1
|
Li Z, Qu B, Jiang J, Bekele TG, Zhao H. The photoactivity of complexation of DOM and copper in aquatic system: Implication on the photodegradation of TBBPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163620. [PMID: 37100127 DOI: 10.1016/j.scitotenv.2023.163620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO- or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun Ave., Haidian District, Beijing 100081, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| |
Collapse
|
2
|
Kung TA, Chen PJ. Exploring specific biomarkers regarding neurobehavioral toxicity of lead dioxide nanoparticles in medaka fish in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159268. [PMID: 36208768 DOI: 10.1016/j.scitotenv.2022.159268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nano-scale lead dioxide (nPbO2) is an industrial metal oxide nanoparticle that can be also formed as a corrosion by-product from chlorination of Pb-containing plumbing materials. nPbO2 governs release of toxic lead ion in drinking water and receiving organisms; however, its modes of toxic action regarding neurobehavioral toxicity remain unclear. This study evaluated the toxicity mechanism of nPbO2 (10 and 20 mg/L) versus its released Pb(II)aq (100 μg/L) in terms of aqueous chemistry, bioavailability and neurobehavioral toxicity to medaka fish in different water matrices. In very hard water (VHW), dissolved salts enhanced the aggregation and sedimentation of nPbO2, resulting in higher bioavailability and altered locomotion of treated fish than those fish exposed to nPbO2 in soft water with humic acid (SW + HA). Transcriptomic results identified six differentially expressed genes with greater altered expression with nPbO2 than the control or Pb(II)aq exposure. With VHW exposure, nPbO2 caused greater altered expression of genes involved in cell adhesion (nlgn1 and epd), cell cytoskeleton (α1-tubulin), and relevant apoptosis (c-fos, birc5.1-a and casp3), as compared with SW + HA or Pb(II)aq exposure. This study provides novel molecular mechanistic insights into the neurobehavioral nanotoxicity using nPbO2 and medaka fish as surrogates, suggesting nPbO2 promotes neurobehavioral dysfunction, leading to adverse outcomes from gene alteration to the organismal level. The identified biomarkers responded specifically to the nPbO2-induced neurotoxicity in different water matrices can be used for evaluating toxicity risks of small metal oxide particulates on human or aquatic life under environmentally relevant exposures.
Collapse
Affiliation(s)
- Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Food Safety Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Hachenberger YU, Rosenkranz D, Kriegel FL, Krause B, Matschaß R, Reichardt P, Tentschert J, Laux P, Jakubowski N, Panne U, Luch A. Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1447. [PMID: 32235788 PMCID: PMC7143856 DOI: 10.3390/ma13061447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers.
Collapse
Affiliation(s)
- Yves U Hachenberger
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Daniel Rosenkranz
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Fabian L Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Benjamin Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - René Matschaß
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Ulrich Panne
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
5
|
Wang Q, Wen Q, Chen Z. Long term effects of Pb 2+ on the membrane fouling in a hydrolytic-anoxic-oxic-membrane bioreactor treating synthetic electroplating wastewater. CHEMOSPHERE 2019; 232:430-438. [PMID: 31158638 DOI: 10.1016/j.chemosphere.2019.05.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Long-term effects of Pb2+ on the operating performance and membrane fouling of two hydrolytic-anoxic-oxic-membrane bioreactors treating synthetic electroplating wastewater were investigated. The COD, NH4+-N and TN removal efficiencies decreased by 5.5%, 10.4% and 7.9% with long-term exposure of 2 mg L-1 Pb2+, while serious decreases achieved 25.4%, 35.0% and 26.2% with 6 mg L-1 Pb2+ exposure, respectively. 2 mg L-1 Pb2+ mitigated the cake layer fouling rate by 25.4% but increased the pore blocking rate by 69.1%, which was contributed by the increase of low and moderate molecular weight (MW) components in the soluble and colloidal foulants (SCFs). 6 mg L-1 Pb2+ accelerated the cake layer fouling rate by 101.1%, but mitigated the pore blocking rate by 6.4% due to the increase of high MW SCFs (especially polysaccharides). Thermodynamic analyses showed that Pb2+ regulated the concentration and protein/polysaccharide ratio of loosely bound extracellular polymeric substances, thus changing the flocs hydrophobicity and aggregation capacity, leading the cake layer fouling rate variation.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Yang CH, Kung TA, Chen PJ. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1920-1932. [PMID: 31227347 DOI: 10.1016/j.envpol.2019.05.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Nanoscale zerovalent iron (nZVI) is a redox-active nanomaterial commonly used in remediation of soil and groundwater pollution and wastewater treatment processes. A large quantity of nZVI (e.g., >100 mg/L) accidentally released from in situ sites to nearby oxygenized aquifers could be rapidly oxidized to iron oxides (e.g., Fe3O4 or Fe2O3) and ions (e.g., Fe2+), for acute hypoxia effects to aquatic life. However, we do not know the ecotoxicological fate of nZVI and its oxidation products at lower, environmentally concentrations in surface water receiving waterborne transportation or effluent discharge in terms of exposure to aquatic vertebrate species. This study assessed the causal effect on reproductive toxicity in medaka adults (Oryzias latipes) of carboxymethyl cellulose-stabilized nZVI (CMC-nZVI), Fe2+ and iron oxide nanoparticles (nFe3O4) with 21-day aqueous exposure at 5 and 20 mg/L (Fe-equivalent). Such concentrations did not significantly change the dissolved oxygen, oxidation-reduction potential or pH values in the 3 iron solutions during the fish exposure period. Neither CMC-nZVI nor Fe2+ treated adults showed altered daily egg production (fecundity) and oxidative stress responses in observed tissues, as compared to controls. However, the fecundity in nFe3O4 (20 mg/L)-treated pairs was significantly decreased, with increased incidence of abnormal immature oocytes in the ovary. As well, nFe3O4 treatment suppressed activities of the antioxidants superoxide dismutase and expression of glutathione peroxidase (gpx) in the brain and ovary. Although nFe3O4 or Fe2+ treatments inhibited mRNA expression of hepatic estrogen receptor (er-α) in females, plasma levels of sex hormones and (Na, K)-ATPase activity in gills of treated fish did not differ from controls for both sexes. Hence, oxidation products (e.g., nFe3O4) from nZVI at lower milligram-per-liter levels may be potent in inducing nanoparticle-specific reproductive toxicity in medaka fish by inducing oxidative stress in female gonads. MAIN FINDING: nZVI oxidation product nFe3O4 at lower mg/L induces nanoparticle-specific reproductive toxicity in medaka fish.
Collapse
Affiliation(s)
- Ching-Hsin Yang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
7
|
Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:101-108. [PMID: 30884452 DOI: 10.1016/j.etap.2019.03.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a highly toxic metal in aquatic environments. Fish are at the top of the food chain in most aquatic environments, and are the most susceptible to the toxic effects of Pb exposure. In addition, fish are one of the most abundant vertebrates, and they can directly affect humans through food intake; therefore, fish can be used to assess the extent of environmental pollution in an aquatic environment. Pb-induced toxicity in fish exposed to toxicants is primarily induced by bioaccumulation in specific tissues, and the accumulation mechanisms vary depending on water habitat (freshwater or seawater) and pathway (waterborne or dietary exposure). Pb accumulation in fish tissues causes oxidative stress due to excessive ROS production. Oxidative stress by Pb exposure induces synaptic damage and neurotransmitter malfunction in fish as neurotoxicity. Moreover, Pb exposure influences immune responses in fish as an immune-toxicant. Therefore, the purpose of this review was to examine the various toxic effects of Pb exposure, including bioaccumulation, oxidative stress, neurotoxicity, and immune responses, and to identify indicators to evaluate the extent of Pb toxicity by based on the level of Pb exposure.
Collapse
Affiliation(s)
- Ju-Wook Lee
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Hoon Choi
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Yue Jai Kang
- Sun Moon University, Department of Aquatic Life and Medical Science, Asan-si, South Korea
| | - Kwang Il Kim
- Pathology Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jun-Hwan Kim
- Fisheries Research & Development Institute, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Taean, South Korea.
| |
Collapse
|
8
|
Almeida AR, Jesus F, Henriques JF, Andrade TS, Barreto Â, Koba O, Giang PT, Soares AMVM, Oliveira M, Domingues I. The role of humic acids on gemfibrozil toxicity to zebrafish embryos. CHEMOSPHERE 2019; 220:556-564. [PMID: 30597363 DOI: 10.1016/j.chemosphere.2018.12.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Climate change is expected to alter the dynamics of water masses, with consequent changes in water quality parameters such as dissolved organic carbon (DOC) concentration. DOC levels play a critical role in the fate of organic chemicals, influencing their bioavailability and toxicity to aquatic organisms. This study aimed to evaluate the effects of DOC, particularly humic acids (HA), in the toxicity of gemfibrozil (GEM) - a human pharmaceutical frequently detected in surface waters. Lethal and sublethal effects (genotoxic, biochemical and behavioural alterations) were evaluated in zebrafish embryos exposed to several concentrations of GEM and three HA levels, in a full factorial design. HA significantly increased GEM LC50 values, mainly in the first 72 h of exposure, showing a protective effect. At sublethal levels, however, such protection was not observed since HA per se elicited adverse effects. At a biochemical level, individual exposure to HA (20 mg/L) elicited significant decreases in cholinesterase and glutathione S-transferase activities. Regarding behaviour, effects of individual exposure to HA appear to surpass the GEM effects, reducing the total distance moved by larvae. Both GEM and HA significantly increased DNA damage. Hence, this study demonstrated that abiotic factors, namely HA, should be considered in the assessment of pharmaceuticals toxicity. Moreover, it showed that lethality may not be enough to characterize combined effects since different patterns of response may occur at different levels of biological organization. Testing sublethal relevant endpoints is thus recommended to achieve a robust risk assessment in realistic scenarios.
Collapse
Affiliation(s)
- Ana Rita Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge F Henriques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Thayres S Andrade
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:6. [PMID: 29456907 PMCID: PMC5803285 DOI: 10.1186/s12302-018-0132-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.
Collapse
Affiliation(s)
- Mirco Bundschuh
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Juliane Filser
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Simon Lüderwald
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Moira S. McKee
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - George Metreveli
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Gabriele E. Schaumann
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Ralf Schulz
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UfZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|