer HC, Narayan S, Yee LD, Green HS, Cui T, Zhang Z, Baumann K, Fort M, Edgerton E, Budisulistiorini SH, Rose CA, Ribeiro IO, e Oliveira RL, dos Santos EO, Machado CMD, Szopa S, Zhao Y, Alves EG, de Sá SS, Hu W, Knipping EM, Shaw SL, Duvoisin S, de Souza RAF, Palm BB, Jimenez JL, Glasius M, Goldstein AH, Pye HOT, Gold A, Turpin BJ, Vizuete W, Martin ST, Thornton JA, Dutcher CS, Ault AP, Surratt JD. Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8682-8694. [PMID: 31335134 PMCID: PMC6823602 DOI: 10.1021/acs.est.9b01019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.
Collapse
Affiliation(s)
- Matthieu Riva
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Aerodyne Research Inc., Billerica, MA 01821, USA
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole E. Olson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hallie C. Boyer
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Shweta Narayan
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Lindsay D. Yee
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Hilary S. Green
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Mike Fort
- Atmospheric Research & Analysis, Inc., Cary, NC 27513, USA
| | - Eric Edgerton
- Atmospheric Research & Analysis, Inc., Cary, NC 27513, USA
| | - Sri H. Budisulistiorini
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caitlin A. Rose
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Igor O. Ribeiro
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 69050, Brasil
| | - Rafael L. e Oliveira
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 69050, Brasil
| | - Erickson O. dos Santos
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, 69067, Brazil
| | - Cristine M. D. Machado
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, 69067, Brazil
| | - Sophie Szopa
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-IPSL, 91190, Gif-sur-Yvette, France
| | - Yue Zhao
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eliane G. Alves
- Environment Dynamics Department, National Institute of Amazonian Research (INPA), Manaus, 69067, Brazil
| | - Suzane S. de Sá
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Weiwei Hu
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | | | | | - Sergio Duvoisin
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 69050, Brasil
| | - Rodrigo A. F. de Souza
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 69050, Brasil
| | - Brett B. Palm
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Jose-Luis Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | | | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Havala O. T. Pye
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scot T. Martin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Andrew P. Ault
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason D. Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Hagedorn M, Varga Z, Walter RB, Tiersch TR. Workshop report: Cryopreservation of aquatic biomedical models. Cryobiology 2019; 86:120-129. [PMID: 30389588 PMCID: PMC9903301 DOI: 10.1016/j.cryobiol.2018.10.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
The genetic resources of aquatic biomedical model organisms are the products of millions of years of evolution, decades of scientific development, and hundreds of millions of dollars of research funding investment. Genetic resources (e.g., specific alleles, transgenes, or combinations) of each model organism can be considered a form of scientific wealth that can be accumulated and exchanged, typically in the form of live animals or germplasm. Large-scale maintenance of live aquatic organisms that carry these genetic resources is inefficient, costly, and risky. In situ maintenance may be substantially enhanced and backed up by combining cryopreserved germplasm repositories and genetic information systems with live animal culture. Unfortunately, cryopreservation has not advanced much beyond the status of an exploratory research for most aquatic species, lacks widespread application, and methods for successful cryopreservation remain poorly defined. For most aquatic species biological materials other than sperm or somatic cells are not comprehensively banked to represent and preserve a broad range of genetic diversity for each species. Therefore, new approaches and standardization are needed for repository-level application to ensure reproducible recovery of cryopreserved materials. Additionally, development of new technologies is needed to address preservation of novel biological materials, such as eggs and embryos of aquatic species. To address these goals, the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) hosted the Cryopreservation of Aquatic Biomedical Models Workshop on January 7 to 8, 2017, in conjunction with the 8th Aquatic Animal Models of Human Disease Conference in Birmingham, Alabama. The goals of the workshop were to assess the status of germplasm cryopreservation in various biomedical aquatic models and allow representatives of the scientific community to develop and prioritize a consensus of specific actionable recommendations that will move the field of cryopreservation of aquatic resources forward. This workshop included sessions devoted to new approaches for cryopreservation of aquatic species, discussion of current efforts and approaches in preservation of aquatic model germplasm, consideration of needs for standardization of methods to support reproducibility, and enhancement of repository development by establishment of scalable high-throughput technologies. The following three broad recommendations were forwarded from workshop attendees: 1: Establish a comprehensive, centralized unit ("hub") to programmatically develop training for and documentation of cryopreservation methods for aquatic model systems. This would include development of species-specific protocols and approaches, outreach programs, community development and standardization, freezing services and training of the next generation of experts in aquatic cryopreservation. 2: Provide mechanisms to support innovative technical advancements that will increase the reliability, reproducibility, simplicity, throughput, and efficiency of the cryopreservation process, including vitrification and pipelines for sperm, oocytes, eggs, embryos, larvae, stem cells, and somatic cells of all aquatic species. This recommendation encompasses basic cryopreservation knowledge and engineering technology, such as microfluidics and automated processing technologies. 3: Implement mechanisms that allow the various aquatic model stock centers to increase their planning, personnel, ability to secure genetic resources and to promote interaction within an integrated, comprehensive repository network for aquatic model species repositories.
Collapse
Affiliation(s)
- Mary Hagedorn
- Smithsonian Conservation Biology Institute (SCBI) and Hawaii Institute of Marine Biology (HIMB), Kaneohe, HI, USA.
| | - Zoltan Varga
- Zebrafish International Research Center, University of Oregon, Eugene, OR, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, Louisiana State University Agricultural Center (LSUAC), Baton Rouge, LA, USA
| |
Collapse
|
18
|
Nandy L, Dutcher CS. Phase Behavior of Ammonium Sulfate with Organic Acid Solutions in Aqueous Aerosol Mimics Using Microfluidic Traps. J Phys Chem B 2018; 122:3480-3490. [DOI: 10.1021/acs.jpcb.7b10655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lucy Nandy
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
20
|
Gorkowski K, Donahue NM, Sullivan RC. Emulsified and Liquid-Liquid Phase-Separated States of α-Pinene Secondary Organic Aerosol Determined Using Aerosol Optical Tweezers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12154-12163. [PMID: 28985066 DOI: 10.1021/acs.est.7b03250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate the first capture and analysis of secondary organic aerosol (SOA) on a droplet suspended in an aerosol optical tweezers (AOT). We examine three initial chemical systems of aqueous NaCl, aqueous glycerol, and squalane at ∼75% relative humidity. For each system we added α-pinene SOA-generated directly in the AOT chamber-to the trapped droplet. The resulting morphology was always observed to be a core of the original droplet phase surrounded by a shell of the added SOA. We also observed a stable emulsion of SOA particles when added to an aqueous NaCl core phase, in addition to the shell of SOA. The persistence of the emulsified SOA particles suspended in the aqueous core suggests that this metastable state may persist for a significant fraction of the aerosol lifecycle for mixed SOA/aqueous particle systems. We conclude that the α-pinene SOA shell creates no major diffusion limitations for water, glycerol, and squalane core phases under humid conditions. These experimental results support the current prompt-partitioning framework used to describe organic aerosol in most atmospheric chemical transport models and highlight the prominence of core-shell morphologies for SOA on a range of core chemical phases.
Collapse
Affiliation(s)
- Kyle Gorkowski
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Boyer HC, Dutcher CS. Atmospheric Aqueous Aerosol Surface Tensions: Isotherm-Based Modeling and Biphasic Microfluidic Measurements. J Phys Chem A 2017; 121:4733-4742. [DOI: 10.1021/acs.jpca.7b03189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hallie C. Boyer
- Department of Mechanical
Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cari S. Dutcher
- Department of Mechanical
Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Lee D, Fang C, Ravan AS, Fuller GG, Shen AQ. Temperature controlled tensiometry using droplet microfluidics. LAB ON A CHIP 2017; 17:717-726. [PMID: 28154859 DOI: 10.1039/c6lc01384h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We develop a temperature controllable microfluidic device for the accurate measurement of temperature dependent interfacial tensions between two immiscible liquids. A localized temperature control system is integrated with the microfluidic platform to maintain an accurate temperature inside the device. The temperature uniformity and sensitivity are verified by both simulation and experimental results. Temperature dependent interfacial tensions are measured dynamically and rapidly, relying on quantitative analysis of the deformation and retraction dynamics of droplets under extensional flow. Our microfluidic tensiometry offers the capability of measuring temperature dependent interfacial tensions with precise and systematic temperature control in the range of room temperature to 70 °C, which is valuable for studying transient interfacial dynamics, interfacial reactions, and the surfactant adsorption process.
Collapse
Affiliation(s)
- Doojin Lee
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Cifeng Fang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Aniket S Ravan
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Gerald G Fuller
- Chemical Engineering, Stanford University, Stanford, CA 94305-4125, USA
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|