1
|
Su M, Zhong Y, Chen Y, Xiang J, Ye Z, Liao S, Ye S, Zhang J. Assessment of environmental exposure to betamethasone on the reproductive function of female Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116651. [PMID: 38959790 DOI: 10.1016/j.ecoenv.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhiyin Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shujia Liao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Dasmahapatra AK, Williams CB, Myla A, Tiwary SK, Tchounwou PB. A systematic review of the evaluation of endocrine-disrupting chemicals in the Japanese medaka ( Oryzias latipes) fish. FRONTIERS IN TOXICOLOGY 2023; 5:1272368. [PMID: 38090358 PMCID: PMC10711633 DOI: 10.3389/ftox.2023.1272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Japanese medaka (Oryzias latipes) is an acceptable small laboratory fish model for the evaluation and assessment of endocrine-disrupting chemicals (EDCs) found in the environment. In this research, we used this fish as a potential tool for the identification of EDCs that have a significant impact on human health. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/) using the search terms, Japanese medaka, Oryzias latipes, and endocrine disruptions, and sorted 205 articles consisting of 128 chemicals that showed potential effects on estrogen-androgen-thyroid-steroidogenesis (EATS) pathways of Japanese medaka. From these chemicals, 14 compounds, namely, 17β-estradiol (E2), ethinylestradiol (EE2), tamoxifen (TAM), 11-ketotestosterone (11-KT), 17β-trenbolone (TRB), flutamide (FLU), vinclozolin (VIN), triiodothyronine (T3), perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA), terephthalic acid (TPA), trifloxystrobin (TRF), ketoconazole (KTC), and prochloraz (PCZ), were selected as references and used for the identification of apical endpoints within the EATS modalities. Among these endpoints, during classification, priorities are given to sex reversal (masculinization of females and feminization of males), gonad histology (testis-ova or ovotestis), secondary sex characteristics (anal fin papillae of males), plasma and liver vitellogenin (VTG) contents in males, swim bladder inflation during larval development, hepatic vitellogenin (vtg) and choriogenin (chg) genes in the liver of males, and several genes, including estrogen-androgen-thyroid receptors in the hypothalamus-pituitary-gonad/thyroid axis (HPG/T). After reviewing 205 articles, we identified 108 (52.68%), 46 (22.43%), 19 (9.26%), 22 (17.18%), and 26 (12.68%) papers that represented studies on estrogen endocrine disruptors (EEDs), androgen endocrine disruptors (AEDs), thyroid endocrine disruptors (TEDs), and/or steroidogenesis modulators (MOS), respectively. Most importantly, among 128 EDCs, 32 (25%), 22 (17.18%), 15 (11.8%), and 14 (10.93%) chemicals were classified as EEDs, AEDs, TEDs, and MOS, respectively. We also identified 43 (33.59%) chemicals as high-priority candidates for tier 2 tests, and 13 chemicals (10.15%) show enough potential to be considered EDCs without any further tier-based studies. Although our literature search was unable to identify the EATS targets of 45 chemicals (35%) studied in 60 (29.26%) of the 205 articles, our approach has sufficient potential to further move the laboratory-based research data on Japanese medaka for applications in regulatory risk assessments in humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Charmonix B. Williams
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Sanjay K. Tiwary
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Paul. B. Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
3
|
Su M, Zhong Y, Xiang J, Chen Y, Liu N, Zhang J. Reproductive endocrine disruption and gonadal intersex induction in male Japanese medaka chronically exposed to betamethasone at environmentally relevant levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131493. [PMID: 37156043 DOI: 10.1016/j.jhazmat.2023.131493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
The broad utilization of betamethasone in medical treatments may pose a significant ecotoxicological risk to aquatic organisms, yet its potential reproductive toxicity remains unclear. The present study examined the impacts of environmental exposure on male reproduction using Japanese medaka (Oryzias latipes). After 110 days of betamethasone exposure at environmentally relevant concentrations (0, 20 and 200 ng/L), LH/FSH synthesis and release in the pituitary was inhibited, and the production of sex hormones and their signaling pathways in the gonads of male medaka were greatly influenced. This synthetic glucocorticoid restrained testosterone (T) synthesis and gave rise to a significant increase in E2/T and E2/11-KT ratios. Furthermore, chronic betamethasone exposure (20 and 200 ng/L) led to the suppression of androgen receptor (AR) signaling and enhancement of estrogen receptors (ERs) signaling. An increase in hepatic vitellogenin contents was also detected, and testicular oocytes were observed in both 20 and 200 ng/L betamethasone-treated groups. It showed that 20 and 200 ng/L betamethasone could induce male feminization and even intersex, triggering abnormal spermatogenesis in medaka males. With its adverse effects on male fertility, betamethasone could potentially influence the fishery productivity and population dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
5
|
Wang Y, Guo J, Jia X, Luo X, Zhou Y, Mao X, Fan X, Hu H, Zhu H, Jia C, Guo X, Cheng L, Li X, Zhang Z. Genome and transcriptome of Chinese medaka (Oryzias sinensis) and its uses as a model fish for evaluating estrogenicity of surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120724. [PMID: 36427818 DOI: 10.1016/j.envpol.2022.120724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ecological toxicity assessments of contaminants in aquatic environments are of great concern. However, a dilemma in ecological toxicity assessments often arises when linking the effects found in model animals in the laboratory and the phenomena observed in wild fishes in the field due to species differences. Chinese medaka (Oryzias sinensis), widely distributed in East Asia, is a satisfactory model animal to assess aquatic environment in China. Here, we domesticated this species and assembled its genome (814 Mb) using next-generation sequencing (NGS). A total of 21,922 high-confidence genes with 41,306 transcripts were obtained and annotated, and their expression patterns in tissues were determined by RNA-sequencing. Six mostly sensitive biomarker genes, including vtg1, vtg3, vtg6, zp3a.2, zp2l1, and zp2.3 to estrogen exposure were screened and validated in the fish exposed to concentrations of estrone (E1), 17β-estradiol (E2), and estriol (E3) under laboratory condition. Field investigations were then performed to evaluating the gene expression of biomarkers in wild Chinese medaka and levels of E1, E2, and E3 in the fish habitats. It was found that in 40 sampling sites, the biomarker genes were obviously highly expressed in the wild fish from about half sites, and the detection frequencies of E1, E2, and E3, were 97.5%, 42.5%, and 45% with mean concentrations of 82.48, 43.17, 52.69 ng/L, respectively. Correlation analyses of the biomarker gene expressions in the fish with the estrogens levels which were converted to EEQs showed good correlation, indicating that the environmental estrogens and estrogenicity of the surface water might adversely affect wild fishes. Finally, histologic examination of gonads in male wild Chinese medaka was performed and found the presence of intersex in the fish. This study facilitated the uses of Chinese medaka as a model animal for ecotoxicological studies.
Collapse
Affiliation(s)
- Yue Wang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaozhe Luo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaolin Fan
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Hongxia Hu
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Hua Zhu
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Chengxia Jia
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Lan Cheng
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiqing Li
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Toušová Z, Priebojová J, Javůrek J, Večerková J, Lepšová-Skácelová O, Sychrová E, Smutná M, Hilscherová K. Estrogenic and retinoid-like activity in stagnant waters with mass occurrence of water blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158257. [PMID: 36037903 DOI: 10.1016/j.scitotenv.2022.158257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Stagnant freshwaters can be affected by anthropogenic pollution and eutrophication that leads to massive growth of cyanobacteria and microalgae forming complex water blooms. These can produce various types of bioactive compounds, some of which may cause embryotoxicity, teratogenicity, endocrine disruption and impair animal or human health. This study focused on potential co-occurrence of estrogenic and retinoid-like activities in diverse stagnant freshwaters affected by phytoplankton blooms with varying taxonomic composition. Samples of phytoplankton bloom biomass and its surrounding water were collected from 17 independent stagnant water bodies in the Czech Republic and Hungary. Total estrogenic equivalents (EEQ) of the most potent samples reached up to 4.9 ng·g-1 dry mass (dm) of biomass extract and 2.99 ng·L-1 in surrounding water. Retinoic acid equivalent (REQ) measured by in vitro assay reached up to 3043 ng·g-1 dm in phytoplankton biomass and 1202 ng·L-1in surrounding water. Retinoid-like and estrogenic activities at some sites exceeded their PNEC and effect-based trigger values, respectively. The observed effects were not associated with any particular species of cyanobacteria or algae dominating the water blooms nor related to phytoplankton density. We found that taxonomically diverse phytoplankton communities can produce and release retinoid-like compounds to surrounding water, while estrogenic potency is likely related to estrogens of anthropogenic origin adsorbed to phytoplankton biomass. Retinoids occurring in water blooms are ubiquitous signalling molecules, which can affect development and neurogenesis. Selected water bloom samples (both water and biomass extracts) with retinoid-like activity caused effects on neurodifferentiation in vitro corresponding to those of equivalent all-trans-retinoic acid concentrations. Co-occurrence of estrogenic and retinoid-like activities in stagnant water bodies as well as the potential of compounds produced by water blooms to interfere with neural differentiation should be considered in the assessment of risks associated with water blooms, which can comprise complex mixtures of natural and anthropogenic bioactive compounds.
Collapse
Affiliation(s)
- Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Priebojová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Javůrek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jaroslava Večerková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
7
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Chen R, He J, Li Y, An L, Hu J. Tricresyl phosphate inhibits fertilization in Japanese medaka (Oryzias latipes): Emphasizing metabolic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118809. [PMID: 35016985 DOI: 10.1016/j.envpol.2022.118809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
As tricresyl phosphate (TCrP) is commonly found in global water sources, its potential reproductive toxicity to fish is of increasing concern. Japanese medaka larvae were exposed to TCrP at 657.9, 1,511, and 4042 ng/L for 100 days. We identified significant fertilization inhibition (6.9%-12.8%) in all exposure groups. Intersex was significantly induced at 4042 ng/L, with an incidence of 22.0%. TCrP exposure also caused dilation of the efferent duct in the testes with maximum duct widths of 83.3, 93.2, and 149.7 μm in the 657.9, 1,511, and 4042 ng/L exposure groups, respectively. These widths were all significantly larger than that observed in the control group (37.7 μm) and likely contributed substantially to fertilization inhibition. The TCrP metabolites 4-OH-MDTP and 3-OH-MDTP, were detected at high concentrations in the liver and elicited 5.8-fold and 5.3-fold greater androgen receptor antagonistic activity than that elicited by TCrP (39.8 μM), which may explain the intersex observed in low exposure groups. 4-OH-MDTP and 3-OH-MDTP elicited anti-estrogenic activities by blocking the estrogen receptor, and the concentrations at which its responses were equal to the IC20 of tamoxifen were 16.1 μM and 18.9 μM, respectively, as detected using the yeast two-hybrid assay. Such anti-estrogenic activities were likely the main driver of dilation of the efferent duct. Observed adverse outcomes after exposure to TCrP all occurred under environmentally relevant concentrations, suggesting considerable ecological risk to wild fish.
Collapse
Affiliation(s)
- Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianwu He
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Barber LB, Faunce KE, Bertolatus DW, Hladik ML, Jasmann JR, Keefe SH, Kolpin DW, Meyer MT, Rapp JL, Roth DA, Vajda AM. Watershed-Scale Risk to Aquatic Organisms from Complex Chemical Mixtures in the Shenandoah River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:845-861. [PMID: 34978800 DOI: 10.1021/acs.est.1c04045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
River waters contain complex chemical mixtures derived from natural and anthropogenic sources. Aquatic organisms are exposed to the entire chemical composition of the water, resulting in potential effects at the organismal through ecosystem level. This study applied a holistic approach to assess landscape, hydrological, chemical, and biological variables. On-site mobile laboratory experiments were conducted to evaluate biological effects of exposure to chemical mixtures in the Shenandoah River Watershed. A suite of 534 inorganic and organic constituents were analyzed, of which 273 were detected. A watershed-scale accumulated wastewater model was developed to predict environmental concentrations of chemicals derived from wastewater treatment plants (WWTPs) to assess potential aquatic organism exposure for all stream reaches in the watershed. Measured and modeled concentrations generally were within a factor of 2. Ecotoxicological effects from exposure to individual components of the chemical mixture were evaluated using risk quotients (RQs) based on measured or predicted environmental concentrations and no effect concentrations or chronic toxicity threshold values. Seventy-two percent of the compounds had RQ values <0.1, indicating limited risk from individual chemicals. However, when individual RQs were aggregated into a risk index, most stream reaches receiving WWTP effluent posed potential risk to aquatic organisms from exposure to complex chemical mixtures.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Kaycee E Faunce
- U.S. Geological Survey, 1730 East Parham Road, Richmond, Virginia 23228, United States
| | - David W Bertolatus
- University of Colorado Denver, 1151 Arapahoe Street, SI 2071, Denver, Colorado 80204, United States
| | - Michelle L Hladik
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Jeramy R Jasmann
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Steffanie H Keefe
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Dana W Kolpin
- U.S. Geological Survey, 400 South Clinton Street, Iowa City, Iowa 52240, United States
| | - Michael T Meyer
- U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, Kansas 66049, United States
| | - Jennifer L Rapp
- U.S. Geological Survey, 1730 East Parham Road, Richmond, Virginia 23228, United States
| | - David A Roth
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Alan M Vajda
- University of Colorado Denver, 1151 Arapahoe Street, SI 2071, Denver, Colorado 80204, United States
| |
Collapse
|
10
|
Ma H, Ishida K, Xu C, Takahashi K, Li Y, Zhang C, Kang Q, Jia Y, Hu W, Matsumaru D, Nakanishi T, Hu J. Triphenyl phosphate delayed pubertal timing and induced decline of ovarian reserve in mice as an estrogen receptor antagonist. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118096. [PMID: 34488164 DOI: 10.1016/j.envpol.2021.118096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Although concerns have been raised about the adverse effects of triphenyl phosphate (TPhP) on female fertility, its risk to ovarian functioning remains unknown. In this study, female C57BL/6 mice at postnatal day 21 were exposed on a daily basis to TPhP dose of 2, 10, and 50 mg/kg for 40 days. A significant delay in pubertal timing was observed in the mice exposed to 50 mg/kg of TPhP. An estrogen-responsive reporter transgenic mice assay demonstrated that TPhP significantly downregulated the estrogen receptor (ER) signaling by 45.1% in the whole body in the 50 mg/kg group, and by 14.7-43.7% in the uterus for all exposure groups compared with the control. This strong antagonistic activity of TPhP toward ER explained the delay in pubertal timing. A significant reduction in the number of follicles in all stages was observed in mice after being exposed to TPhP for 40 days at concentrations of 10 and 50 mg/kg, resulting in a decline of the ovarian reserve. The elevation of the follicle-stimulating hormone concentration may have contributed to this phenomenon, as controlled by the antagonistic activity of TPhP toward ER in the brain. The toxic effects of TPhP on ovarian functioning highlight this chemical as a potential risk factor for female fertility.
Collapse
Affiliation(s)
- Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Chenke Xu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kyosuke Takahashi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenhao Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiyue Kang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Ahmadifar E, Pourmohammadi Fallah H, Yousefi M, Dawood MAO, Hoseinifar SH, Adineh H, Yilmaz S, Paolucci M, Doan HV. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals (Basel) 2021; 11:ani11082167. [PMID: 34438625 PMCID: PMC8388479 DOI: 10.3390/ani11082167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
The crucial need for safe and healthy aquatic animals obligates researchers in aquaculture to investigate alternative and beneficial additives. Medicinal herbals and their extracts are compromised with diverse effects on the performances of aquatic animals. These compounds can affect growth performance and stimulate the immune system when used in fish diet. In addition, the use of medicinal herbs and their extracts can reduce oxidative stress induced by several stressors during fish culture. Correspondingly, aquatic animals could gain increased resistance against infectious pathogens and environmental stressors. Nevertheless, the exact mode of action where these additives can affect aquatic animals' performances is still not well documented. Understanding the mechanistic role of herbal supplements and their derivatives is a vital tool to develop further the strategies and application of these additives for feasible and sustainable aquaculture. Gene-related studies have clarified the detailed information on the herbal supplements' mode of action when administered orally in aquafeed. Several review articles have presented the potential roles of medicinal herbs on the performances of aquatic animals. However, this review article discusses the outputs of studies conducted on aquatic animals fed dietary, medicinal herbs, focusing on the gene expression related to growth and immune performances. Furthermore, a particular focus is directed to the expected influence of herbal supplements on the reproduction of aquatic animals.
Collapse
Affiliation(s)
- Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol 98613-35856, Iran;
| | | | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran;
| | - Hossein Adineh
- Department of Fisheries, Faculty of Ariculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan 4971799151, Iran;
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
12
|
Wang C, An L, Wu S, Jia A, Sun J, Huang C, Mu D, Hu J. Potential Link between Equol Pollution and Field-Observed Intersex in Wild So-iuy Mullets ( Mugil soiuy). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12393-12401. [PMID: 32876436 DOI: 10.1021/acs.est.0c04083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gonadal intersex has been observed in wild fishes and is attributed to endocrine-disrupting chemicals but the specific causes remain controversial. Here, a forensic analysis utilizing field and laboratory studies was conducted to explore the causal agent(s). In a 2008-2009 survey of Liaodong Bay, China, 20.7-33.3% incidences of gonadal intersex were observed in male so-iuy mullets (Mugil soiuy), a wild sentinel fish species. Steroidal estrogen (estrone, 17β-estradiol, estriol, and ethinylestradiol) and phytoestrogen (equol) were detected in seawater where the fishes were collected with median concentrations of 0.42 ng/L (0.02-1.42 ng/L) E2 equivalent (EEQ-E2) and 22.81 ng/L (0.10-155.99 ng/L) equol. A probabilistic model was used to evaluate the ecological risk of these estrogenic chemicals based on their distribution in the field and dose-response relationship from the laboratory surrogate Japanese medaka (Oryzias latipes) fish. The probability of the incidences of gonadal intersex due to equol exposure was estimated to be 13.5 ± 12.1%, which is considerably higher than that for EEQ-E2, (7.2 ± 68.8) × 10-4. The agonistic activity of equol to the estrogen receptor α of so-iuy mullets was 3.5-fold higher than that to the estrogen receptor α of Japanese medaka, indicating that equol shows a stronger potential for inducing intersex in so-iuy mullets than in medaka. These results demonstrate that equol, rather than steroid estrogens, is a more likely causal agent for the field-observed intersex in male wild so-iuy mullets.
Collapse
Affiliation(s)
- Chen Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shimin Wu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ai Jia
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianxian Sun
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chong Huang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Di Mu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Qi S, Niu X, Wang DH, Wang C, Zhu L, Xue X, Zhang Z, Wu L. Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134500. [PMID: 31627045 DOI: 10.1016/j.scitotenv.2019.134500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Flumethrin is a typical pyrethroid varroacide widely used for mite control in beekeeping worldwide. Currently, information on the toxicological characteristics of flumethrin on bees at sublethal concentrations is still lacking. To fill this gap in information, we performed a 48-h acute oral and 14-day chronic toxicity testing of flumethrin in newly emerged adult honey bees under laboratory conditions. Results showed that flumethrin had high acute toxicity to honey bees with a 48-h LD50 of 0.47 µg/bee (95% CI, 0.39 ∼ 0.57 µg/bee), which is higher than that of many other commercial pyrethroid insecticides, but lower than that of tau-fluvalinate. After 14 days of chronic exposure to flumethrin at 0.01, 0.10, and 1.0 mg/L, significant antioxidant response, detoxification, immune reaction, and apoptosis were observed in the midguts. These findings indicated that flumethrin had potential risks to bees, and it can disturb the homeostasis of bees at sublethal concentrations under longer exposure conditions. Flumethrin is highly lipophilic and easy to accumulate in beeswax; thus, careless practices might pose risks to colony development in commercial beekeeping and native populations. This laboratory study can serve as an early warning, and further studies are required to understand the real residual level of flumethrin in bees and the risks of flumethrin in field condition.
Collapse
Affiliation(s)
- Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinyue Niu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Dong Hui Wang
- College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, PR China
| | - Chen Wang
- Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Lizhen Zhu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhongyin Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quaity and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Li Y, Chen R, He J, Ma H, Zhao F, Tao S, Liu J, Hu J. Triphenyl Phosphate at Environmental Levels Retarded Ovary Development and Reduced Egg Production in Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14709-14715. [PMID: 31751126 DOI: 10.1021/acs.est.9b05669] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Since triphenyl phosphate (TPhP) elicits both antiestrogenic activities via blocking the estrogen receptor (ER) and estrogenic activity by elevating 17β-estradiol (17β-E2) synthesis, its adverse effect on female reproduction is uncertain. In this study, we exposed Japanese medaka to TPhP at 131, 363, and 1773 ng/L for 100 days following hatching. TPhP significantly induced ovary retardation in all exposure groups (incidence: from 11.9 to 37.8%) and reduced egg production by 38.9 and 50.9% in the 363 and 1773 ng/L exposure groups, respectively. Vitellogenin (vtg) transcription was significantly downregulated by 35.4-57.4% after TPhP exposure, explaining the ovary retardation. Considering that 17β-E2 was only significantly decreased in the 1773 ng/L exposure group, ER antagonism could be the dominant contributor to the inhibition of vtg transcription and female reproductive toxicity of TPhP. As 4-hydroxyphenyl diphenyl phosphate, a metabolite of TPhP, was detected in livers with similar concentration [68.4-1237 ng/g lipid weight (lw)] to that of TPhP (485-1594 ng/g lw) and elicited medaka ER antagonistic activity (50% inhibitory concentration = 78.1 μM), TPhP and its metabolite should both contribute to the reproductive inhibition. We demonstrate that TPhP at environmentally relevant concentrations is toxic to female reproduction, which poses an ecological risk to wild fish at the population level.
Collapse
Affiliation(s)
- Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianwu He
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Fanrong Zhao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shu Tao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Junfeng Liu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
15
|
Xu R, Jiang Y, MacIsaac HJ, Chen L, Li J, Xu J, Wang T, Zi Y, Chang X. Blooming cyanobacteria alter water flea reproduction via exudates of estrogen analogues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133909. [PMID: 31454606 DOI: 10.1016/j.scitotenv.2019.133909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/28/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria blooms are increasing globally, with further increases predicted in association with climate change. Recently, some cyanobacteria species have been identified as a source of estrogenic effects in aquatic animals. To explore possible estrogenic effects of Microcystis aeruginosa (an often-dominant cyanobacteria species) on zooplankton, we examined effects of cyanobacteria exudates (MaE, 2 × 104 and 4 × 105 cells/ml) on reproduction in Daphnia magna. We analyzed physiological, biochemical and molecular characteristics of exposed Daphnia via both chronic and acute exposures. MaE at both low and high cell density enhanced egg number (15.4% and 23.3%, respectively) and reproduction (37.7% and 52.4%, respectively) in D. magna similar to 10 μg/L estradiol exposure. In addition, both MaE of low and high cell densities increased population growth rate (15.8% and 19.6%, respectively) and reproductive potential (60% and 83%, respectively) of D. magna. These exudates promoted D. magna reproduction by stimulating 17β-hydroxysteroid-dehydrogenase (17β-HSD) activity and production of ecdysone and juvenile hormone, and by enhancing vitellogenin biosynthesis via up-regulating expression of Vtg1 and Vtg2. However, increased expression (6.6 times higher than controls) of a detoxification gene (CYP360A8) indicated that MaE might also induce toxicity in D. magna. Reproductive interference of zooplankton by blooming cyanobacteria might negatively affect foodwebs because MaE-induced zooplankton population increase would enhance grazing and reduce abundance of edible algae, thereby adding to the list of known disruptive properties of cyanobacterial blooms.
Collapse
Affiliation(s)
- Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Yao Jiang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, PR China
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security, Yunnan University, Kunming 650091, PR China.
| | - Jingjing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Jun Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Tao Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Yuanyan Zi
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Xuexiu Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
16
|
Williams M, Kookana RS, Mehta A, Yadav SK, Tailor BL, Maheshwari B. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1256-1265. [PMID: 30180334 DOI: 10.1016/j.scitotenv.2018.08.084] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Research over the last decade on emerging trace organic contaminants in aquatic systems has largely focused on sources such as treated wastewaters in high income countries, with relatively few studies relating to wastewater sources of these contaminants in low and middle income countries. We undertook a longitudinal survey of the Ahar River for a number of emerging organic contaminants (including pharmaceuticals, hormones, personal care products and industrial chemicals) which flows through the city of Udaipur, India. Udaipur is a city of approximately 450,000 people with no wastewater treatment occurring at the time of this survey. We found the concentrations of many of the contaminants within the river water were similar to those commonly reported in untreated wastewater in high income countries. For example, concentrations of pharmaceuticals, such as carbamazepine, antibiotics and non-steroidal anti-inflammatory drugs, ranged up to 1900 ng/L. Other organic contaminants, such as steroid estrogens (up to 124 ng/L), steroid androgens (up to 1560 ng/L), benzotriazoles (up to 11 μg/L), DEET (up to 390 ng/L), BPA (up to 300 ng/L) and caffeine (up to 37.5 μg/L), were all similar to previously reported concentrations in wastewaters in high income countries. An assessment of the population densities in the watersheds feeding into the river showed increasing population density of a watershed led to a corresponding downstream increase in the concentrations of the organic contaminants, with quantifiable concentrations still present up to 10 km downstream of the areas directly adjacent to the highest population densities. Overall, this study highlights how a relatively clean river can be contaminated by untreated wastewater released from an urban centre.
Collapse
Affiliation(s)
- Mike Williams
- CSIRO Land and Water, Locked Bag no 2, Glen Osmond 5064, Australia.
| | - Rai S Kookana
- CSIRO Land and Water, Locked Bag no 2, Glen Osmond 5064, Australia
| | - Anil Mehta
- Vidya Bhawan Polytechnic, Udaipur, India
| | - S K Yadav
- Wolkem India Limited, Udaipur, India
| | - B L Tailor
- ICAR-NBBS & LUP, Regional Centre, Udaipur, India
| | | |
Collapse
|
17
|
Zhou Y, Zhang S, Zhao F, Zhang H, An W, Yang M, Zhang Z, Hu J. Byproducts of aqueous chlorination of equol and their estrogenic potencies. CHEMOSPHERE 2018; 212:393-399. [PMID: 30149312 DOI: 10.1016/j.chemosphere.2018.08.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
While the phytoestrogen metabolite equol has been reported to exist in surface water, its behavior in drinking water treatment plants remains unrevealed. In this study, eight products including four chlorinated equols (monochloro-equol, dichloro-equol, trichloro-equol, and tetrachloro-equol) were identified in an aqueous chlorinated equol solution by UHPLC-quadrupole-orbitrap-HRMS. Two main pathways of chlorination reaction are proposed: (1) chlorine-substitution reactions on the aromatic ring and subsequent dehydration to form the chlorine-substituted equols, and (2) break-up of the heterocyclic ring with oxygen followed by oxidation of aldehyde to carboxyl. The human estrogen receptor (hER) activating activity for monochloro-equol (EC50 = 3456 nM) and dichloro-equol (EC50 = 2456 nM) were slightly stronger than that of equol (EC50 = 3889 nM). This is the first report on the behavior of equol in drinking water chlorination, which provided an important information on the risk assessment of equol in drinking water.
Collapse
Affiliation(s)
- Yuyin Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shiyi Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fanrong Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Blazer VS, Walsh HL, Shaw CH, Iwanowicz LR, Braham RP, Mazik PM. Indicators of exposure to estrogenic compounds at Great Lakes Areas of Concern: species and site comparisons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:577. [PMID: 30191322 PMCID: PMC6133019 DOI: 10.1007/s10661-018-6943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/22/2018] [Indexed: 05/15/2023]
Abstract
Adverse effects resulting from potential exposure of wild fishes to estrogenic endocrine disruptors were assessed at seven United States Great Lakes Areas of Concern using biomarkers ranging from organismal (gonadosomatic indices) to tissue/plasma (histology, plasma vitellogenin) and molecular (hepatic gene transcripts) levels. Biomonitoring was conducted on pelagic, top predator species, largemouth Micropterus salmoides and smallmouth M. dolomieu bass and benthic, omnivorous white sucker Catostomus commersonii. Seasonal (spring and fall) comparisons were conducted at select sites. Intersex (testicular oocytes), plasma vitellogenin, and hepatic vitellogenin transcripts were commonly observed in bass species. Testicular oocyte severity was positively, although weakly, correlated with plasma vitellogenin, hepatic transcripts of vitellogenin, estrogen receptor α, and estrogen receptor β2, while negatively correlated with androgen receptor β and phosphoenolpyruvate carboxykinase. No testicular oocytes were observed in white sucker; however, plasma vitellogenin and hepatic vitellogenin transcripts were commonly detected in the males. The results demonstrate the importance of utilizing multiple endpoints to assess exposure to estrogenic compounds as well as the importance of choosing sensitive species.
Collapse
Affiliation(s)
- Vicki S. Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV USA
| | - Heather L. Walsh
- College of Agriculture and Forestry, West Virginia University, Morgantown, WV 26506 USA
| | - Cassidy H. Shaw
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV USA
| | - Luke R. Iwanowicz
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV USA
| | - Ryan P. Braham
- College of Agriculture and Forestry, West Virginia University, Morgantown, WV 26506 USA
| | - Patricia M. Mazik
- U.S. Geological Survey, Cooperative Fish and Wildlife Research Unit, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
19
|
Arlos MJ, Parker WJ, Bicudo JR, Law P, Hicks KA, Fuzzen MLM, Andrews SA, Servos MR. Modeling the exposure of wild fish to endocrine active chemicals: Potential linkages of total estrogenicity to field-observed intersex. WATER RESEARCH 2018; 139:187-197. [PMID: 29649703 DOI: 10.1016/j.watres.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure. Concentrations of the prominent estrogenic contaminants in wastewaters (estrone, estradiol, and ethinylestradiol) were simulated in the Grand River in southern Ontario (Canada) for nine years, including a period when major WWTP upgrades occurred. The predicted concentrations expressed as total estrogenicity (E2 equivalent concentrations) were contrasted to a key estrogenic response (i.e., intersex) in rainbow darter (Etheostoma caeruleum), a wild sentinel fish species. A predicted total estrogenicity in the river of ≥10 ng/L E2 equivalents was associated with high intersex incidence and severity, whereas concentrations <0.1 ng/L E2 equivalents were associated with minimal intersex expression. Exposure to a predicted river concentration of 0.4 ng/L E2 equivalents, the environmental quality standard (EQS) proposed by the European Union for estradiol, was associated with 34% (95% CI:30-38) intersex incidence and a very low severity score of 0.6 (95% CI:0.5-0.7). This exposure is not predicted to cause adverse effects in rainbow darter. The analyses completed in this study were only based on the predicted presence of three major estrogens (E1, E2, EE2), so caution must be exercised when interpreting the results. Nevertheless, this study illustrates the use of models for exposure assessment, especially when measured data are not available.
Collapse
Affiliation(s)
- Maricor J Arlos
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, ON, N2L 3G1, Canada
| | - José R Bicudo
- Region of Waterloo, Kitchener, Ontario, N2G 4J3, Canada
| | - Pam Law
- Region of Waterloo, Kitchener, Ontario, N2G 4J3, Canada
| | - Keegan A Hicks
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Meghan L M Fuzzen
- Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Susan A Andrews
- Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1S4, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
20
|
Prochazkova T, Sychrova E, Vecerkova J, Javurkova B, Otoupalikova A, Pernica M, Simek Z, Smutna M, Lepsova-Skacelova O, Hilscherova K. Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton. WATER RESEARCH 2018; 136:12-21. [PMID: 29486257 DOI: 10.1016/j.watres.2018.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Stagnant water bodies have generally received little attention regarding the presence of endocrine disruptive compounds, although they can integrate diverse pollutants from multiple different sources. Many compounds of anthropogenic as well as natural origin can contribute to the overall estrogenicity of surface waters and some of them can exhibit adverse effects on aquatic biota even in very low concentrations. This study focused on freshwater ponds and reservoirs affected by water blooms and determined the estrogenic activity of water by in vitro bioassay as well as concentrations of several important groups of estrogenic compounds (estrogenic hormones, alkylphenols, and phytoestrogens) by LC-MS/MS analyses. Estrogenic hormones were found at concentrations up to 7.1 ng.L-1, similarly to flavonoids, whose concentrations did not exceed 12.5 ng.L-1. Among alkylphenols, only bisphenol A and 4-tert-octylphenol were detected in levels reaching 100 ng.L-1 at maximum. Estrogenic activity of water samples varied from below the quantification limit to 1.95 ng.L-1. There does not seem to be any general causal link of the massive phytoplankton occurrence with the estrogenicity of water or concentration of phytoestrogens, since they showed no direct relationship with the phytoplankton abundance or composition across sites. The contribution of the analysed compounds to the estrogenic activity was calculated in three scenarios. In minimum scenario, just the compounds above quantification limit (LOQ) were taken into account and for most samples, only minor part (<6%) of the biological activity could be explained. In the mean and maximum scenarios, we included also compounds below LOQ into the calculations at the level of LOQ/2 and LOQ, respectively. In these cases, a considerable part of the estrogenic activity could be attributed to the possible presence of steroid estrogens below LOQ. However, for the samples with estrogenic activity greater than 1 ng.L-1, more than 50% of the estrogenic activity remained unexplained even in the maximum scenario. Probably other compounds or possible interactions between individual substances cause the estrogenic activity in these types of water bodies and in this case, the results of LC-MS/MS analyses cannot sufficiently predict the biological effects. A complex approach including bioassays is needed when assessing the estrogenicity of these types of surface waters.
Collapse
Affiliation(s)
- T Prochazkova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - E Sychrova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - J Vecerkova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - B Javurkova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - A Otoupalikova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - M Pernica
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Z Simek
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - M Smutna
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - O Lepsova-Skacelova
- Department of Botany, University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - K Hilscherova
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic.
| |
Collapse
|
21
|
Procházková T, Sychrová E, Javůrková B, Večerková J, Kohoutek J, Lepšová-Skácelová O, Bláha L, Hilscherová K. Phytoestrogens and sterols in waters with cyanobacterial blooms - Analytical methods and estrogenic potencies. CHEMOSPHERE 2017; 170:104-112. [PMID: 27974267 DOI: 10.1016/j.chemosphere.2016.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/27/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Compounds with estrogenic potencies and their adverse effects in surface waters have received much attention. Both anthropogenic and natural compounds contribute to overall estrogenic activity in freshwaters. Recently, estrogenic potencies were also found to be associated with cyanobacteria and their blooms in surface waters. The present study developed and compared the solid phase extraction and LC-MS/MS analytical approaches for determination of phytoestrogens (8 flavonoids - biochanin A, coumestrol, daidzein, equol, formononetin, genistein, naringenin, apigenin - and 5 sterols - ergosterol, β-sitosterol, stigmasterol, campesterol, brassicasterol) and cholesterol in water. The method was used for analyses of samples collected in stagnant water bodies dominated by different cyanobacterial species. Concentrations of individual flavonoids ranged from below the limit of detection to 3.58 ng/L. Sterols were present in higher amounts up to 2.25 μg/L. Biological potencies of these phytoestrogens in vitro were characterized using the hERα-HeLa-9903 cell line. The relative estrogenic potencies (compared to model estrogen - 17β-estradiol) of flavonoids ranged from 2.25E-05 to 1.26E-03 with coumestrol being the most potent. None of the sterols elicited estrogenic response in the used bioassay. Estrogenic activity was detected in collected field water samples (maximum effect corresponding to 2.07 ng/L of 17β-estradiol equivalents, transcriptional assay). At maximum phytoestrogens accounted for only 1.56 pg/L of 17β-estradiol equivalents, contributing maximally 8.5% of the total estrogenicity of the water samples. Other compounds therefore, most likely of anthropogenic origin such as steroid estrogens, are probably the major drivers of total estrogenic effects in these surface waters.
Collapse
Affiliation(s)
- Tereza Procházková
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Barbora Javůrková
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Jaroslava Večerková
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Luděk Bláha
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic.
| |
Collapse
|