1
|
Tang Y, Wang M, Venkatesan AK, Gobler CJ, Mao X. Biologically active filtration (BAF) for metabolic 1,4-dioxane removal from contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137827. [PMID: 40048785 DOI: 10.1016/j.jhazmat.2025.137827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
1,4-Dioxane is a persistent contaminant that is not effectively removed by conventional water treatment processes. In this study, bench-scale granular activated carbon (GAC)-based biologically active filtration (BAF) systems were developed to metabolically degrade 1,4-dioxane at environmentally relevant levels (<1000 μg L-1). BAF was established using predeveloped biologically activated carbon particles by mixing a 1,4-dioxane-degrading microbial community with granular activated carbon. 1,4-Dioxane removal performance was examined at a range of 1,4-dioxane concentrations (100-1000 μg L-1), hydraulic loading rates (3.6-14 cm h-1), and with the presence of co-contaminants (natural organic matter (NOM) and 1,1-DCE). BAFs achieved 69 ± 7 % removal with an influent 1,4-dioxane concentration of 100 μg L-1 and hydraulic loading rates of 3.6-14 cm h-1, with the lowest effluent concentration of 21 μg L-1. The presence of NOM and 1,1-DCE negatively and irreversibly impacted 1,4-dioxane removal performance of BAF, and pretreatment processes to remove co-contaminants are crucial to maintain the 1,4-dioxane removal efficiency. Microbial analysis revealed the enrichment of 1,4-dioxane degrading species (CB1190-like bacteria) and functional genes responsible for 1,4-dioxane biodegradation (dxmB and aldh) at the top 12 cm of the columns, suggesting the effectiveness of biological 1,4-dioxane removal within short column lengths. This study demonstrated effective metabolic 1,4-dioxane removal at environmentally relevant concentrations by the BAFs, and can provide insights into designing better 1,4-dioxane remediation strategies.
Collapse
Affiliation(s)
- Yuyin Tang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mian Wang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Arjun K Venkatesan
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Christopher J Gobler
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Xinwei Mao
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
2
|
Hwangbo M, Rezes R, Chu KH, Hatzinger PB. Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer. Biodegradation 2024; 36:8. [PMID: 39565393 DOI: 10.1007/s10532-024-10103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH4) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA. The ability of indigenous methanotrophs to biodegrade CVOCs was also evaluated. Results of stable isotope probing (SIP) and Next Generation Sequencing (NGS) showed that the microbial communities in the microcosms varied by location and were affected by both CH4 concentration and the presence of different CVOCs, many of which were biodegraded by the indigenous methanotrophs. Data indicate the likelihood of aerobic cometabolic degradation of CVOCs downgradient of the mulch barrier designed for anaerobic treatment. The study extends the overall knowledge of acidophilic methanotrophs in groundwater and shows that these bacteria have significant potential for degrading CVOCs even at low CH4 concentrations.
Collapse
Affiliation(s)
- Myung Hwangbo
- School of Earth, Environmental and Marine Sciences, University of Texas - Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Rachael Rezes
- Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Paul B Hatzinger
- Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA.
| |
Collapse
|
3
|
Marmitt M, Cauduro GP, Sbruzzi RC, Valiati VH. Evaluation of Differentially Expressed Candidate Genes in Benzo[a]pyrene Degradation by Burkholderia vietnamiensis G4. Mol Biotechnol 2024:10.1007/s12033-024-01284-6. [PMID: 39298104 DOI: 10.1007/s12033-024-01284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Bacteria-mediated bioremediation is widely employed for its environmental benefits. The genus Burkholderia can degrade persistent organic compounds, however, little is known about its mechanisms. To increase this knowledge, Burkholderia vietnamiensis G4 bacteria were exposed to benzo[a]pyrene, a recalcitrant compound, and the expression of twelve genes of interest was analyzed at 1, 12 and 24 h. In addition, benzo[a]pyrene degradation, evaluation of cell viability and fluorescence emission of assimilated benzo[a]pyrene was performed over 28 days. The up-regulated genes were xre, paaE, livG and pckA at the three times, ACAD, atoB, bmoA and proV at 1 h and AstB at 12 h. These genes are important for bacterial survival in stress situations, breakdown and metabolization of organic compounds, and nutrient transport and uptake. Furthermore, a 52% reduction of the pollutant was observed, there was no significant variation in the viability rate of the cells, and fluorescence indicated an accumulation of benzo[a]pyrene after 24 h. Our study demonstrates the bacteria adaptability and ability to modulate the expression of genes at different times and as needed. This increases our understanding of biodegradation processes and opens new possibilities for using this bacterial strain as a tool for the bioremediation of contaminated areas.
Collapse
Affiliation(s)
- Marcela Marmitt
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Guilherme Pinto Cauduro
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Renan César Sbruzzi
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
- Laboratory of Immunogenetics, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Victor Hugo Valiati
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
4
|
Bach C, Boiteux V, Dauchy X. France-Wide Monitoring of 1,4-Dioxane in Raw and Treated Water: Occurrence and Exposure Via Drinking Water Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:95-104. [PMID: 39085588 PMCID: PMC11377507 DOI: 10.1007/s00244-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
In recent years, 1,4-dioxane has emerged as a pollutant of increasing concern following widespread detection in the aquatic environment of several countries. This persistent contaminant with specific physical and chemical properties can be rapidly dispersed and transported to river banks, groundwater and drinking water. Given the limited data on its occurrence in France, it was considered necessary to assess the potential exposure of the French population to this compound in drinking water. An analytical method based on solid-phase extraction (SPE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated during this study with a limit of quantification (LOQ) of 0.15 µg/L. Recoveries in natural water matrices ranged from 113 to 117% with a relative bias not exceeding 17%. This method was used for a nationwide campaign at almost 300 sites, evenly distributed over 101 French départements (administrative units), including some that were overseas. Of the 587 samples analysed, only 8% had a concentration that was greater than or equal to the LOQ. 1,4-Dioxane was detected mainly (63%) in raw and treated water from sites associated with historical industrial practices related to the use of chlorinated solvents. Concentrations of 1,4-dioxane ranging from 0.19 to 2.85 µg/L were observed in the raw water and from 0.18 to 2.46 µg/L in the treated water. Drinking water treatment plants using ozonation, granular activated carbon and chlorination have limited effectiveness in the removal of 1,4-dioxane. The results of this study are the first step towards bridging the knowledge gap in the occurrence of 1,4-dioxane in France.
Collapse
Affiliation(s)
- Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
5
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Luo YH, Long X, Cai Y, Zheng CW, Roldan MA, Yang S, Zhou D, Zhou C, Rittmann BE. A synergistic platform enables co-oxidation of halogenated organic pollutants without input of organic primary substrate. WATER RESEARCH 2023; 234:119801. [PMID: 36889084 DOI: 10.1016/j.watres.2023.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While co-oxidation is widely used to biodegrade halogenated organic pollutants (HOPs), a considerable amount of organic primary substrate is required. Adding organic primary substrates increases the operating cost and also leads to extra carbon dioxide release. In this study, we evaluated a two-stage Reduction and Oxidation Synergistic Platform (ROSP), which integrated catalytic reductive dehalogenation with biological co-oxidation for HOPs removal. The ROSP was a combination of an H2-based membrane catalytic-film reactor (H2-MCfR) and an O2-based membrane biofilm reactor (O2-MBfR). 4-chlorophenol (4-CP) was used as a model HOP to evaluate the performance of ROSP. In the MCfR stage, zero-valent palladium nanoparticles (Pd0NPs) catalyzed reductive hydrodechlorination that converted 4-CP to phenol, with a conversion yield over 92%. In the MBfR stage, the phenol was oxidized and used as a primary substrate that supported the co-oxidation of residual 4-CP. Genomic DNA sequencing revealed that phenol produced from 4-CP reduction enriched bacteria having genes for functional enzymes for phenol biodegradation in the biofilm community. In the ROSP, over 99% of 60 mg/L 4-CP was removed and mineralized during continuous operation: Effluent 4-CP and chemical oxygen demand concentrations were below 0.1 and 3 mg/L, respectively. H2 was the only added electron donor to the ROSP, which means no extra carbon dioxide was produced by primary-substrate oxidation.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Yuhang Cai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| |
Collapse
|
7
|
Samadi A, Kermanshahi-Pour A, Budge SM, Huang Y, Jamieson R. Biodegradation of 1,4-dioxane by a native digestate microbial community under different electron accepting conditions. Biodegradation 2023; 34:283-300. [PMID: 36808270 DOI: 10.1007/s10532-023-10019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| | - Suzanne M Budge
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - Yannan Huang
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Rob Jamieson
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Madison AS, Sorsby SJ, Wang Y, Key TA. Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools. Front Microbiol 2023; 13:1005871. [PMID: 36845972 PMCID: PMC9950576 DOI: 10.3389/fmicb.2022.1005871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 02/12/2023] Open
Abstract
Leveraging the capabilities of microorganisms to reduce (degrade or transform) concentrations of pollutants in soil and groundwater can be a cost-effective, natural remedial approach to manage contaminated sites. Traditional design and implementation of bioremediation strategies consist of lab-scale biodegradation studies or collection of field-scale geochemical data to infer associated biological processes. While both lab-scale biodegradation studies and field-scale geochemical data are useful for remedial decision-making, additional insights can be gained through the application of Molecular Biological Tools (MBTs) to directly measure contaminant-degrading microorganisms and associated bioremediation processes. Field-scale application of a standardized framework pairing MBTs with traditional contaminant and geochemical analyses was successfully performed at two contaminated sites. At a site with trichloroethene (TCE) impacted groundwater, framework application informed design of an enhanced bioremediation approach. Baseline abundances of 16S rRNA genes for a genus of obligate organohalide-respiring bacteria (i.e., Dehalococcoides) were measured at low abundances (101-102 cells/mL) within the TCE source and plume areas. In combination with geochemical analyses, these data suggested that intrinsic biodegradation (i.e., reductive dechlorination) may be occurring, but activities were limited by electron donor availability. The framework was utilized to support development of a full-scale enhanced bioremediation design (i.e., electron donor addition) and to monitor remedial performance. Additionally, the framework was applied at a second site with residual petroleum hydrocarbon (PHC) impacted soils and groundwater. MBTs, specifically qPCR and 16S gene amplicon rRNA sequencing, were used to characterize intrinsic bioremediation mechanisms. Functional genes associated with anaerobic biodegradation of diesel components (e.g., naphthyl-2-methyl-succinate synthase, naphthalene carboxylase, alkylsuccinate synthase, and benzoyl coenzyme A reductase) were measured to be 2-3 orders of magnitude greater than unimpacted, background samples. Intrinsic bioremediation mechanisms were determined to be sufficient to achieve groundwater remediation objectives. Nonetheless, the framework was further utilized to assess that an enhanced bioremediation could be a successful remedial alternative or complement to source area treatment. While bioremediation of chlorinated solvents, PHCs, and other contaminants has been demonstrated to successfully reduce environmental risk and reach site goals, the application of field-scale MBT data in combination with contaminant and geochemical data analyses to design, implement, and monitor a site-specific bioremediation approach can result in more consistent remedy effectiveness.
Collapse
Affiliation(s)
- Andrew S. Madison
- Golder Associates USA Inc., (Currently WSP USA Inc.), Marlton, NJ, United States,*Correspondence: Andrew S. Madison, ✉
| | - Skyler J. Sorsby
- Golder Associates USA Inc., (Currently WSP USA Inc.), Marlton, NJ, United States
| | | | - Trent A. Key
- ExxonMobil Environmental and Property Solutions Company, Spring, TX, United States
| |
Collapse
|
9
|
Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil. Appl Microbiol Biotechnol 2023; 107:955-969. [PMID: 36625913 DOI: 10.1007/s00253-023-12363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 μg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.
Collapse
|
10
|
Tusher TR, Inoue C, Chien MF. Efficient biodegradation of 1,4-dioxane commingled with additional organic compound: Role of interspecies interactions within consortia. CHEMOSPHERE 2022; 308:136440. [PMID: 36116621 DOI: 10.1016/j.chemosphere.2022.136440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
11
|
Key TA, Sorsby SJ, Wang Y, Madison AS. Framework for field-scale application of molecular biological tools to support natural and enhanced bioremediation. Front Microbiol 2022; 13:958742. [PMID: 36425033 PMCID: PMC9679620 DOI: 10.3389/fmicb.2022.958742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/20/2022] [Indexed: 10/01/2023] Open
Abstract
Microorganisms naturally present at environmental contaminated sites are capable of biodegrading, biotransforming, or removing contaminants in soil and groundwater through bioremediation processes. Cleanup strategies and goals for site remediation can be effectively achieved by bioremediation leveraging the capabilities of microorganisms to biotransform contaminants into lesser or non-toxic end products; however, reproducible success can be limited by inadequate design or performance monitoring. A group of biological analyses collectively termed molecular biological tools (MBTs) can be used to assess the contaminant-degrading capabilities and activities of microorganisms present in the environment and appropriately implement bioremediation approaches. While successful bioremediation has been demonstrated through previously described lab-scale studies and field-scale implementation for a variety of environmental contaminants, design and performance monitoring of bioremediation has often been limited to inferring biodegradation potential, occurrence, and pathways based on site geochemistry or lab-scale studies. Potential field-scale application of MBTs presents the opportunity to more precisely design and monitor site-specific bioremediation approaches. To promote standardization and successful implementation of bioremediation, a framework for field-scale application of MBTs within a multiple lines of evidence (MLOE) approach is presented. The framework consists of three stages: (i) "Assessment" to evaluate naturally occurring biogeochemical conditions and screen for potential applicability of bioremediation, (ii) "Design" to define a site-specific bioremediation approach and inform amendment selection, and (iii) "Performance Monitoring" to generate data to measure or infer bioremediation progress following implementation. This framework is introduced to synthesize the complexities of environmental microbiology and guide field-scale application of MBTs to assess bioremediation potential and inform site decision-making.
Collapse
Affiliation(s)
- Trent A. Key
- ExxonMobil Environmental and Property Solutions Company, Spring, TX, United States
| | | | | | | |
Collapse
|
12
|
Kikani M, Satasiya GV, Sahoo TP, Kumar PS, Kumar MA. Remedial strategies for abating 1,4-dioxane pollution-special emphasis on diverse biotechnological interventions. ENVIRONMENTAL RESEARCH 2022; 214:113939. [PMID: 35921903 DOI: 10.1016/j.envres.2022.113939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.
Collapse
Affiliation(s)
- Mansi Kikani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Gopi Vijaybhai Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India.
| |
Collapse
|
13
|
Degradation of 1,4-dioxane by Newly Isolated Acinetobacter sp. M21 with Molasses as the Auxiliary Substrate. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Rolston H, Hyman M, Semprini L. Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions. Biodegradation 2022; 33:349-371. [PMID: 35553282 DOI: 10.1007/s10532-022-09987-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.
Collapse
|
15
|
Zhou Z, Zeng Q, Li G, Hu D, Xia Q, Dong H. Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral. CHEMOSPHERE 2022; 290:133265. [PMID: 34914951 DOI: 10.1016/j.chemosphere.2021.133265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Improper disposal of chlorinated solvents such as trichloroethylene (TCE) and its stabilizer 1,4-dioxane has resulted in extensive contamination in soils and groundwater. Oxidative degradation of these contaminants by strong oxidants has been proposed recently as a remediation strategy, but specific mechanisms and degradation efficiencies are still poorly understood, especially in commingled systems. In this study, a reduced iron-bearing clay (RIC), nontronite (rNAu-2), was oxygenated to produce hydroxyl radicals (•OH) for degradation of TCE and 1,4-dioxane under circumneutral and dark conditions. Results showed that TCE and 1,4-dioxane could be effectively degraded during oxygenation of rNAu-2 in both single and commingled systems. Compared with the single compound system, the degradation rates and efficiencies of TCE and 1,4-dioxane decreased in the commingled system. The negative effect was more significant for TCE than 1,4-dioxane. The commingled TCE and 1,4-dioxane impacted the degradation pattern of each other, due to their difference in •OH scavenging efficiency, surface affinity to rNAu-2 and solubility. Moreover, solution pH, buffer type, rNAu-2 dosage, and dissolved organic matter all affected •OH production and contaminant degradation efficiency. Our findings provide new insights for investigating the natural attenuation of commingled chlorinated solvents and 1,4-dioxane by RIC in redox-fluctuating environments and offer guidance for developing possible in-situ remediation strategies.
Collapse
Affiliation(s)
- Ziqi Zhou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Dafu Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
16
|
Adamson DT, Wilson JT, Freedman DL, Ramos-García AA, Lebrón C, Danko A. Establishing the prevalence and relative rates of 1,4-dioxane biodegradation in groundwater to improve remedy evaluations. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127736. [PMID: 34802822 DOI: 10.1016/j.jhazmat.2021.127736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Options for remediating 1,4-dioxane at groundwater sites are limited due to the physical-chemical properties of this compound. The relevance of natural attenuation processes for 1,4-dioxane was investigated through data from field, lab, and modeling efforts. The objectives were to use multiple lines of evidence for 1,4-dioxane biodegradation to understand the prevalence of this activity and evaluate convergence between lines of evidence. A 14C-1,4-dioxane assay confirmed 1,4-dioxane biodegradation at 9 of 10 sites (median rate constant of 0.0105 yr-1 across wells). Site-wide rate constants were established using a calibrated fate and transport model at 8 sites (median = 0.075 yr-1). The 14C assay constants are likely more conservative, and variability in rates suggested that biodegradation at sites may be localized. Stable isotope fractionation was observed at 7 of 10 sites and served as another direct line of evidence of in situ biodegradation of 1,4-dioxane. This includes sites where indirect lines of evidence, including geochemical conditions or genetic biomarkers for degradation, would not necessarily have been supportive. This highlights the importance of collecting multiple lines of evidence to document 1,4-dioxane natural attenuation, and the widespread prevalence of biodegradation suggests that this process should be part of long-term management decisions.
Collapse
Affiliation(s)
| | - John T Wilson
- Scissortail Environmental Solutions LLC., Ada, OK, USA
| | | | | | | | - Anthony Danko
- Naval Facilities Engineering Systems Command - Engineering and Expeditionary Warfare Center, Port Hueneme, CA, USA
| |
Collapse
|
17
|
Rhea LK, Clark C. Management of large dilute plumes of chloroethenes and 1,4-dioxane via monitored natural attenuation (MNA) and MNA augmentation. REMEDIATION (NEW YORK, N.Y.) 2022; 32:97-118. [PMID: 35539433 PMCID: PMC9083347 DOI: 10.1002/rem.21710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/08/2022] [Indexed: 01/11/2023]
Abstract
Management of large, dilute groundwater plumes of comingled chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane (dioxane) is problematic due to chemical, hydrogeologic and economic concerns. The US Environmental Protection Agency (US EPA) has conducted research on the management of CVOC plumes for many years, and more recently dioxane. US EPA research on monitored natural attenuation (MNA) of CVOC plumes was reviewed by a science advisory board in 2001. Specific additional research was recommended and has been addressed in a series of US EPA reports produced over almost two decades. These reports are summarized in this document along with supporting information including evidence of biological degradation of dioxane. Based on the summarized reports, US EPA work documented elsewhere, and the work of others, under appropriate conditions MNA or augmented MNA remain viable management options for these plumes. Unlike MNA of plumes containing only CVOCs, however, MNA of large dilute comingled plumes should be expected to occur by cometabolic oxidation rather than direct metabolic processes.
Collapse
Affiliation(s)
- Lee K Rhea
- Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Subsurface Remediation Branch, Ada, Oklahoma, USA
| | - Catherine Clark
- Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Subsurface Remediation Branch, Ada, Oklahoma, USA
| |
Collapse
|
18
|
Ramos-García ÁA, Walecka-Hutchison C, Freedman DL. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane. Biodegradation 2022; 33:157-168. [PMID: 35102492 DOI: 10.1007/s10532-022-09971-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
1,4-Dioxane is a pervasive and persistent contaminant in numerous aquifers. Although the median concentration in most contaminant plumes is in the microgram per liter range, a subset of sites have contamination in the milligram per liter range. Most prior studies that have examined 1,4-dioxane concentrations in the hundreds of milligrams per liter range have been performed with industrial wastewater. The main objective of this study was to evaluate aerobic biodegradation of 1,4-dioxane in microcosms prepared with soil and groundwater from a site where concentrations range from ~ 1500 mg·L-1 in the source zone, to 450 mg·L-1 at a midpoint of the groundwater plume, and to 6 mg·L-1 at a down-gradient location. Treatments included biostimulation with propane, addition of propane and a propanotrophic enrichment culture (ENV487), and unamended. The highest rates of biodegradation for each location in the plume occurred in the bioaugmented treatments, although indigenous propanotrophs also biodegraded 1,4-dioxane to below 25 µg·L-1. Nutrient additions were required to sustain biodegradation of propane and cometabolism of 1,4-dioxane. Among the unamended treatments, biodegradation of 1,4-dioxane was detected in the mid-gradient microcosms. An isolate was obtained that grows on 1,4-dioxane as a sole source of carbon and energy and identified through whole-genome sequencing as Pseudonocardia dioxivorans BERK-1. In a prior study, the same strain was isolated from an aquifer in the southeastern United States. Monod kinetic parameters for BERK-1 are similar to those for strain CB1190.
Collapse
Affiliation(s)
- Ángel A Ramos-García
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA
| | | | - David L Freedman
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA.
| |
Collapse
|
19
|
Dang H, Cupples AM. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148690. [PMID: 34198077 DOI: 10.1016/j.scitotenv.2021.148690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Co-contamination with chlorinated compounds and 1,4-dioxane has been reported at many sites. Recently, there has been an increased interest in bioremediation because of the potential to degrade multiple contaminants concurrently. Towards improving bioremediation efficacy, the current study examined laboratory microcosms (inoculated separately with two soils) to determine the phylotypes and functional genes associated with the biodegradation of two common co-contaminants (cis-dichloroethene [cDCE] and 1,4-dioxane). The impact of amending microcosms with lactate on cDCE and 1,4-dioxane biodegradation was also investigated. The presence of either lactate or cDCE did not impact 1,4-dioxane biodegradation one of the two soils. Lactate appeared to improve the initiation of the biological removal of cDCE in microcosms inoculated with either soil. Stable isotope probing (SIP) was then used to determine which phylotypes were actively involved in carbon uptake from cDCE and 1,4-dioxane in both soil communities. The most enriched phylotypes for 13C assimilation from 1,4-dioxane included Rhodopseudomonas and Rhodanobacter. Propane monooxygenase was predicted (by PICRUSt2) to be dominant in the 1,4-dioxane amended microbial communities and propane monooxygenase gene abundance values correlated with other enriched (but less abundant) phylotypes for 13C-1,4-dioxane assimilation. The dominant enriched phylotypes for 13C assimilation from cDCE included Bacteriovorax, Pseudomonas and Sphingomonas. In the cDCE amended soil microcosms, PICRUSt2 predicted the presence of DNA encoding glutathione S-transferase (a known cDCE upregulated enzyme). Overall, the work demonstrated concurrent removal of cDCE and 1,4-dioxane by indigenous soil microbial communities and the enhancement of cDCE removal by lactate. The data generated on the phylotypes responsible for carbon uptake (as determined by SIP) could be incorporated into diagnostic molecular methods for site characterization. The results suggest concurrent biodegradation of cDCE and 1,4-dioxane should be considered for chlorinated solvent site remediation.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
20
|
Peng J, Liu H, Shen M, Chen R, Li J, Dong Y. The inhibitory effects of different types of Brassica seed meals on the virulence of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5129-5138. [PMID: 34251090 DOI: 10.1002/ps.6552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding the specific inhibitory effects of different Brassica seed meals (BSMs) on soilborne pathogens is important for their application as biocontrol agents for controlling plant disease. In this study, the seed meals of Brassica napus L. (BnSM), Brassica campestris L. (BcSM), and Brassica juncea L. (BjSM), and the combined seed meal of BcSM and BjSM (CSM, 1:1), were selected for investigation. The inhibitory effects of these seed meals on the plant pathogen Ralstonia solanacearum (Smith) and tomato bacterial wilt, were assessed and compared. RESULTS All the BSMs significantly inhibited the growth of R. solanacearum in vitro. Furthermore, the BSMs could effectively suppress R. solanacearum virulence traits, including motility, exopolysaccharide production, dehydrogenase activity, virulence-related gene expression, and colonization in the soil. Among them, BjSM showed the best inhibiting effects, and CSM displayed synergic toxicity against R. solanacearum. In addition, the predominant antibacterial compounds in BcSM and BjSM were identified as the volatile compounds, 3-butenyl isothiocyanate and allyl isothiocyanate, respectively. Finally, pot experiment verified that the control effects of BjSM and CSM on tomato wilt reached more than 90%. CONCLUSION This is the first study to report on the ability of different kinds of BSMs to suppress the virulence of R. solanacearum and biocontrol efficiencies against bacterial wilt in tomato plants. Furtherly, the main antibacterial compounds in the BSMs were identified. The results demonstrated that CSM may possess potential for controlling bacterial wilt caused by R. solanacearum. The results provide a fresh perspective for comprehending the mechanism underlying BSM suppression of pathogens and plant disease.
Collapse
Affiliation(s)
- Junwei Peng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minchong Shen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruihuan Chen
- University of Chinese Academy of Sciences, Beijing, China
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jiangang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
21
|
Inoue D, Yoshikawa T, Okumura T, Yabuki Y, Ike M. Treatment of 1,4-dioxane-containing water using carriers immobilized with indigenous microorganisms in landfill leachate treatment sludge: A laboratory-scale reactor study. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125497. [PMID: 33652223 DOI: 10.1016/j.jhazmat.2021.125497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
1,4-Dioxane (DX) is a contaminant of emerging concern in aquatic environments, and is frequently found in landfill leachate. As a biological method applicable to landfill leachate treatment facilities, the feasibility of DX treatment using carriers immobilized with microorganisms indigenous to landfill leachate treatment sludge was explored through laboratory-scale reactor experiments by introducing carriers prepared via microorganism immobilization in the aeration tank of a leachate treatment facility. Three different carrier materials were used to immobilize microorganisms, and a model DX-containing water (10 mg/L) was treated under continuous feeding. Biological DX removal to < 0.5 mg/L was achieved using all carrier types, thereby adhering to the effluent standard for landfill leachate in Japan, which confirms the usefulness of the proposed method. However, weaker aeration and enhanced DX loading drastically impaired the DX removal performance depending on the carrier materials. This suggests the importance of carrier selection and control of the operational variables to ensure stable and effective DX removal. Microbial community analyses revealed that Pseudonocardia with thm genes may largely contribute to the initial oxidation of DX, irrespective of the carrier type, suggesting the importance of this population for the continuous treatment of low DX concentrations with mixed microbial consortia.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takumi Yoshikawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Okumura
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 442 Syakudo, Habikino, Osaka 583-0862, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Wang P, Li F, Wang W, Wang R, Yang Y, Cui T, Liu N, Li M. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112206. [PMID: 33866286 DOI: 10.1016/j.ecoenv.2021.112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
1,4-Dioxane (dioxane), an emerging groundwater contaminant, is frequently detected in landfill leachates with its structural analog, tetrahydrofuran (THF). Along with undesirable leakage of landfill leachates, dioxane and THF inevitably percolate into groundwater leading to a broader region of contamination. Cometabolic bioremediation is an effective approach to manage commingled THF and dioxane pollution. In this study, a newly isolated bacterium Arthrobacter sp. WN18 is able to co-oxidize dioxane with THF as the primary substrate. Meanwhile, the THF-induced thmADBC gene cluster was responsible for the dioxane degradation rate indicating THF monooxygenase is the essential enzyme that initializing α-hydroxylation of THF and dioxane. Further, γ-butyrolactone and HEAA were characterized as the key metabolites of THF and dioxane, respectively. In addition, WN18 can tolerate the inhibition of trichloroethylene (5.0 mg/L) as a representative of co-existing leachate constituent, and sustain its activity at various pH (5-11), temperatures (15-42 °C), and salinities (up to 4%, as NaCl wt). Like other Arthrobacter species, WN18 also exhibited the capability of fixing nitrogen. All this evidence indicates the feasibility and advantage of WN18 as a thmADBC-catalyzed inoculator to bioremediate co-contamination of THF and dioxane.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Wenmin Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Ruofan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
23
|
Li F, Deng D, Zeng L, Abrams S, Li M. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145118. [PMID: 33610989 DOI: 10.1016/j.scitotenv.2021.145118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Chlorinated solvents, notably trichloroethene (TCE), and the cyclic ether stabilizer, 1,4-dioxane (dioxane), have been frequently detected commingling in contaminated aquifers. Here we developed a sequential anaerobic and aerobic treatment strategy effective to mitigate the co-contamination of TCE and dioxane, particularly when dioxane is present at ppb levels relevant to many impacted sites. After the primary anaerobic treatment by a halorespiring consortium SDC-9, TCE was effectively removed, though lingering less-chlorinated metabolites, vinyl chloride (VC) and cis-dichloroethene (cDCE). Subsequent aerobic bioaugmentation with Azoarcus sp. DD4, a cometabolic dioxane degrader, demonstrated the ability of DD4 to degrade dioxane at an initial concentration of 20 μg/L to below 0.4 μg/L and its dominance (~7%) in microcosms fed with propane. Even better, DD4 can also transform VC and cDCE in tandem, though cDCE and VC at relatively high concentrations (e.g., 1 mg/L) posed inhibition to propane assimilation and cell growth of DD4. Mutagenesis of DD4 revealed group-2 toluene monooxygenase and group-5 propane monooxygenase are responsible for cDCE and VC co-oxidation, respectively. Overall, we demonstrated the feasibility of a treatment train combining reductive dehalogenation and aerobic co-oxidation processes in tandem to not only effectively clean up prevalent co-contamination of TCE and dioxane at trace levels but also mitigate persistent products (e.g., cDCE and VC) when complete reductive dehalogenation of less-chlorinated ethenes occurs slowly in the field.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Daiyong Deng
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Lingke Zeng
- Langan Engineering, Parsippany, NJ 07054, USA
| | | | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
24
|
Luo YH, Long X, Wang B, Zhou C, Tang Y, Krajmalnik-Brown R, Rittmann BE. A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6363-6372. [PMID: 33881824 DOI: 10.1021/acs.est.1c00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Groundwater co-contaminated with 1,4-dioxane, 1,1,1-trichloroethane (TCA), and trichloroethene (TCE) is among the most urgent environmental concerns of the U.S. Department of Defense (DoD), U.S. Environmental Protection Agency (EPA), and industries related to chlorinated solvents. Inspired by the pressing need to remove all three contaminants at many sites, we tested a synergistic platform: catalytic reduction of 1,1,1-TCA and TCE to ethane in a H2-based membrane palladium-film reactor (H2-MPfR), followed by aerobic biodegradation of ethane and 1,4-dioxane in an O2-based membrane biofilm reactor (O2-MBfR). During 130 days of continuous operation, 1,1,1-TCA and TCE were 95-98% reductively dechlorinated to ethane in the H2-MPfR, and ethane served as the endogenous primary electron donor for promoting 98.5% aerobic biodegradation of 1,4-dioxane in the O2-MBfR. In addition, the small concentrations of the chlorinated intermediate from the H2-MPfR, dichloroethane (DCA) and monochloroethane (MCA), were fully biodegraded through aerobic biodegradation in the O2-MBfR. The biofilms in the O2-MBfR were enriched in phylotypes closely related to the genera Pseudonocardia known to biodegrade 1,4-dioxane.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85008, United States
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| |
Collapse
|
25
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Isolation and Characterization of Novel Bacteria Capable of Degrading 1,4-Dioxane in the Presence of Diverse Co-Occurring Compounds. Microorganisms 2021; 9:887. [PMID: 33919159 PMCID: PMC8143092 DOI: 10.3390/microorganisms9050887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Biodegradation is found to be a promising, cost-effective and eco-friendly option for the treatment of industrial wastewater contaminated by 1,4-dioxane (1,4-D), a highly stable synthetic chemical and probable human carcinogen. This study aimed to isolate, identify, and characterize metabolic 1,4-D-degrading bacteria from a stable 1,4-D-degrading microbial consortium. Three bacterial strains (designated as strains TS28, TS32, and TS43) capable of degrading 1,4-D as a sole carbon and energy source were isolated and identified as Gram-positive Pseudonocardia sp. (TS28) and Gram-negative Dokdonella sp. (TS32) and Afipia sp. (TS43). This study, for the first time, confirmed that the genus Dokdonella is involved in the biodegradation of 1,4-D. The results reveal that all of the isolated strains possess inducible 1,4-D-degrading enzymes and also confirm the presence of a gene encoding tetrahydrofuran/dioxane monooxygenase (thmA/dxmA) belonging to group 5 soluble di-iron monooxygenases (SDIMOs) in both genomic and plasmid DNA of each of the strains, which is possibly responsible for the initial oxidation of 1,4-D. Moreover, the isolated strains showed a broad substrate range and are capable of degrading 1,4-D in the presence of additional substrates, including easy-to-degrade compounds, 1,4-D biodegradation intermediates, structural analogs, and co-contaminants of 1,4-D. This indicates the potential of the isolated strains, especially strain TS32, in removing 1,4-D from contaminated industrial wastewater containing additional organic load. Additionally, the results will help to improve our understanding of how multiple 1,4-D-degraders stably co-exist and interact in the consortium, relying on a single carbon source (1,4-D) in order to develop an efficient biological 1,4-D treatment system.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Takuya Shimizu
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| |
Collapse
|
26
|
Miao Y, Heintz MB, Bell CH, Johnson NW, Polasko AL, Favero D, Mahendra S. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124457. [PMID: 33189472 DOI: 10.1016/j.jhazmat.2020.124457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Microbial community compositions and functional profiles were analyzed in microcosms established using aquifer materials from a former automobile factory site, where 1,4-dioxane was identified as the primary contaminant of concern. Propane or oxygen biostimulation resulted in limited 1,4-dioxane degradation, which was markedly enhanced with the addition of nutrients, resulting in abundant Mycobacterium and Methyloversatilis taxa and high expressions of propane monooxygenase gene, prmA. In bioaugmented treatments, Pseudonocardia dioxanivorans CB1190 or Rhodococcus ruber ENV425 strains dominated immediately after augmentation and degraded 1,4-dioxane rapidly which was consistent with increased representation of xenobiotic and lipid metabolism-related functions. Although the bioaugmented microbes decreased due to insufficient growth substrates and microbial competition, they did continue to degrade 1,4-dioxane, presumably by indigenous propanotrophic and heterotrophic bacteria, inducing similar community structures across bioaugmentation conditions. In various treatments, functional redundancy acted as buffer capacity to ensure a stable microbiome, drove the restoration of the structure and microbial functions to original levels, and induced the decoupling between basic metabolic functions and taxonomy. The results of this study provided valuable information for design and decision-making for ex-situ bioreactors and in-situ bioremediation applications. A metagenomics-based understanding of the treatment process will enable efficient and accurate adjustments when encountering unexpected issues in bioremediation.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Monica B Heintz
- Arcadis North America, Highlands Ranch, CO 80129, United States
| | | | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Alexandra LaPat Polasko
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - David Favero
- Revitalizing Auto Communities Environmental Response (RACER) Trust, Detroit, MI 48226, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
27
|
Osama R, Awad HM, Zha S, Meng F, Tawfik A. Greenhouse gases emissions from duckweed pond system treating polyester resin wastewater containing 1,4-dioxane and heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111253. [PMID: 32911183 DOI: 10.1016/j.ecoenv.2020.111253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation of polyester resin wastewater containing 1,4-dioxane and heavy metals using Lemna gibba (L.gibba) was enhanced by incorporation of perforated polyethylene carrier materials (PCM) onto the duckweed pond (DWP) system. The DWP module was operated at a hydraulic retention times (HRTs) of 2, 4 and 6 days and as well as 1,4-dioxane loading rate of 16, 25 and 48 g/m3.d. The maximum removal efficiency of 54 ± 2.5% was achieved for 1,4-dioxane at an HRT of 6 days and loading rate of 16 g1,4-dioxane/m3.d. Similarly, the DWP system provided removal efficiencies of 28.3 ± 2.1, 93.2 ± 7.6, 95.7 ± 8.9 and 93.6 ± 4.9% for Cd2+, Cu2+, Zn2+ and Ni2+ at influent concentration of 0.037 ± 0.01, 1.2 ± 0.9, 27.2 ± 4.7 and 4.6 ± 1.2 mg/L respectively. The structural analysis by Fourier-transform infrared spectroscopy (FTIR) clearly displayed a reduction of 1,4- dioxane in the treated effluent. A strong peak was detected for L. gibba plants at frequency of 3417.71 cm-1 due to N-H stretching, which confirm the proposed mechanism of partially conversion of 1,4-dioxane into amino acids. Glycine, serine, aspartic, threonine and alanine content were increased in L. gibba by values of 35 ± 2.2, 40 ± 3.2, 48 ± 3.7, 31 ± 2.8, and 56 ± 4.1%, respectively. The contribution of DWP unit as a greenhouse gases (GHG) emissions were relatively low (1.65 gCO2/Kg BODremoved.d., and 18.3 gCO2/Kg biomass.d) due to photosynthesis process, low excess sludge production and consumption of CO2 for nitrification process (1.4 gCO2/kgN removed.d). Based on these results, it is recommended to apply such a technology for treatment of polyester resin wastewater containing 1,4-dioxane and heavy metals at a HRT not exceeding 6 days.
Collapse
Affiliation(s)
- Rania Osama
- Minia University, Faculty of Engineering, Department of Civil Engineering, Minia, 61111, Egypt
| | - Hanem M Awad
- National Research Centre, Dept. Tanning Materials and Leather Technology & Regulatory Toxicology Lab, Centre of Excellence, El-Behouth St., 12622, Dokki, Egypt
| | - Shanshan Zha
- Sun Yat-sen University, School of Environmental Science and Engineering, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Fangang Meng
- Sun Yat-sen University, School of Environmental Science and Engineering, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, El-Behouth St., 12622, Dokki, Egypt.
| |
Collapse
|
28
|
Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic Azoarcus sp. Strain DD4. Appl Environ Microbiol 2020; 86:AEM.01163-20. [PMID: 32591384 DOI: 10.1128/aem.01163-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/21/2020] [Indexed: 11/20/2022] Open
Abstract
Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multicomponent monooxygenases in Azoarcus sp. strain DD4, a Gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the tmoABCDEF gene cluster was unequivocally proved to be the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active cooxidation of dioxane and 1,1-DCE. Furthermore, upregulation of tmo transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility can lead to broad applications, spanning from environmental remediation and water treatment to biocatalysis in green chemistry.IMPORTANCE Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective cooxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with nontoxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implications in the field of environmental microbiology and beyond.
Collapse
|
29
|
da Silva MLB, He Y, Mathieu J, Alvarez PJJ. Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation 2020; 31:201-211. [PMID: 32468172 DOI: 10.1007/s10532-020-09903-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Long term natural attenuation of 1,4-dioxane (dioxane) and its enhanced biodegradation after bioaugmentation with Pseudonocardia dioxanivorans CB1190 were assessed using flow-through aquifer columns. Natural attenuation of dioxane was not observed even after 2 years of acclimation. However, dioxane removal was observed in the bioaugmented columns (34% when the influent was 200 µg/L and 92% for 5 mg/L). The thmA gene that encodes the tetrahydrofuran monooxygenase that initiates dioxane degradation by CB1190 was only detected at the inoculation port and persisted for months after inoculation, implying the resiliency of bioaugmentation and its potential to offer long-term enhanced biodegradation capabilities. However, due to extensive clumping and limited mobility of CB1190, the augmented catabolic potential may be restricted to the immediate vicinity of the inoculation port. Accordingly, bioaugmentation with CB1190 seems more appropriate for the establishment of biobarriers. Bioaugmentation efficiency was associated with the availability of oxygen. Aeration of the column influent to increase dissolved oxygen significantly improved dioxane removal (p < 0.05), suggesting that (for sites with oxygen-limiting conditions) bioaugmentation can benefit from engineered approaches for delivering additional oxygen.
Collapse
Affiliation(s)
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
30
|
Miao Y, Johnson NW, Phan T, Heck K, Gedalanga PB, Zheng X, Adamson D, Newell C, Wong MS, Mahendra S. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. WATER RESEARCH 2020; 173:115540. [PMID: 32018172 DOI: 10.1016/j.watres.2020.115540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Microbial community dynamics were characterized following combined catalysis and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Although a few specific bacterial taxa are capable of removing 1,4-dioxane and individual CVOCs, many microorganisms are inhibited when these contaminants are present in mixtures. Chemical catalysis by tungstated zirconia (WOx/ZrO2) and hydrogen peroxide (H2O2) as a non-selective treatment was designed to achieve nearly 20% 1,4-dioxane and over 60% trichloroethene and 50% dichloroethene removals. Post-catalysis, bioaugmentation with 1,4-dioxane metabolizing bacterial strain,Pseudonocardia dioxanivorans CB1190, removed the remaining 1,4-dioxane. The evolution of the microbial community under different conditions was time-dependent but relatively independent of the concentrations of contaminants. The compositions of microbiomes tended to be similar regardless of complex contaminant mixtures during the biodegradation phase, indicating a r-K strategy transition attributed to the shock experienced during catalysis and the subsequent incubation. The originally dominant genera Pseudomonas and Ralstonia were sensitive to catalytic oxidation, and were overwhelmed by Sphingomonas, Rhodococcus, and other catalyst-tolerant microbes, but microbes capable of biodegradation of organics thrived during the incubation. Methane metabolism, chloroalkane-, and chloroalkene degradation pathways appeared to be responsible for CVOC degradation, based on the identifications of haloacetate dehalogenases, 2-haloacid dehalogenases, and cytochrome P450 family. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase that were in line with shifting predominant genera, confirming the deterministic processes guiding the microbial assembly. Collectively, this study demonstrated that catalysis followed by bioaugmentation is an effective treatment for 1,4-dioxane in the presence of high CVOC concentrations, and it enhanced our understanding of microbial ecological impacts resulting from abiotic-biological treatment trains. These results will be valuable for predicting treatment synergies that lead to cost savings and improve remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Thien Phan
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Kimberly Heck
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Public Health, California State University, Fullerton, CA, 92834, United States
| | - Xiaoru Zheng
- Department of Statistics, University of California, Los Angeles, CA, 90095, United States
| | - David Adamson
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Charles Newell
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
31
|
Johnson NW, Gedalanga PB, Zhao L, Gu B, Mahendra S. Cometabolic biotransformation of 1,4-dioxane in mixtures with hexavalent chromium using attached and planktonic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135734. [PMID: 31806311 DOI: 10.1016/j.scitotenv.2019.135734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Biological treatment of 1,4-dioxane, a probable human carcinogen and a recalcitrant contaminant of concern, is often complicated by the presence of inhibitory co-contaminants. Due to its use as a solvent, wetting agent, and stabilizer for chlorinated solvents employed in metal vapor degreasing, 1,4-dioxane has often been found to occur with a variety of co-contaminants, including heavy metals such as hexavalent chromium [Cr(VI)]. Cr(VI) also occurs naturally in groundwater due to geological formations, but also has sources that can coincide with 1,4-dioxane from anthropogenic activities such as metal vapor degreasing. Biodegradation of 1,4-dioxane can be accomplished by microbes that use it as a source of carbon or energy as well as those that cometabolize it after growth on other organic substrates. A propanotroph, Mycobacterium austroafricanum JOB5, was grown in planktonic pure cultures and biofilms to determine its ability to cometabolize 1,4-dioxane in the presence of varying concentrations of Cr(VI). 1,4-Dioxane cometabolism by JOB5 planktonic cells was uninhibited by Cr(VI) at levels up to 10 mg/L, while biofilms were only mildly inhibited at 10 mg/L. As an important part of the biofilms commonly found in subsurface aquifers and engineered systems, extracellular polymeric substances (EPS) were found to play an important role in preventing Cr(VI) exposure to cells. We observed that soluble EPS were able to bind to Cr(VI) and theorize that biofilm-associated EPS additionally served to impede penetration of the biofilm structure by Cr(VI), thus mitigating exposure and toxicity. These findings suggest that bioremediation would be a viable treatment strategy for 1,4-dioxane-contaminated waters that contain elevated levels of Cr(VI) in natural and built environments.
Collapse
Affiliation(s)
- Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA; Department of Public Health, California State University, Fullerton, CA 92834, USA
| | - Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Li F, Deng D, Li M. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1898-1908. [PMID: 31877031 DOI: 10.1021/acs.est.9b05671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitored natural attenuation (MNA) and engineered bioremediation have been recognized as effective and cost-efficient in situ treatments to mitigate 1,4-dioxane (dioxane) contamination. Dioxane metabolism can be initiated by two catabolic enzymes, propane monooxygenase (PRM) and tetrahydrofuran monooxygenase (THM), belonging to the group-6 and 5 of soluble di-iron monooxygenase family, respectively. In this study, we comprehensively compared catalytic behaviors of PRM and THM when individually expressed in the heterologous host, Mycobacterium smegmatis mc2-155. Kinetic results revealed a half-saturation coefficient (Km) of 53.0 ± 13.1 mg/L for PRM, nearly 4 times lower than that of THM (235.8 ± 61.6 mg/L), suggesting that PRM has a higher affinity to dioxane. Exposure with three common co-contaminants (1,1-dichloroethene, trichloroethene, and 1,1,1-trichloroethane) demonstrated that PRM was also more resistant to their inhibition than THM. Thus, dioxane degraders expressing PRM may be more physiologically and ecologically advantageous than those with THM at impacted sites, where dioxane concentration is relatively low (e.g., 250 to 1000 μg/L) with co-occurrence of chlorinated solvents (e.g., 0.5 to 8 mg/L), underscoring the need of surveying both PRM and THM-encoding genes for MNA potential assessment. PRM is also highly versatile, which breaks down cyclic molecules (dioxane, tetrahydrofuran, and cyclohexane), as well as chlorinated and aromatic pollutants, including vinyl chloride, 1,2-dichloroethane, benzene, and toluene. This is the first report regarding the ability of PRM to degrade a variety of short-chain alkanes and ethene in addition to dioxane, unraveling its pivotal role in aerobic biostimulation that utilizes propane, isobutane, or other gaseous alkanes/alkenes (e.g., ethane, butane, and ethene) to select and fuel indigenous microorganisms to tackle the commingled contamination of dioxane and chlorinated compounds.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Daiyong Deng
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
33
|
Inoue D, Tsunoda T, Sawada K, Yamamoto N, Sei K, Ike M. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. CHEMOSPHERE 2020; 238:124606. [PMID: 31446278 DOI: 10.1016/j.chemosphere.2019.124606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effects of various metals on 1,4-dioxane degradation by the following four bacteria: Pseudonocardia sp. D17; Pseudonocardia sp. N23; Mycobacterium sp. D6; and Rhodococcus aetherivorans JCM 14343. Eight transition metals [Co(II), Cu(II), Fe(II), Fe(III), Mn(II), Mo(VI), Ni(II), and Zn(II)] were used as the test metals. Results revealed, for the first time, that metals had not only inhibitory but also stimulatory effects on 1,4-dioxane biodegradation. Cu(II) had the most severe inhibitory effects on 1,4-dioxane degradation by all of the test strains, with significant inhibition at concentrations as low as 0.01-0.1 mg/L. This inhibition was probably caused by cellular toxicity at higher concentrations, and by inhibition of degradative enzymes at lower concentrations. In contrast, Fe(III) enhanced 1,4-dioxane degradation by Mycobacterium sp. D6 and R. aetherivorans JCM 14343 the most, while degradation by the two Pseudonocardia strains was stimulated most notably in the presence of Mn(II), even at concentrations as low as 0.001 mg/L. Enhanced degradation is likely caused by the stimulation of soluble di-iron monooxygenases (SDIMOs) involved in the initial oxidation of 1,4-dioxane. Differences in the stimulatory effects of the tested metals were likely associated with the particular SDIMO types in the test strains.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan; Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Enrichment and Analysis of Stable 1,4-dioxane-Degrading Microbial Consortia Consisting of Novel Dioxane-Degraders. Microorganisms 2019; 8:microorganisms8010050. [PMID: 31881778 PMCID: PMC7022751 DOI: 10.3390/microorganisms8010050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Biodegradation of 1,4-dioxane, a water contaminant of emerging concern, has drawn substantial attention over the last two decades. A number of dioxane-degraders have been identified, though many of them are unable to metabolically utilize 1,4-dioxane. Moreover, it is considered more preferable to use microbial consortia rather than the pure strains, especially in conventional bioreactors for industrial wastewater treatment. In the present study, a stable 1,4-dioxane-degrading microbial consortium was enriched, namely 112, from industrial wastewater by nitrate mineral salt medium (NMSM). The consortium 112 is capable of utilizing 1,4-dioxane as a sole carbon and energy source, and can completely degrade 1,4-dioxane up to 100 mg/L. From the consortium 112, two 1,4-dioxane-degrading bacterial strains were isolated and identified, in which the Variovorax sp. TS13 was found to be a novel 1,4-dioxane-degrader that can utilize 100 mg/L of 1,4-dioxane. The efficacy of the consortium 112 was increased significantly when we cultured the consortium with mineral salt medium (MSM). The new consortium, N112, could utilize 1,4-dioxane at a rate of 1.67 mg/L·h. The results of the ribosomal RNA intergenic spacer analysis (RISA) depicted that changes in the microbial community structure of consortium 112 was the reason behind the improved degradation efficiency of consortium N112, which was exhibited as a stable and effective microbial consortium with a high potential for bioremediation of the dioxane-impacted sites and contaminated industrial wastewater.
Collapse
|
35
|
Liu Y, Johnson NW, Liu C, Chen R, Zhong M, Dong Y, Mahendra S. Mechanisms of 1,4-Dioxane Biodegradation and Adsorption by Bio-Zeolite in the Presence of Chlorinated Solvents: Experimental and Molecular Dynamics Simulation Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14538-14547. [PMID: 31661950 DOI: 10.1021/acs.est.9b04154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of bioaugmented zeolite (bio-zeolite) can be an effective technology for irreversibly removing recalcitrant organic pollutants in aqueous mixtures. Removal of 1,4-dioxane by a bio-zeolite (Pseudonocardia dioxanivorans CB1190-bioaugmented ZSM-5) in the presence of several chlorinated volatile organic compounds (CVOCs) was superior to removal by adsorption using abiotic zeolite. Mixtures containing 1,1-dichloroethene (1,1-DCE) were an exception, which completely inhibited the bio-zeolite system. Specific adsorption characteristics were studied using adsorption isotherms in single-solute and bisolute systems accompanied by Polanyi theory-based Dubinin-Astakhov (DA) modeling. Adsorption behavior was examined using characteristic energy (Ea/H) from modified DA models and molecular dynamics simulations. While the tight-fit of 1,4-dioxane in the hydrophobic channels of ZSM-5 appears to drive 1,4-dioxane adsorption, the greater hydrophobicity of trichloroethene and cis-1,2-dichloroethene cause them have a greater affinity over 1,4-dioxane for adsorption sites on the zeolite. 1,4-Dioxane was desorbed and displaced by CVOCs except 1,1-DCE because of its low Ea/H value, explaining why bio-zeolite only biodegraded 1,4-dioxane in 1,1-DCE-free CVOC mixtures. Understanding the adsorption mechanisms of solutes in complex mixtures is crucial for the implementation of sorption-based treatment technologies for the removal of complex contaminant mixtures from aquatic environments.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , Jiangsu , China
- Civil and Environmental Engineering , University of California, Los Angeles , Los Angeles 90095 , California , United States
- University of Chinese Academy of Sciences , Beijing 100000 , Hebei , China
| | - Nicholas W Johnson
- Civil and Environmental Engineering , University of California, Los Angeles , Los Angeles 90095 , California , United States
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , Jiangsu , China
- University of Chinese Academy of Sciences , Beijing 100000 , Hebei , China
| | - Ruihuan Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , Jiangsu , China
- University of Chinese Academy of Sciences , Beijing 100000 , Hebei , China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , Jiangsu , China
- University of Chinese Academy of Sciences , Beijing 100000 , Hebei , China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , Jiangsu , China
- University of Chinese Academy of Sciences , Beijing 100000 , Hebei , China
| | - Shaily Mahendra
- Civil and Environmental Engineering , University of California, Los Angeles , Los Angeles 90095 , California , United States
| |
Collapse
|
36
|
Rolston HM, Hyman MR, Semprini L. Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133688. [PMID: 31756820 DOI: 10.1016/j.scitotenv.2019.133688] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Aerobic cometabolism of the emerging contaminant 1,4-dioxane (1,4-D) by isobutane-utilizing microorganisms was assessed in pure culture and aquifer microcosm studies. The bacterium Rhodococcus rhodochrous strain ATCC 21198 transformed low, environmentally-relevant concentrations of 1,4-D when grown on isobutane. Microcosms were constructed with aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4-D and trichloroethene (TCE). Multiple additions of isobutane and 1,4-D over 300 days were transformed in microcosms biostimulated with isobutane and microcosms bioaugmented with strain 21198. Results showed that, over time and with sufficient inorganic nutrients, biostimulation of native microorganisms with isobutane was just as effective as bioaugmentation with strain 21198 to achieve 1,4-D transformation in the microcosms. The presence of TCE at 0.2 mg/L did not inhibit 1,4-D transformation, though TCE itself was not readily transformed. An iterative process was used to determine kinetic parameter values to fit Michaelis-Menten/Monod models to experimental data for simultaneous isobutane utilization, biomass growth, and cometabolic transformation of 1,4-D. Parameter optimization resulted in good model fit to the data over multiple transformations of isobutane and 1,4-D in both short- and long-term experiments. Results suggest low concentrations of 1,4-D studied in the microcosms were cometabolically transformed according to a pseudo first-order rate of 0.37 L/mg TSS/day of 21198. Isobutane consumption was modeled with a maximum rate of 2.58 mg/mg TSS/day and a half saturation constant of 0.09 mg/L. 1,4-D transformation was competitively inhibited by the presence of isobutane and transformation rates were significantly reduced when inorganic nutrients were limiting. Simulations of the repeated additions found a first-order microbial endogenous decay coefficient of 0.03 day-1 fit the alternating periods of active transformation and stagnation between isobutane and 1,4-D additions over approximately one year. The model fitting process highlighted the importance of determining kinetic parameters from data representing low concentrations typically found in the environment.
Collapse
Affiliation(s)
- Hannah M Rolston
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
37
|
Aryal R, Xia C, Liu J. 1,4-Dioxane-contaminated groundwater remediation in the anode chamber of a microbial fuel cell. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1537-1545. [PMID: 31152571 DOI: 10.1002/wer.1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
A two-chambered microbial fuel cell (MFC) was used for the first time for the remediation of an emerging contaminant-1,4-dioxane in its anode chamber. Groundwater historically detected 1,4-dioxane contamination was sampled from a Superfund site. Comparative study was carried out between metabolic (i.e., 1,4-dioxane as sole carbon source) and cometabolic (i.e., 1,4-dioxane and methanol as carbon sources) anodic degradations. It was found that cometabolic degradation increased 1,4-dioxane removal by 10%-52% after 7 days and increased maximum power production of the MFC by 18% to 88.9 mW/m3 . Oxalic acid was detected as a main metabolic degradation product. Beside oxalic acid, acetic acid and isopropanol were also detected as main products for cometabolic degradation. The presence of a biofilm for 1,4-dioxane anodic degradation was observed by a scanning electron microscopy. Phyla of Bacteroidetes, Firmicutes, and Proteobacteria, as well as a variety of species, were identified for the first time-especially Rikenella sp. and Solitalea canadensis, whose relative abundances were the highest of 18.8% and 24.0% for metabolic and cometabolic degradation, respectively. This study provided an innovative and sustainable approach for 1,4-dioxane anodic biodegradation, which would be potentially utilized for remediation of groundwater contaminated by 1,4-dioxane. PRACTITIONER POINTS: Groundwater contaminated with 1,4-dioxane was remediated in the anode chamber of a two-chambered microbial fuel cell. Cometabolic pathway increased 1,4-dioxane removal and power production of the MFC compared to metabolic pathway. The presence of a biofilm for 1,4-dioxane anodic degradation was observed, and oxalic acid was a main degradation product. This study would be potentially utilized for 1,4-dioxane-contaminated groundwater remediation with simultaneous energy production. External voltage supply for bioelectrochemical remediation of groundwater would potentially be reduced when treating chlorinated hydrocarbons co-occurred with 1,4-dioxane.
Collapse
Affiliation(s)
- Ramesh Aryal
- Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois
| | - Chunjie Xia
- Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois
| | - Jia Liu
- Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
38
|
Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Appl Environ Microbiol 2019; 85:AEM.00244-19. [PMID: 30926731 DOI: 10.1128/aem.00244-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) is known to induce the biodegradation of 1,4-dioxane (dioxane), an emerging contaminant, but the mechanisms by which THF affects dioxane biodegradation in microbial communities are not well understood. To fill this knowledge gap, changes in the microbial community structure in microcosm experiments with synthetic medium and landfill leachate were examined over time using 16S rRNA gene amplicon sequencing and functional gene quantitative PCR assays. The overarching hypothesis being tested was that THF promoted dioxane biodegradation by increasing the abundance of dioxane-degrading bacteria in the consortium. The data revealed that in experiments with synthetic medium, the addition of THF significantly increased the abundance of Pseudonocardia, a genus with several representatives that can grow on both dioxane and THF, and of Rhodococ cus ruber, a species that can use THF as the primary growth substrate while cometabolizing dioxane. However, in similar experiments with landfill leachate, only R. ruber was significantly enriched. When the THF concentration was higher than the dioxane concentration, THF competitively inhibited dioxane degradation since dioxane degradation was negligible, while the dioxane-degrading bacteria and the corresponding THF/dioxane monooxygenase gene copies increased by a few orders of magnitude.IMPORTANCE Widespread in groundwater and carcinogenic to humans, 1,4-dioxane (dioxane) is attracting significant attention in recent years. Advanced oxidation processes can effectively remove dioxane but require high energy consumption and operation costs. Biological removal of dioxane is of particular interest due to the ability of some bacteria to mineralize dioxane at a low energy cost. Although dioxane is generally considered recalcitrant to biodegradation, more than 20 types of bacteria can degrade dioxane as the sole electron donor substrate or the secondary electron donor substrate. In the latter case, tetrahydrofuran (THF) is commonly studied as the primary electron donor substrate. Previous work has shown that THF promotes dioxane degradation at a low THF concentration but inhibits dioxane degradation at a high THF concentration. Our work expanded on the previous work by mechanically examining the effects of THF on dioxane degradation in a microbial community context.
Collapse
|
39
|
Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A. Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. WATER RESEARCH 2019; 151:343-348. [PMID: 30616046 DOI: 10.1016/j.watres.2018.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Chloroethenes belong to the most widely distributed groundwater contaminants. Since 2014, it has been known that trichloroethene (TCE) can be degraded aerobically and metabolically as growth substrate by a mixed bacterial enrichment culture (named SF culture). In this study, the degradation capabilities under a range of field-relevant conditions were investigated in fixed-bed reactors as well as in batch experiments. Aerobic metabolic TCE degradation was stable over the long term, with degradation optima at 22 °C and pH 7. Degradation of up to 400 μM TCE was observed. The longest starvation period after which degradation of TCE was regained was 112 days. The possible co-contaminants perchloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene did not inhibit TCE degradation, even though they were not degraded themselves. The presence of equimolar amounts of 1,1-dichloroethene and vinyl chloride inhibited TCE degradation. Experiments with groundwater from different chloroethene-contaminated field sites proved the potential of the SF culture for bioaugmentation. Thus, aerobic metabolic TCE degradation should be considered as a promising method for the bioremediation of field sites with TCE as the main contaminant.
Collapse
Affiliation(s)
- Sarah Gaza
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Pascal Weigold
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | | | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
40
|
Khan NA, Johnson MD, Kubicki JD, Holguin FO, Dungan B, Carroll KC. Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone. CHEMOSPHERE 2019; 219:335-344. [PMID: 30551099 DOI: 10.1016/j.chemosphere.2018.11.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Enhanced reactivity of aqueous ozone (O3) with hydroxypropyl-β-cyclodextrin (HPβCD) and its impact on relative reactivity of O3 with contaminants were evaluated herein. Oxidation kinetics of 1,4-dioxane, trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA) using O3 in single and multiple contaminant systems, with and without HPβCD, were quantified. 1,4-Dioxane decay rate constants for O3 in the presence of HPβCD increased compared to those without HPβCD. Density functional theory molecular modeling confirmed that formation of ternary complexes with HPβCD, O3, and contaminant increased reactivity by increasing reactant proximity and through additional reactivity within the HPβCD cavity. In the presence of chlorinated co-contaminants, the oxidation rate constant of 1,4-dioxane was enhanced. Use of HPβCD enabled O3 reactivity within the HPβCD cavity and enhanced 1,4-dioxane treatment rates without inhibition in the presence of TCE, TCA, and radical scavengers including NaCl and bicarbonate. Micro-environmental chemistry within HPβCD inclusion cavities mediated contaminant oxidation reactions with increased reaction specificity.
Collapse
Affiliation(s)
- Naima A Khan
- Water Science and Management Program, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA; Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Michael D Johnson
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C P.O. Box 30001, Las Cruces, NM 88003, USA
| | - James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA
| | - F Omar Holguin
- Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Barry Dungan
- Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Kenneth C Carroll
- Water Science and Management Program, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA; Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA.
| |
Collapse
|
41
|
Miao Y, Johnson NW, Gedalanga PB, Adamson D, Newell C, Mahendra S. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants. WATER RESEARCH 2019; 149:74-85. [PMID: 30419469 DOI: 10.1016/j.watres.2018.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Microbial community dynamics were characterized following combined oxidation and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Bioremediation is generally inhibited by co-contaminate CVOCs; with only a few specific bacterial taxa reported to metabolize or cometabolize 1,4-dioxane being unaffected. Chemical oxidation by hydrogen peroxide (H2O2) as a non-selective treatment demonstrated 50-80% 1,4-dioxane removal regardless of the initial CVOC concentrations. Post-oxidation bioaugmentation with 1,4-dioxane metabolizer Pseudonocardia dioxanivorans CB1190 removed the remaining 1,4-dioxane. The intrinsic microbial population, biodiversity, richness, and biomarker gene abundances decreased immediately after the brief oxidation phase, but recovery of cultivable microbiomes and a more diverse community were observed during the subsequent 9-week biodegradation phase. Results generated from the Illumina Miseq sequencing and bioinformatics analyses established that generally oxidative stress tolerant genus Ralstonia was abundant after the oxidation step, and Cupriavidus, Pseudolabrys, Afipia, and Sphingomonas were identified as dominant genera after aerobic incubation. Multidimensional analysis elucidated the separation of microbial populations as a function of time under all conditions, suggesting that temporal succession is a determining factor that is independent of 1,4-dioxane and CVOCs mixtures. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase, in line with the shifts of predominant genera and various developing directions during different steps of the treatment train. Collectively, this study demonstrated that chemical oxidation followed by bioaugmentation is effective for treating 1,4-dioxane, even in the presence of high levels of CVOC mixtures and residual peroxide, a disinfectant, and enhanced our understanding of microbial ecological impacts of the treatment train. These results will be valuable for predicting treatment synergies that lead to cost savings and improved remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Health Science, California State University, Fullerton, CA, 92834, United States
| | - David Adamson
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Charles Newell
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
42
|
Zhao L, Lu X, Polasko A, Johnson NW, Miao Y, Yang Z, Mahendra S, Gu B. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:573-581. [PMID: 30216889 DOI: 10.1016/j.envpol.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of 1,4-dioxane was examined in packed quartz and soil column flow-through systems. The inhibitory effects of co-contaminants, specifically trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and copper (Cu2+) ions, were investigated in the columns either with or without bioaugmentation with a 1,4-dioxane degrading bacterium Pseudonocardia dioxanivorans CB1190. Results indicate that CB1190 cells readily grew and colonized in the columns, leading to significant degradation of 1,4-dioxane under oxic conditions. Degradation of 1,4-dioxane was also observed in the native soil (without bioaugmentation), which had been previously subjected to enhanced reductive dechlorination treatment for co-contaminants TCE and 1,1-DCE. Bioaugmentation of the soil with CB1190 resulted in nearly complete degradation at influent concentrations of 3-10 mg L-1 1,4-dioxane and a residence reaction time of 40-80 h, but the presence of co-contaminants, 1,1-DCE and Cu2+ ions (up to 10 mg L-1), partially inhibited 1,4-dioxane degradation in the untreated and bioaugmented soil columns. However, the inhibitory effects were much less severe in the column flow-through systems than those previously observed in planktonic cultures, which showed near complete inhibition at the same co-contaminant concentrations. These observations demonstrate a low susceptibility of soil microbes to the toxicity of 1,1-DCE and Cu2+ in packed soil flow-through systems, and thus have important implications for predicting biodegradation potential and developing sustainable, cost-effective technologies for in situ remediation of 1,4-dioxane contaminated soils and groundwater.
Collapse
Affiliation(s)
- Linduo Zhao
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xia Lu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Alexandra Polasko
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Baohua Gu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
43
|
Myers MA, Johnson NW, Marin EZ, Pornwongthong P, Liu Y, Gedalanga PB, Mahendra S. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:916-924. [PMID: 29879691 DOI: 10.1016/j.envpol.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low Koc and Kow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that bioaugmented adsorbents could be an effective technology for 1,4-dioxane removal from contaminated water resources.
Collapse
Affiliation(s)
- Michelle A Myers
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Erick Zerecero Marin
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Peerapong Pornwongthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800, Thailand; Center for Water Engineering and Infrastructure Research (CWEIR), King Mongkut's University of Technology North Bangkok, Wongsawang, Bangsue, Bangkok, 10800, Thailand
| | - Yun Liu
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, Jiangsu Province, 210008, People's Republic of China
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; Department of Health Science, California State University, Fullerton, 800 North State College Blvd, Room KHS-121, Fullerton, CA, 92834, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5732 Boelter Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME JOURNAL 2018; 12:2376-2388. [PMID: 29899516 PMCID: PMC6155002 DOI: 10.1038/s41396-018-0201-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022]
Abstract
1,4-Dioxane is one of the most common and persistent artificial pollutants in petrochemical industrial wastewaters and chlorinated solvent groundwater plumes. Despite its possible biological treatment in natural environments, the identity and dynamics of the microorganisms involved are largely unknown. Here, we identified active and diverse 1,4-dioxane-degrading microorganisms from activated sludge by high-sensitivity stable isotope probing of rRNA. By rigorously analyzing 16S rRNA molecules in RNA density fractions of 13C-labeled and unlabeled 1,4-dioxane treatments, we discovered 10 significantly 13C-incorporating microbial species from the complex microbial community. 16S rRNA expression assays revealed that 9 of the 10 species, including the well-known degrader Pseudonocardia dioxanivorans, an ammonia-oxidizing bacterium and phylogenetically novel bacteria, increased their metabolic activities shortly after exposure to 1,4-dioxane. Moreover, high-resolution monitoring showed that, during a single year of operation of the full-scale activated sludge system, the nine identified species exhibited yearly averaged relative abundances of 0.001–1.523%, and yet showed different responses to changes in the 1,4-dioxane removal efficiency. Hence, the co-existence and individually distinct dynamics of various 1,4-dioxane-degrading microorganisms, including hitherto unidentified species, played pivotal roles in the maintenance of the biological system removing the recalcitrant pollutant.
Collapse
|
45
|
Barajas-Rodriguez FJ, Freedman DL. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:180-188. [PMID: 29477886 DOI: 10.1016/j.jhazmat.2018.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/22/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of 1,4-dioxane has been studied extensively, however, there is insufficient information on the kinetic characteristics of cometabolism by propanotrophs and a lack of systematic comparisons to metabolic biodegradation. To fill in these gaps, experiments were performed with suspended growth cultures to determine 16 Monod kinetic coefficients that describe metabolic consumption of 1,4-dioxane by Pseudonocardia dioxanivorans CB1190 and cometabolism by the propanotrophic mixed culture ENV487 and the propanotroph Rhodococcus ruber ENV425. Maximum specific growth rates were highest for ENV425, followed by ENV487 and CB1190. Half saturation constants for 1,4-dioxane for the propanotrophs were one-half to one-quarter those for CB1190. Propane was preferentially degraded over 1,4-dioxane, but the reverse did not occur. A kinetic model was used to simulate batch biodegradation of 1,4-dioxane. Propanotrophs decreased 1,4-dioxane from 1000 to 1 μg/L in less time than CB1190 when the initial biomass concentration was 0.74 mg COD/L; metabolic biodegradation was favored at higher initial biomass concentrations and higher initial 1,4-dioxane concentrations. 1,4-Dioxane biodegradation was inhibited when oxygen was below 1.5 mg/L. The kinetic model provides a framework for comparing in situ biodegradation of 1,4-dioxane via bioaugmentation with cultures that use the contaminant as a growth substrate to those that achieve biodegradation via cometabolism.
Collapse
Affiliation(s)
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
46
|
Karges U, Becker J, Püttmann W. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:712-720. [PMID: 29166627 DOI: 10.1016/j.scitotenv.2017.11.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
An effective and sensitive method for the analysis of 1,4-dioxane in water has been available since 2008 (EPA 522). This method is increasingly being applied to investigate the distribution of 1,4-dioxane in the aquatic environment. However, there is a need for more information about the possible occurrence of 1,4-dioxane in groundwater in Europe in general, and in Germany in particular, where virtually no data have been collected so far. The possible contamination of groundwater with 1,4-dioxane is of relevance to Germany because up to 70% of Germany's drinking water is obtained from groundwater and about 17% from river bank filtrate, which contains variable proportions of groundwater. The aim of the present study is to investigate selected and representative groundwater sites in Germany that have suspected occurrences of 1,4-dioxane. Five of the sites are well known for their volatile chlorinated hydrocarbon contamination, two sites have representative landfill leachate characteristics, and one site is negatively impacted by a detergent manufacturing plant. The presence of 1,4-dioxane was observed at each of these sites. Measured maximum concentration values ranged from 0.15μg/L to 152μg/L. An aquifer containing a trichloroethylene (TCE) plume with 1,4-dioxane as a co-contaminant was investigated in more detail. A perfect match was found between the concentrations of 1,4-dioxane and TCE in the vertical and horizontal distribution profiles. The results indicate the necessity for investigating groundwater contamination by 1,4-dioxane at sites with known 1,1,1-trichloroethane (TCA) and TCE contaminations, in landfill leachates, and at sites of detergent production.
Collapse
Affiliation(s)
- Ursula Karges
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.
| | - Johannes Becker
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Wilhelm Püttmann
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
47
|
Khan NA, Johnson MD, Carroll KC. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 210:31-41. [PMID: 29478672 DOI: 10.1016/j.jconhyd.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.
Collapse
Affiliation(s)
- Naima A Khan
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States
| | - Michael D Johnson
- Department of Chemistry of and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8003, United States
| | - Kenneth C Carroll
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States.
| |
Collapse
|
48
|
da Silva MLB, Woroszylo C, Castillo NF, Adamson DT, Alvarez PJJ. Associating potential 1,4-dioxane biodegradation activity with groundwater geochemical parameters at four different contaminated sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:60-64. [PMID: 29059571 DOI: 10.1016/j.jenvman.2017.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane (dioxane) is a groundwater contaminant of emerging concern for which bioremediation may become a practical remediation strategy. Therefore, it is important to advance our heuristic understanding of geochemical parameters that are most influential on the potential success of intrinsic bioremediation of dioxane-impacted sites. Here, Pearson's and Spearman's correlation and linear regression analyses were conducted to discern associations between 1,4-dioxane biodegradation activity measured in aerobic microcosms and groundwater geochemical parameters at four different contaminated sites. Dissolved oxygen, which is known to limit dioxane biodegradation, was excluded as a limiting factor in this analysis. Biodegradation activity was positively associated with dioxane concentrations (p < 0.01; R < 0.70) as well as the number of catabolic thmA gene copies (p < 0.01; R = 0.80) encoding dioxane monooxygenase. Thus, whereas environmental factors such as pH, temperature, and nutrients may influence dioxane biodegradation, these parameters did not exert as strong of an influence on potential biodegradation activity as the in situ concentration of substrate dioxane at the time of sampling. This analysis infers that aerobic sites with higher dioxane concentrations are more likely to select and sustain a thriving population of dioxane degraders, while sites with relatively low dioxane concentrations would be more difficult to attenuate naturally and may require alternative remediation strategies.
Collapse
Affiliation(s)
- Márcio Luís Busi da Silva
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States.
| | | | | | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| |
Collapse
|
49
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
50
|
Jasmann JR, Gedalanga PB, Borch T, Mahendra S, Blotevogel J. Synergistic Treatment of Mixed 1,4-Dioxane and Chlorinated Solvent Contaminations by Coupling Electrochemical Oxidation with Aerobic Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12619-12629. [PMID: 29023103 DOI: 10.1021/acs.est.7b03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biodegradation of the persistent groundwater contaminant 1,4-dioxane is often hindered by the absence of dissolved oxygen and the co-occurrence of inhibiting chlorinated solvents. Using flow-through electrolytic reactors equipped with Ti/IrO2-Ta2O5 mesh electrodes, we show that combining electrochemical oxidation with aerobic biodegradation produces an overadditive treatment effect for degrading 1,4-dioxane. In reactors bioaugmented by Pseudonocardia dioxanivorans CB1190 with 3.0 V applied, 1,4-dioxane was oxidized 2.5 times faster than in bioaugmented control reactors without an applied potential, and 12 times faster than by abiotic electrolysis only. Quantitative polymerase chain reaction analyses of CB1190 abundance, oxidation-reduction potential, and dissolved oxygen measurements indicated that microbial growth was promoted by anodic oxygen-generating reactions. At a higher potential of 8.0 V, however, the cell abundance near the anode was diminished, likely due to unfavorable pH and/or redox conditions. When coupled to electrolysis, biodegradation of 1,4-dioxane was sustained even in the presence of the common co-contaminant trichloroethene in the influent. Our findings demonstrate that combining electrolytic treatment with aerobic biodegradation may be a promising synergistic approach for the treatment of mixed contaminants.
Collapse
Affiliation(s)
- Jeramy R Jasmann
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|