1
|
Zhai W, Zhang R, Zhou X, Ma Y, Zhang X, Fan L, Hashmi MZ, Zhang D, Pan X. Simultaneously reducing methane emissions and arsenic mobility by birnessite in flooded paddy soil: Overlooked key role of organic polymerisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176167. [PMID: 39260499 DOI: 10.1016/j.scitotenv.2024.176167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flooding of paddy fields enhances methane (CH4) emissions and arsenic (As) mobilisation, which are crucial issues for agricultural greenhouse gas emissions and food safety. Birnessite (δ-MnO2) is a common natural oxidant and scavenger for heavy metals. In this study, birnessite was applied to As-contaminated paddy soil. The capacity for simultaneously alleviating CH4 emissions and As mobility was explored. Soil microcosm incubation results indicated that birnessite addition simultaneously reduced CH4 emissions by 47 %-54 % and As release by 38 %-85 %. The addition of birnessite decreased the dissolved organic carbon (DOC) contents and altered its chemical properties. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results showed that birnessite reduced the labile fractions of proteins, carbohydrates, lignins, tannins, and unsaturated hydrocarbons, however, increased the abundance of condensed aromatic structures, suggesting the polymerisation of dissolved organic matter (DOM) by birnessite. The degradation of labile fractions and the polymerisation of DOM resulted in an inventory of recalcitrant DOM, which is difficult for microbes to metabolise, thus inhibiting methanogenesis. In contrast, birnessite addition increased CH4 oxidation, as the particulate methane monooxygenase (pmoA) gene abundance increased by 30 %. The enhanced polymerisation of DOM by birnessite also increased As complexation with organics, leading to the transfer of As to the organic bound phase. In addition, the decrease in ferrous ion [Fe(II)] concentrations with birnessite indicated that the reductive dissolution of Fe oxides was suppressed, which limited the release of arsenite [As(III)] under reducing conditions. Furthermore, birnessite decreased As methylation and shaped the soil microbial community structure by enriching the metal-reducing bacterium Bacillus. Overall, our results provide a promising method to suppress greenhouse gas emissions and the risk of As contamination in paddy soils, although further studies are needed to verify its efficacy and effectiveness under field conditions.
Collapse
Affiliation(s)
- Weiwei Zhai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruihua Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Xin Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yanyue Ma
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Xiangbiao Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Lijun Fan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Muhammad Zaffar Hashmi
- Department of Environmental Health and Management, Health Services Academy, Islamabad 44000, Pakistan
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China.
| |
Collapse
|
2
|
Hemmat-Jou MH, Liu S, Liang Y, Chen G, Fang L, Li F. Microbial arsenic methylation in soil-water systems and its environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173873. [PMID: 38879035 DOI: 10.1016/j.scitotenv.2024.173873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.
Collapse
Affiliation(s)
- Mohammad Hossein Hemmat-Jou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sujie Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yongmei Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Li ZT, Yang SY, Zhao HP. The effects of arsenic on dechlorination of trichloroethene by consortium DH: Microbial response and resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165219. [PMID: 37392873 DOI: 10.1016/j.scitotenv.2023.165219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Inorganic arsenic and organochlorines are frequently co-occurring contaminants in anoxic groundwater environments, and the bioremediation of their composite pollution has long been a rigorous predicament. Currently, the dechlorination behaviors and stress responses of microbial dechlorination consortia to arsenic are not yet fully understood. This study assessed the reductive dechlorination performance of a Dehalococcoides-bearing microcosm DH under gradient concentrations of arsenate [As(V)] or arsenite [As(III)] and investigated the response patterns of different functional microorganisms. Our results demonstrated that although the dechlorination rates declined with increasing arsenic concentrations in both As(III/V) scenarios, the inhibitory impact was more pronounced in As(III)-amended groups compared to As(V)-amended groups. Moreover, the vinyl chloride (VC)-to-ethene step was more susceptible to arsenic exposure compared to the trichloroethene (TCE)-to-dichloroethane (DCE) step, while high levels of arsenic exposure [e.g. As(III) > 75 μM] can induce significant accumulation of VC. Functional gene variations and microbial community analyses revealed that As(III/V) affected reductive dechlorination by directly inhibiting organohalide-respiring bacteria (OHRB) and indirectly inhibiting synergistic populations such as acetogens. Metagenomic results indicated that arsenic metabolic and efflux mechanisms were identical among different Dhc strains, and variations in arsenic uptake pathways were possibly responsible for their differential responses to arsenic exposures. By comparison, fermentative bacteria showed high potential for arsenic resistance due to their inherent advantages in arsenic detoxification and efflux mechanisms. Collectively, our findings expanded the understanding of the response patterns of different functional populations to arsenic stress in the dechlorinating consortium and provided insights into modifying bioremediation strategies at co-contaminated sites for furtherance.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, PR China
| | - Si-Ying Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, PR China.
| |
Collapse
|
4
|
Wang L, Guo Q, Wu G, Yu Z, Ninin JML, Planer-Friedrich B. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7410-7420. [PMID: 37134202 DOI: 10.1021/acs.est.2c08814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Luxia Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Zhicheng Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - José Miguel Léon Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Ali J, Yang Y, Pan G. Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117281. [PMID: 36682273 DOI: 10.1016/j.jenvman.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Sediment hypoxia is a growing problem and has negative ecological impacts on the aquatic ecosystem. Hypoxia can disturb the biodiversity and biogeochemical cycles of both phosphorus (P) and nitrogen (N) in water columns and sediments. Anthropogenic eutrophication and internal nutrient release from lakebed sediment accelerate hypoxia to form a dead zone. Thus, sediment hypoxia mitigation is necessary for ecological restoration and sustainable development. Conventional aeration practices to control sediment hypoxia, are not effective due to high cost, sediment disturbance and less sustainability. Owing to high solubility and stability, micro-nanobubbles (MNBs) offer several advantages over conventional water and wastewater treatment practices. Clay loaded oxygen micro-nanobubbles (OMNBs) can be delivered into deep water sediment by gravity and settling. Nanobubble technology provides a promising route for cost-effective oxygen delivery in large natural water systems. OMNBs also have the immense potential to manipulate biochemical pathways and microbial processes for remediating sediment pollution in natural waters. This review article aims to analyze recent trends employing OMNBs loaded materials to mitigate sediment hypoxia and subsequent pollution. The first part of the review highlights various minerals/materials used for the delivery of OMNBs into benthic sediments of freshwater bodies. Release of OMNBs at hypoxic sediment water interphase (SWI) can provide significant dissolved oxygen (DO) to remediate hypoxia induced sediment pollution Second part of the manuscript unveils the impacts of OMNBs on sediment pollutants (e.g., methylmercury, arsenic, and greenhouse gases) remediation and microbial processes for improved biogeochemical cycles. The review article will facilitate environmental engineers and ecologists to control sediment pollution along with ecological restoration.
Collapse
Affiliation(s)
- Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, United Kingdom; Jiangsu Jiuguan Institute of Environment and Resources, Yixing, China.
| |
Collapse
|
6
|
Zhai W, Ma Y, Yang S, Gustave W, Zhao T, Hashmi MZ, Pan X, Tang X. Synchronous response of arsenic methylation and methanogenesis in paddy soils with rice straw amendment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130380. [PMID: 36444805 DOI: 10.1016/j.jhazmat.2022.130380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Rice straw (RS) amendment promotes arsenic (As) methylation and methane (CH4) emissions from paddy soils, which can cause straighthead disease and climate warming. Although methanogens have been identified as critical regulators of methylated As concentrations in flooded soils, the mechanism of these microbial groups on As methylation in paddy soils with RS amendment remains unknown. In this study, paddy soil was incubated to test the response in As methylation and methanogenesis in flooded soil with RS amendment. Our results showed that RS amendment increased the accumulation of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) whether methanogenesis was inhibited or not. The methanogens in the genera of Methanocella probably played critical role in promoting As methylation in flooded soil with RS amendment. With the RS amendment, inhibition of methanogenesis led to the accumulation MMA and DMA by suppressing DMA demethylation. The demethylation of DMA was driven by methanogens possibly belonging to the genera of Methanobacterium. This study revealed a wealth of methanogens that dominate As methylation with RS amendment. It will provide guidance to RS amendment in As contaminated paddy soil and has important implications for rice quality and global climate change.
Collapse
Affiliation(s)
- Weiwei Zhai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yanyue Ma
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| | - Su Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, New Providence, Bahamas
| | - Tiantian Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| | | | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ugwu SN, Enweremadu CC. Optimization of iron-enhanced anaerobic digestion of agro-wastes for biomethane production and phosphate release. ENVIRONMENTAL TECHNOLOGY 2023; 44:721-738. [PMID: 35357260 DOI: 10.1080/09593330.2022.2061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, the optimization of additives (polypyrrole magnetite nanocomposites (Ppy/Fe3O4) and antagonists (humic acid and arsenic oxide)) for simultaneous recovery of biomethane and phosphate release from enhanced anaerobic co-digestion of okra waste and pig manure was investigated. The pre-determined dosages of additives from our previous studies were used for the batch anaerobic digestion at different ratios under mesophilic conditions based on the two level-four factors central composite design (CCD) response surface methodology (RSM). After the anaerobic digestion processes, the biomethane yields were recorded and the digestates were characterized to determine the quantity of soluble phosphates. Both the independent variables and the responses were used to model and optimize the biogas yield and phosphate release conditions. The result showed that the maximum biomethane yield and P release were respectively 502.743 mLCH4/gVS and 168.674 mg/L at the optimum conditions of Ppy/Fe3O4 (20.0014 mg/L), HA (5.0018 mg/L), As (1.448 mg/L) and co-digestion (25.0001%). The response models predicted biomethane yield and P release to be 528.635 mLCH4/gVS and 164.405 mg/L respectively. All the response models were highly significant with appropriate goodness of fit and had prediction differences of 4.90% and 2.597% respectively for both biomethane yield and P release. Although both the accelerants and antagonists had influences on the anaerobic digestion processes by achieving enhanced biomethane production and P release, the influence of long exposure of anaerobic digestion processes to these additives on both responses is recommended for further investigation.
Collapse
Affiliation(s)
- Samson Nnaemeka Ugwu
- Mechanical and Industrial Engineering, University of South Africa Science Campus, Johannesburg, South Africa
- Agricultural and Bioresources Engineering, Faculty of Engineering, University of Nigeria, Enugu, Nigeria
- Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Enugu, Nigeria
| | | |
Collapse
|
8
|
Hu L, Qian Y, Ci M, Long Y, Zheng H, Xu K, Wang Y. Localized intensification of arsenic methylation within landfill leachate-saturated zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156979. [PMID: 35764148 DOI: 10.1016/j.scitotenv.2022.156979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Leachate-saturated zone (LSZ) of landfills is a complicated biogeochemical hotspot due to the continuous input of electron donors and acceptors from the top refuse layer with leachate migration. In this study, the methylation behavior of the arsenic (As) was investigated. The results indicate that As-methylation processes are influenced by temperature fields in LSZ. The dimethylarsinic acid biotransformation capability can be enhanced with an increase in temperature. Microbial diversity, quantification of functional gene (arsM), and co-occurrence network analysis further characterized the drivers of As methylation in LSZ. As-biogeochemical cycle pathways, as well as As-functional gene distribution among different temperature fields, were modeled on the basis of KEGG annotation. Binning analysis was further employed to assemble As-methylated metagenomes, enabling the identification of novel species for As methylation in landfills. Then, 87 high-quality draft metagenome-assembled genomes (MAGs) were reconstructed from LSZ refuse samples; nearly 15 % (13 of 87) belonged to putative As-methylates functional MAGs. Combined with the model of the As-biogeochemical cycle, nine putative functional species could complete methylation processes alone. The findings of this study highlighted the temperature influence on the As-methylation behavior in LSZ and could facilitate the management of As contamination in landfills.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Haozhe Zheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
van Genuchten CM, Etmannski TR, Jessen S, Breunig HM. LCA of Disposal Practices for Arsenic-Bearing Iron Oxides Reveals the Need for Advanced Arsenic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14109-14119. [PMID: 36126259 PMCID: PMC9536309 DOI: 10.1021/acs.est.2c05417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 05/07/2023]
Abstract
Iron (Fe)-based groundwater treatment removes carcinogenic arsenic (As) effectively but generates toxic As-rich Fe oxide water treatment residuals (As WTRs) that must be managed appropriately to prevent environmental contamination. In this study, we apply life cycle assessment (LCA) to compare the toxicity impacts of four common As WTR disposal strategies that have different infrastructure requirements and waste control: (i) landfilling, (ii) brick stabilization, (iii) mixture with organic waste, and (iv) open disposal. The As disposal toxicity impacts (functional unit = 1.0 kg As) are compared and benchmarked against impacts of current methods to produce marketable As compounds via As mining and concentrate processing. Landfilling had the lowest non-carcinogen toxicity (2.0 × 10-3 CTUh), carcinogen toxicity (3.8 × 10-5 CTUh), and ecotoxicity (4.6 × 103 CTUe) impacts of the four disposal strategies, with the largest toxicity source being As emission via sewer discharge of treated landfill leachate. Although landfilling had the lowest toxicity impacts, the stored toxicity of this strategy was substantial (ratio of stored toxicity/emitted As = 13), suggesting that landfill disposal simply converts direct As emissions to an impending As toxicity problem for future generations. The remaining disposal strategies, which are frequently practiced in low-income rural As-affected areas, performed poorly. These strategies yielded ∼3-10 times greater human toxicity and ecotoxicity impacts than landfilling. The significant drawbacks of each disposal strategy indicated by the LCA highlight the urgent need for new methods to recover As from WTRs and convert it into valuable As compounds. Such advanced As recovery technologies, which have not been documented previously, would decrease the stored As toxicity and As emissions from both WTR disposal and from mining As ore.
Collapse
Affiliation(s)
- C. M. van Genuchten
- Geochemistry
Department, Geological Survey of Denmark
and Greenland (GEUS), Copenhagen 1350, Denmark
- Environmental
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - T. R. Etmannski
- Department
of Civil Engineering, University of British
Columbia, Vancouver V6T 1Z4, Canada
| | - S. Jessen
- Department
of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1350, Denmark
| | - H. M. Breunig
- Environmental
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Zhang X, Reid MC. Inhibition of methanogenesis leads to accumulation of methylated arsenic species and enhances arsenic volatilization from rice paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151696. [PMID: 34798092 DOI: 10.1016/j.scitotenv.2021.151696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Flooded soils are important environments for the biomethylation and subsequent volatilization of arsenic (As), a contaminant of global concern. Conversion of inorganic to methylated oxyarsenic species is thought to be the rate-limiting step in the production and emission of volatile (methyl)arsines. While methanogens and sulfate-reducing bacteria (SRB) have been identified as important regulators of methylated oxyarsenic concentrations in anaerobic soils, the effects of these microbial groups on biovolatilization remain unclear. Here, microcosm and batch incubation experiments with an Arkansas, USA, rice paddy soil were performed in conjunction with metabolic inhibition to test the effects of methanogenic activity on As speciation and biovolatilization. Inhibition of methanogenesis with 2-bromoethanesulfonate (BES) led to the accumulation of methylated oxyarsenic species, primarily dimethylarsinic acid (DMAs(V)), and a four-fold increase in As biovolatilization compared to a control soil. Our results support a conceptual model that methanogenic activity suppresses biovolatilization by enhancing As demethylation rates. This work refines understanding of biogeochemical processes regulating As biovolatilization in anaerobic soil environments, and extends recent insights into links between methanogenesis and As metabolism to soils from the mid-South United States rice production region.
Collapse
Affiliation(s)
- Xuhui Zhang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Li K, Li S, Li Q, Liu H, Yao W, Wang Q, Chai L. Design of a high-performance ternary LDHs containing Ni, Co and Mn for arsenate removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127865. [PMID: 34848069 DOI: 10.1016/j.jhazmat.2021.127865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
To cope with the current serious arsenate pollution problem, a new ternary layered double hydroxides (LDHs) containing Ni, Co and Mn with good performance was developed, guiding by DFT calculations. First, Ni, Co and Mn were screened as the metal sources to constitute the LDHs, due to their high ionic charge density. Then, Ni(II), Co(II) and Mn(III)-O octahedra were selected as the primary units for structuring the LDHs, because of their good chemical activity. Meanwhile, the ratio of metals in the ternary LDHs, favoring for arsenate removal, was optimized at 1:2:1. In addition, the synergistic effect among various metals in the LDHs was considered. The results suggested that in the case of single doping, all three metals can act as the center to promote chemical activity independently. On the contrary, when combined together, there is only one unilateral active center. Moreover, the existence of ligand covalent bonds between arsenate and LDHs was confirmed. Finally, a promising new NiCo2Mn-LDHs with the maximum adsorption capacity of 407.23 mg/g for arsenate removal had been prepared.
Collapse
Affiliation(s)
- Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shuimei Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China.
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Wenming Yao
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| |
Collapse
|
12
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
13
|
Zeng Q, Zhong H, He Z, Hu L. Efficient removal of arsenite by a composite of amino modified silica supported MnO 2/Fe-Al hydroxide (SNMFA) prepared from biotite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112678. [PMID: 33964621 DOI: 10.1016/j.jenvman.2021.112678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Developing materials from natural minerals to efficiently remove arsenite (As(Ⅲ)) from solution is vital important for resources comprehensive utilization and environment protection. In this study, biotite containing minerals was used to prepare a novel composite of amino modified silica supported MnO2/Fe-Al hydroxide (SNMFA composite), which was then applied to remove arsenite. Scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated that many amorphous MnO2 and Fe-Al hydroxide nano sheets were loaded on the surface of layered silica structure. Batch experiments showed that this composite could efficiently remove As(Ⅲ) from aqueous solution, and the maximal removal capacity was identified as 46.11 mg/g. As(Ⅲ) adsorption behaviours of SNMFA composite were confirmed by the pseudo-second-order kinetic model and Langmuir model, indicating that As(Ⅲ) adsorption on its surface was monolayer adsorption. The adsorption process was a pH and temperature dependent process, and increasing pH and temperature have facilitated the removal of As(Ⅲ). Thermodynamic analysis showed that As(Ⅲ) adsorption process was a spontaneous endothermic reaction. The As(Ⅲ) removal was mainly relied on the stable inner-sphere coordination model, and the corresponding mechanisms were involved in chelation, precipitation, oxidation-adsorption and electrostatic interaction.
Collapse
Affiliation(s)
- Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
14
|
Deng Y. Making Waves: Principles for the Design of Sustainable Household Water Treatment. WATER RESEARCH 2021; 198:117151. [PMID: 33910143 DOI: 10.1016/j.watres.2021.117151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Household water treatment (HWT) represents a key engineering intervention for billions of people's daily and emergency water needs. However, established HWT practices experience different challenges to achieve sustainability. Here, five essential principles are identified and discussed for the design of sustainable HWT, including treatment capability, environmental friendliness, user experience, economic viability, and social acceptance. A well-implemented HWT, with a consideration of energy resilience, relies heavily on advanced materials, innovative technologies, and/or creative designs capable of reliably abating both traditional and emerging contaminants, while minimizing undesirable chemical leaching and the formation of harmful disinfection byproducts. Environmental friendliness can be pursued by appreciably reducing environmental and energy footprints and properly managing HWT residuals. Meanwhile, a user-centered design approach and economic consideration need to be integrated into the HWT development to improve end users' willingness to use and pay, respectively. Finally, social acceptance should be intertwined by fostering public acceptance and market adoption for strengthening commercial viability of new-generation HWT products. Given that these principles span across different domains, multidisciplinary collaboration is required throughout different stages of the HWT technology innovation.
Collapse
Affiliation(s)
- Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States.
| |
Collapse
|
15
|
Zhai W, Guo T, Yang S, Gustave W, Hashmi MZ, Tang X, Ma LQ, Xu J. Increase in arsenic methylation and volatilization during manure composting with biochar amendment in an aeration bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125123. [PMID: 33858097 DOI: 10.1016/j.jhazmat.2021.125123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Biochar is widely used as an amendment to optimize the composting process. In this study, we firstly investigated the effects of biochar amendment on methylation and volatilization of arsenic (As), and the microbial communities during manure composting. Biochar amendment was found to increase the concentrations of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) during mesophilic (days 0-10) and early thermophilic (days 11-15) phases, and promote As volatilization during the maturing phase (days 60-80) of composting. In addition, the abundances of As(V) reductase (arsC) and As(III) S-adenosyl-L-methionine methyltransferase (arsM) genes were higher in the biochar treatment than that in the control. Moreover, biochar amendment influenced the microbial communities by promoting As methylation and volatilization via Ensifer and Sphingobium carrying arsC genes, and Rhodopseudomonas and Pseudomonas carrying arsM genes. This study emphasized the considerable role of biochar on methylation and volatilization of As during manure composting and provided an overall characterization of the community compositions of arsC and arsM genes during manure composting. It will broaden our insights in As biogeochemical cycle during manure composting with biochar amendment, which will facilitate the regulation of As during manure composting and its application in agricultural soil.
Collapse
Affiliation(s)
- Weiwei Zhai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Ting Guo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, The Bahamas
| | | | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Tang R, Wu G, Yue Z, Wang W, Zhan X, Hu ZH. Anaerobic biotransformation of roxarsone regulated by sulfate: Degradation, arsenic accumulation and volatilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115602. [PMID: 33254639 DOI: 10.1016/j.envpol.2020.115602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Roxarsone, an extensively used organoarsenical feed additive, is often pooled in livestock wastewater. Sulfate exists ubiquitously in livestock wastewater and is capable for arsenic remediation. However, little is known about impacts of sulfate on roxarsone biotransformation during anaerobic digestion of livestock wastewater. In this study, the biodegradation of 5.0 mg L-1 roxarsone, and the accumulation and volatilization of the generated arsenical metabolites in a sulfate-spiked upflow anaerobic granular blanket reactor were investigated. Based on the analysis of degradation products, the nitro and arsenate groups of roxarsone were successively reduced to amino and arsenite groups before the C-As bond cleavage. Effluent arsenic concentration was ∼0.75 mg L-1, of which 82.9-98.5% were organoarsenicals. The maximum arsenic volatilization rate reached 32.6 μg-As kg-1-VS d-1. Adding 5.0 mg L-1 sulfate enabled 66.7% and 45.9% decrease in inorganic arsenic concentration and arsenic volatilization rate, respectively. Arsenic content in the anaerobic granular sludge (AGS) was accumulated to 1250 mg kg-1 within 420 days. Based on the results of FESEM-EDS and XPS, sulfate addition induced arsenic precipitation in the AGS through the formation of orpiment. Arsenic in the effluent, biogas and AGS accounted for 52.9%, 0.01% and 47.1% of the influent arsenic when the reactor operated stably. The findings from this study suggest that sulfate has effectively regulatory effects on arsenic immobilization and volatilization during anaerobic digestion of organoarsenic-contaminated livestock wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guangxue Wu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
17
|
Zhai W, Qin T, Li L, Guo T, Yin X, Khan MI, Hashmi MZ, Liu X, Tang X, Xu J. Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2020; 138:105535. [PMID: 32220815 DOI: 10.1016/j.envint.2020.105535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a potential contaminant in sewage sludge that may affect waste treatment and limit the use of these waste materials as soil amendments. Anaerobic digestion (AD) is an important and effective process for the treatment of sewage sludge and the chemical speciation of As is particularly important in sludge AD. However, the biotransformation genes of As in sludge during AD has not been fully explored. In this study, the influent and effluent sludge of anaerobic digester in a wastewater treatment plant (WWTP) was collected to investigate the species transformations of As, the abundance and diversity of As biotransformation genes was explored by real-time PCR (qPCR) and metagenomic sequencing, separately. The results showed that arsenite [As(III)] and arsenate [As(V)] were predominant in the influent sludge, whereas the relative abundance of monomethylarsenic acid (MMA) increased by 25.7% after digestion. As biotransformation genes were highly abundant, and the As(III) S-adenosylmethionine methyltransferase (arsM) gene was the predominant which significantly increased after AD by qPCR analysis. Metagenomic analysis indicated that the diversity of the arsM-like sequences also increased significantly after AD. Most of the arsM-like sequences in all the influent and effluent sludge samples were related to Bacteroidetes and Alphaproteobacteria. Furthermore, co-occurrence network analysis indicated a strong correlation between the microbial communities and As. This study provides a direct and reliable reference on As biotransformation genes and microbial community in the AD of sludge.
Collapse
Affiliation(s)
- Weiwei Zhai
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tianyue Qin
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liguan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ting Guo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaole Yin
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Muhammad Imran Khan
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
18
|
Tang R, Yuan S, Wang Y, Wang W, Wu G, Zhan X, Hu Z. Arsenic volatilization in roxarsone-loaded digester: Insight into the main factors and arsM genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135123. [PMID: 31818587 DOI: 10.1016/j.scitotenv.2019.135123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The extensive use of roxarsone (ROX) in livestock and poultry husbandry causes the production of arylarsenic-contaminated manure/wastewater. Anaerobic digestion is a conventional technique for livestock manure/wastewater treatment. However, the factors affecting arsenic volatilization are poorly understood in arylarsenic-loaded anaerobic reactors. The main factors such as ROX loading, exposure time of anaerobic granular sludge (AGS) to ROX, and volatile fatty acid (VFA) levels, affecting arsenic volatilization were investigated in this study. The results indicated that ROX loading of 5.70 mg-As·L-1 triggered the maximum volatile arsenic yield of 6.78 ng-As·g-1-VSS·d-1, which was 4.95 times higher compared to the ROX-free assay. The conversion of ROX into inorganic arsenic was an essential step for arsenic volatilization. The 160-day and 270-day exposure of AGS to ROX caused 6-fold and 8-fold increase in volatile arsenic yield, respectively, compared to the 0-day exposure. With the longer-time exposure to ROX, AGS provided more available arsenic for volatilization and its arsenic-volatilizing capacity was significantly enhanced. VFA level was positively associated with arsenic volatilization (r = 0.832-0.950; p < 0.05). The abundance of arsM genes in AGS increased by 34.62-129.05% after the 100-day incubation, and was strongly correlated to arsenic volatilization. Based on these results, possible pathway of arsenic volatilization in ROX-loaded digesters were proposed. The result from this study improves a better understanding of the potential of arsenic volatilization in arylarsenic-contaminated environments.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guangxue Wu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xinmin Zhan
- College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
19
|
Yi XY, Yang YP, Yuan HY, Chen Z, Duan GL, Zhu YG. Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:591-599. [PMID: 30952004 DOI: 10.1016/j.jhazmat.2019.03.113] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/12/2023]
Abstract
Humic acid (HA) and fulvic acid (FA) are dominating humic substances (HS) in soil. In this study, the effects of HA and FA addition (0.2%-1.5%) on arsenic (As) mobility and microbial community composition in paddy soil were investigated. FA significantly increased the concentrations of As (12-fold), iron (Fe; 20-fold), manganese (Mn; 3-fold) and acetic acid (3-fold) in soil porewater, and also caused significant enrichment of Desulfitobacterium (41-fold). Furthermore, the FA addition significantly increased the relative abundance of Bathyarchaeota (4-fold), a microorganism that is suggested to be important for FA degradation. In contrast, HA slightly increased As (1.2-fold) in porewater, had little effect on Fe, Mn and acetic acid, and 1.5% HA addition significantly decreased As in porewater at day 14 (45%). Both HA and FA addition promoted As methylation. HA increased dimethylarsenate concentration and FA increased monomethylarsenate concentration in porewater. These results highlight the contrasting effects of different (HA vs. FA) organic substances on As fate in paddy soil and advance our understanding of the associations among As, Fe and organic substances through microorganisms in paddy soil.
Collapse
Affiliation(s)
- Xing-Yun Yi
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yu-Ping Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hai-Yan Yuan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| |
Collapse
|
20
|
da Silva EB, Mussoline WA, Wilkie AC, Ma LQ. Anaerobic digestion to reduce biomass and remove arsenic from As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:23-28. [PMID: 30981932 DOI: 10.1016/j.envpol.2019.03.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The lack of efficient methods to treat As-rich biomass is a drawback for phytoremediation technology. In this study, we applied anaerobic digestion to reduce biomass and remove As from As-rich Pteris vittata biomass. P. vittata biomass including control (3.1 mg kg-1 As) and As-rich (2665 mg kg-1 As), together with positive and negative controls, was anaerobically digested at 35 °C for 35 d. Arsenic partitioning among gas, liquid and solid phases after anaerobic digestion was determined. Methane index potential assay was used to assess methane yields whereas liquid-displacement method was used to measure methane gas production. After 35 d, As partitioning in the liquid, solid and gas phases was 79, 30 and 1%, respectively. Besides, volatile solid was decreased from 91 to 12-17% total solid, while P. vittata biomass was decreased by 73-83%. Moreover, anaerobic digestion solubilized 76% As from P. vittata biomass, with 90% soluble As at 4.95 mg L-1 being recovered by As-Mg precipitation. Finally, methane production after 35 d was 197-212 LNCH4/kg volatile solid, showing slight As inhibition. Effective As removal from P. vittata biomass prior to disposal can improve the phytoremediation process.
Collapse
Affiliation(s)
- Evandro B da Silva
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, United States; Institute of Environment Remediation and Human Health, South West Forestry University, Yunnan, 650224, China
| | - Wendy A Mussoline
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Lena Q Ma
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, United States; Institute of Environment Remediation and Human Health, South West Forestry University, Yunnan, 650224, China.
| |
Collapse
|
21
|
Tang Y, Zhang M, Sun G, Pan G. Impact of eutrophication on arsenic cycling in freshwaters. WATER RESEARCH 2019; 150:191-199. [PMID: 30522034 DOI: 10.1016/j.watres.2018.11.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Many arsenic-bearing freshwaters are facing with eutrophication and consequent algae-induced anoxia/hypoxia events. However, arsenic cycling in eutrophic waters and its impact on public health are poorly understood. Laboratory simulation experiments are performed in this study to investigate the effect of algal blooms on the cycling of arsenic in a sediment-water-air system. We found that the anoxia induced by the degradation of algal biomass promoted an acute arsenic (mostly As(III)) release within two days from sediment to both the water and atmosphere, and the release effluxes were proportional to the algae dosage. The reduction and methylation of arsenic were enhanced at the sediment-water interface, owing to the significant increase in arsenate reductase genes (arrA and arsC), and arsenite methyltransferase genes (arsM) caused by increased anoxia. The analysis of synchrotron-based X-ray absorption spectroscopy indicated that the concomitantly released natural organic matter (NOM) and sulfur (S) at the sediment-water interface reduced the As(III) release to a certain extent in the later reducing period of incubation, by forming As2S3 (43-51%) and As(III)-Fe-NOM (28-35%). Our results highlight the needs for the in-situ assessment of volatile arsenic in eutrophic freshwaters with its risk to human and animal health.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Meiyi Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Guoxin Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Gang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Centre of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
22
|
Yang YP, Zhang HM, Yuan HY, Duan GL, Jin DC, Zhao FJ, Zhu YG. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:598-608. [PMID: 29433100 DOI: 10.1016/j.envpol.2018.01.099] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) contamination is a global problem. Straw incorporation is widely performed in As contaminated paddy fields. To understand how straw and straw biochar incorporation affect As transformation and translocation in the soil-microbe-rice system, a pot experiment was carried out with different dosages of rice straw and straw biochar application. Results showed that both straw biochar and straw application significantly increased As mobility. Straw biochar mobilized As mainly through increasing soil pH and DOM content. Straw incorporation mainly through enhancing As release from iron (Fe) minerals and arsenate (As(V)) reduction to arsenite (As(III)). Straw biochar didn't significantly affect As methylation, while straw incorporation significantly enhanced As methylation, elevated dimethylarsenate (DMA) concentration in soil porewater and increased As volatilization. Straw biochar didn't significantly change total As accumulation in rice grains, but decreased As(III) accumulation by silicon (Si) inhibition. Straw incorporation significantly increased DMA, but decreased As(III) concentration in rice grains. After biochar application, dissolved As was significantly positively correlated with the abundance of Bacillus, indicating that Bacillus might be involved in As release, and As(III) concentration in polished grains was negatively correlated with Si concentration. The significant positive correlation between dissolved As with Fe and the abundance of iron-reducing bacteria suggested the coupling of As and Fe reduction mediated by iron-reducing bacteria. The significant positive correlation between DMA in rice grains and the abundance of methanogenic bacteria indicated that methanogenic bacteria could be involved in As methylation after straw application. The results of this study would advance the understanding how rice straw incorporation affects As fate in soil-microbe-rice system, and provide some guidance to straw incorporation in As contaminated paddy soil. This study also revealed a wealth of microorganisms in the soil environment that dominate As mobility and transformation after straw incorporation.
Collapse
Affiliation(s)
- Yu-Ping Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hong-Mei Zhang
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, People's Republic of China
| | - Hai-Yan Yuan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - De-Cai Jin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
23
|
Arsenic Transformation in Swine Wastewater with Low-Arsenic Content during Anaerobic Digestion. WATER 2017. [DOI: 10.3390/w9110826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|