1
|
Girard T, Basile-Doelsch I, Fochesato S, Duvivier A, Doelsch E, Heulin T, Achouak W. Pseudomonas brassicacearum-Induced Biotite Weathering: Role of Iron Homeostasis and Two Siderophores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7973-7982. [PMID: 40248958 DOI: 10.1021/acs.est.4c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Soil bacteria play a crucial role in enhancing mineral weathering, thereby facilitating the release of mineral structural ions into the environment. Pseudomonas brassicacearum NFM421, a root-isolated bacterium, produces two different siderophores in the form of pyoverdine and ornicorrugatin. We studied the interaction between this bacterium and biotite─a natural iron-bearing phyllosilicate─to assess the factors governing siderophore-mediated biogenic weathering. We demonstrated that bacterial Fe is an essential factor driving biotite weathering. Our findings suggested that the lipopeptidic siderophore ornicorrugatin might be more effective than pyoverdine as an iron-bearing mineral weathering agent. This secondary siderophore's production is maintained even when the iron requirement of the bacteria is fulfilled. Moreover, we observed that another mechanism requiring direct physical contact might enable P. brassicacearum to acquire iron structural ions from soil minerals.
Collapse
Affiliation(s)
- Tom Girard
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
- CNRS, IRD, INRAE, CEREGE, ITEM, Aix Marseille Université, F-13545 Aix-en-Provence, France
| | | | - Sylvain Fochesato
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| | - Adrien Duvivier
- CNRS, IRD, INRAE, CEREGE, ITEM, Aix Marseille Université, F-13545 Aix-en-Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et Risque, CIRAD, University of Montpellier, F-34398 Montpellier, France
| | - Thierry Heulin
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| | - Wafa Achouak
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| |
Collapse
|
2
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
3
|
Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. ENVIRONMENT INTERNATIONAL 2020; 142:105831. [PMID: 32540628 DOI: 10.1016/j.envint.2020.105831] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 05/12/2023]
Abstract
With the rising global population growth and limitation of traditional agricultural technology, global crop production could not provide enough nutrients to assure adequate intake for all people. Nano-fertilizers and nano-pesticides have 20-30% higher efficacy than conventional products, which offer an effective solution to the above-mentioned problem. Rhizosphere is where plant roots, soil, and soil biota interact, and is the portal of nutrients transporting from soil into plants. The rhizosphere processes could modify the bioavailability of all nutrients and nanomaterials (NMs) before entering the food plants. However, to date, the overall rhizosphere processes regulating the behaviors and bioavailability of NMs to enhance the nutritional quality are still uncertain. In this review, a meta-analysis is conducted to quantitatively assess NMs-mediated changes in nutritional quality from food plants. Furthermore, the current knowledge and related mechanisms of the behavior and bioavailability of NMs driven by rhizosphere processes, e.g., root secretions, microbial and earthworm activities, are summarized. A series of rhizosphere processes can influence how NMs enter plants and change the biological responses, including signal transduction and nutrient absorption and transport. Moreover, future perspectives are presented to maximize the potentials of NMs applications for the enhancement of food crop production and global food security.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om P Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
4
|
Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis thaliana by X-ray Computed Nanotomography and Hyperspectral Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8682-8691. [PMID: 28686423 DOI: 10.1021/acs.est.7b01133] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Terrestrial plants can internalize and translocate nanoparticles (NPs). However, direct evidence for the processes driving the NP uptake and distribution in plants is scarce at the cellular level. Here, NP-root interactions were investigated after 10 days of exposure of Arabidopsis thaliana to 10 mg·L-1 of negatively or positively charged gold NPs (∼12 nm) in gels. Two complementary imaging tools were used: X-ray computed nanotomography (nano-CT) and enhanced dark-field microscopy combined with hyperspectral imaging (DF-HSI). The use of these emerging techniques improved our ability to detect and visualize NP in plant tissue: by spectral confirmation via DF-HSI, and in three dimensions via nano-CT. The resulting imaging provides direct evidence that detaching border-like cells (i.e., sheets of border cells detaching from the root) and associated mucilage can accumulate and trap NPs irrespective of particle charge. On the contrary, border cells on the root cap behaved in a charge-specific fashion: positively charged NPs induced a higher mucilage production and adsorbed to it, which prevented translocation into the root tissue. Negatively charged NPs did not adsorb to the mucilage and were able to translocate into the apoplast. These observations provide direct mechanistic insight into NP-plant interactions, and reveal the important function of border cells and mucilage in interactions of plants with charged NPs.
Collapse
Affiliation(s)
- Astrid Avellan
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Université, CEA, CNRS, Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE) , Biosciences and Biotechnology Institute of Aix-Marseille (BIAM) ECCOREV, FR 3098, CEA/Cadarache, St-Paul-lez-Durance, France
| | - Fabienne Schwab
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Armand Masion
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Daniel Borschneck
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Vladimir Vidal
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Jérôme Rose
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Université, CEA, CNRS, Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE) , Biosciences and Biotechnology Institute of Aix-Marseille (BIAM) ECCOREV, FR 3098, CEA/Cadarache, St-Paul-lez-Durance, France
| | - Clément Levard
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| |
Collapse
|
5
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
McGivney E, Han L, Avellan A, VanBriesen J, Gregory KB. Disruption of Autolysis in Bacillus subtilis using TiO 2 Nanoparticles. Sci Rep 2017; 7:44308. [PMID: 28303908 PMCID: PMC5355886 DOI: 10.1038/srep44308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems.
Collapse
Affiliation(s)
- Eric McGivney
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, USA
| | - Linchen Han
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Astrid Avellan
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, USA
| | - Jeanne VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, USA
| | - Kelvin B. Gregory
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, USA
| |
Collapse
|