1
|
Gandhi CD, Sappidi P. Molecular Dynamics Simulation Study on the Structural and Thermodynamic Analysis of Oxidized and Unoxidized Forms of Polyaniline. J Phys Chem B 2024; 128:10735-10748. [PMID: 39440927 DOI: 10.1021/acs.jpcb.4c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The conducting polymer polyaniline (PANI) has shown significant interest for the development of electrified membranes (EMs) with superior antifouling characteristics. However, the blending and doping of PANI with other polymers and nanomaterials highly influence the properties of the membrane surface. PANI exists in two forms: oxidized, known as emeraldine salt (ES), and unoxidized, referred to as emeraldine base (EB). Therefore, understanding the different forms of PANI and the variations between the oxidized and unoxidized forms along the length of the polymer chain is intriguing. In this paper, we present the design of a novel copolymer consisting of EB and ES monomers with varying charge densities and different segmental arrangements. We present various intra- and intermolecular structural properties of the PANI chains using all-atom molecular dynamics (MD) simulations. Herein, we present a detailed conformational free energy analysis to understand the conformational transitions of the PANI chains. Our results show increased radius of gyration (Rg) values with increased charge density. Furthermore, we also present the H-bonding, free energy analysis, reduced density gradient (RDG), and solvent-accessible surface area (SASA) values for the observed conformational transitions of PANI. Therefore, these observations are crucial in understanding the complex behavior of chains for designing target-specific polymeric materials.
Collapse
Affiliation(s)
| | - Praveenkumar Sappidi
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
2
|
Shen Y, Zhang Y, Jiang Y, Cheng H, Wang B, Wang H. Membrane processes enhanced by various forms of physical energy: A systematic review on mechanisms, implementation, application and energy efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167268. [PMID: 37748609 DOI: 10.1016/j.scitotenv.2023.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Membrane technologies in water and wastewater treatment have been eagerly pursued over the past decades, yet membrane fouling remains the major bottleneck to overcome. Membrane fouling control methods which couple membrane processes with online in situ application of external physical energy input (EPEI) are getting closer and closer to reality, thanks to recent advances in novel materials and energy deliverance methods. In this review, we summarized recent studies on membrane fouling control techniques that depend on (i) electric field, (ii) acoustic field, (iii) magnetic field, and (iv) photo-irradiation (mostly ultraviolet or visible light). Mechanisms of each energy input were first reported, which defines the applicability of these methods to certain wastewater matrices. Then, means of implementation were discussed to evaluate the compatibility of these fouling control methods with established membrane techniques. After that, preferred applications of each energy input to different foulant types and membrane processes in the experiment reports were summarized, along with a discussion on the trends and knowledge gaps of such fouling control research. Next, specific energy consumption in membrane fouling control and flux enhancement was estimated and compared, based on the experimental results reported in the literature. Lastly, strength and weakness of these methods and future perspectives were presented as open questions.
Collapse
Affiliation(s)
- Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulian Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Shang C, Zhang T, Lee JY, Zhang S. Salt rejection and scaling on non-conductive membranes in direct- and alternating-current electric fields. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Wu L, Li Q, Ma C, Li M, Yu Y. A novel conductive carbon-based forward osmosis membrane for dye wastewater treatment. CHEMOSPHERE 2022; 308:136367. [PMID: 36088972 DOI: 10.1016/j.chemosphere.2022.136367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) membrane fouling is one of the main reasons that hinder the further application of FO technology in the treatment of dye wastewater. To alleviate membrane fouling, a conductive coal carbon-based substrate and polydopamine nanoparticles (PDA NPs) interlayer composite FO membrane (CPFO) was prepared by interfacial polymerization (IP). CPFO-10 membrane prepared by depositing 10 mL of PDA NPs solution exhibited an optimum performance with water flux of 7.56 L/(m2h) for FO mode and 10.75 L/(m2h) for pressure retarded osmosis (PRO) mode, respectively. For rhodamine B and chrome black T dye wastewater treatment, the water flux losses were reduced by 21.6%, and 14.5% under the voltages of +1.5 V, and -1.5 V, respectively, compared with no voltage applied after the device was operated for 8 h. The applied voltage had little effect on the fouling mitigation performance of the CPFO membrane for neutral charged cresol red. After the device was operated for 4 cycles, the rejection rates of dyes wastewater treated by the CPFO membranes with applied voltage were close to 100%. The flux decline rate and flux recovery rate of CPFO membrane for rhodamine B and chrome black T wastewater treatment under application of +1.5 V and -1.5 V voltage after 4 cycles were 11.6%, 99.2%, and 16.7%, 98.9%, respectively. Therefore, the voltage-applied CPFO membrane still maintained good rejection and antifouling performance in long-term operation. This study provides a new insight into the preparation of conductive FO membranes for dye wastewater treatment and membrane fouling control.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Qianqian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Yujuan Yu
- Center of Environmental Emergency and Accident Investigation of Changchun, Changchun, 130000, China
| |
Collapse
|
5
|
Zhang Y, Zhang H, Chen L, Wang J, Wang J, Li J, Zhao Y, Zhang M, Zhang H. Piezoelectric Polyvinylidene Fluoride Membranes with Self-Powered and Electrified Antifouling Performance in Pressure-Driven Ultrafiltration Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16271-16280. [PMID: 36239692 DOI: 10.1021/acs.est.2c05359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroactive membranes have the potential to address membrane fouling via electrokinetic phenomena. However, additional energy consumption and complex material design represent chief barriers to achieving sustainable and economically viable antifouling performance. Herein, we present a novel strategy for fabricating a piezoelectric antifouling polyvinylidene fluoride (PVDF) membrane (Pi-UFM) by integrating the ion-dipole interactions (NaCl coagulation bath) and mild poling (in situ electric field) into a one-step phase separation process. This Pi-UFM with an intact porous structure could be self-powered in a typical ultrafiltration (UF) process via the responsivity to pressure stimuli, where the dominant β-PVDF phase and the out-of-plane aligned dipoles were demonstrated to be critical to obtain piezoelectricity. By challenging with different feed solutions, the Pi-UFM achieved enhanced antifouling capacity for organic foulants even with high ionic strength, suggesting that electrostatic repulsion and hydration repulsion were behind the antifouling mechanism. Furthermore, the TMP-dependent output performance of the Pi-UFM in both air and water confirmed its ability for converting ambient mechanical energy to in situ surface potential (ζ), demonstrating that this antifouling performance was a result of the membrane electromechanical transducer actions. Therefore, this study provides useful insight and strategy to enable piezoelectric materials for membrane filtration applications with energy efficiency and extend functionalities.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Haoquan Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Jie Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jian Li
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Sun F, Yang J, Shen Q, Li M, Du H, Xing DY. Conductive polyethersulfone membrane facilely prepared by simultaneous phase inversion method for enhanced anti-fouling and separation under low driven-pressure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113363. [PMID: 34314960 DOI: 10.1016/j.jenvman.2021.113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Electrically conductive membranes have been regarded as a new alternative to overcome the crucial drawbacks of membranes, including permeability-selectivity trade-off and fouling. It is still challenging to prepare conductive membranes with good mechanical strength, high conductivity and stable separation performance by reliable materials and methods. This work developed a facile method of simultaneous phase inversion to prepare electrically conductive polyethersulfone (PES) membranes with carboxylic multiwalled carbon nanotubes (MWCNT) and graphene (Gr). The resultant MWCNT/Gr/PES nanocomposite membranes are composed of the upper MWCNT/Gr layer with good conductivity and the base PES layer providing mechanical support. MWCNT as nanofillers effectively turns the insulting PES layers to be electrically conductive. With the dispersing and bridging functions of Gr, the MWCNT/Gr layer shows an enhanced electric conductivity of 0.10 S/cm. This MWCNT/Gr/PES membrane in an electro-filtration cell achieves excellent retention of Cu(II) ions up to 98 % and a high flux of 94.5 L m-2∙h-1∙bar-1 under a low driven-pressure of 0.1 MPa. The conductive membrane also shows improved anti-fouling capability during protein filtration, due mainly to the electrostatic repulsion and hydrogen evolution reaction on the electrode. This facile strategy has excellent potential in electro-assistant membrane filtration for fouling control and effective separation.
Collapse
Affiliation(s)
- Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Jingyi Yang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Qi Shen
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hong Du
- Shenzhen Water Group, Shenzhen, China
| | - Ding Yu Xing
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
8
|
Xu M, Zhao P, Tang CY, Yi X, Wang X. Preparation of electrically enhanced forward osmosis (FO) membrane by two-dimensional MXenes for organic fouling mitigation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Bao X, She Q, Long W, Wu Q. Ammonium ultra-selective membranes for wastewater treatment and nutrient enrichment: Interplay of surface charge and hydrophilicity on fouling propensity and ammonium rejection. WATER RESEARCH 2021; 190:116678. [PMID: 33279747 DOI: 10.1016/j.watres.2020.116678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Membrane fouling and ammonium transmembrane diffusion simultaneously pose great challenges in membrane-based pre-concentration of domestic wastewater for efficient subsequent resources recovery (i.e., energy and nutrients). Herein, amine-functionalized osmotic membranes were fabricated by optimizing the grafting pathway of polyamidoamine (PAMAM) dendrimer to mitigate fouling and ammonium transmembrane diffusion. Compared to the control membrane, the PAMAM-grafted membranes with abundant primary amine groups possessed substantially increased hydrophilicity and positive charges (i.e., protonated primary amines) and thus exhibited superior anti-fouling capability and ammonium selectivity. With further increasing the PAMAM grafting ratio, the membrane exhibited a steady enhancement in ammonium selectivity and eventually achieved an ultra-high ammonium rejection of 99.4%. Nevertheless, the anti-fouling capability of such ammonium ultra-selective membrane was weakened due to the suppression of the adverse impact of excessive positive charges over the beneficial effect of increased surface hydrophilicity. This in turn leads to a drop of ammonium rejection below 90% during domestic wastewater concentration. This study demonstrates that the membrane with a moderate primary amine loading could achieve the highest anti-fouling capability with only less than 10% flux decline and meanwhile maintain an excellent ammonium rejection above 94% during raw domestic wastewater concentration. This work provides theoretical guidance for fabricating simultaneously enhanced anti-fouling and ammonia-rejecting membranes.
Collapse
Affiliation(s)
- Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Wei Long
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141
| | - Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
10
|
Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Alayande AB, Goh K, Son M, Kim CM, Chae KJ, Kang Y, Jang J, Kim IS, Yang E. Recent Progress in One- and Two-Dimensional Nanomaterial-Based Electro-Responsive Membranes: Versatile and Smart Applications from Fouling Mitigation to Tuning Mass Transport. MEMBRANES 2020; 11:5. [PMID: 33375122 PMCID: PMC7822182 DOI: 10.3390/membranes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Membrane technologies are playing an ever-important role in the field of water treatment since water reuse and desalination were put in place as alternative water resources to alleviate the global water crisis. Recently, membranes are becoming more versatile and powerful with upgraded electroconductive capabilities, owing to the development of novel materials (e.g., carbon nanotubes and graphene) with dual properties for assembling into membranes and exerting electrochemical activities. Novel nanomaterial-based electrically responsive membranes have been employed with promising results for mitigating membrane fouling, enhancing membrane separation performance and self-cleaning ability, controlling membrane wettability, etc. In this article, recent progress in novel-nanomaterial-based electrically responsive membranes for application in the field of water purification are provided. Thereafter, several critical drawbacks and future outlooks are discussed.
Collapse
Affiliation(s)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
| | - Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea;
| | - Chang-Min Kim
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), Gyeonggi-do 2066, Korea;
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Yesol Kang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - In S. Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Korea
| |
Collapse
|
12
|
Liu Y, Liu F, Ding N, Hu X, Shen C, Li F, Huang M, Wang Z, Sand W, Wang CC. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lu Y, Jia J, Miao H, Ruan W, Wang X. Performance Improvement and Biofouling Mitigation in Osmotic Microbial Fuel Cells via In Situ Formation of Silver Nanoparticles on Forward Osmosis Membrane. MEMBRANES 2020; 10:membranes10060122. [PMID: 32560068 PMCID: PMC7344936 DOI: 10.3390/membranes10060122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022]
Abstract
An osmotic microbial fuel cell (OsMFC) using a forward osmosis (FO) membrane to replace the proton exchange membrane in a typical MFC achieves superior electricity production and better effluent water quality during municipal wastewater treatment. However, inevitable FO membrane fouling, especially biofouling, has a significantly adverse impact on water flux and thus hinders the stable operation of the OsMFC. Here, we proposed a method for biofouling mitigation of the FO membrane and further improvement in current generation of the OsMFC by applying a silver nanoparticle (AgNP) modified FO membrane. The characteristic tests revealed that the AgNP modified thin film composite (TFC) polyamide FO membrane showed advanced hydrophilicity, more negative zeta potential and better antibacterial property. The biofouling of the FO membrane in OsMFC was effectively alleviated by using the AgNP modified membrane. This phenomenon could be attributed to the changes of TFC–FO membrane properties and the antibacterial property of AgNPs on the membrane surface. An increased hydrophilicity and a more negative zeta potential of the modified membrane enhanced the repulsion between foulants and membrane surface. In addition, AgNPs directly disturbed the functions of microorganisms deposited on the membrane surface. Owing to the biofouling mitigation of the AgNP modified membrane, the water flux and electricity generation of OsMFC were correspondingly improved.
Collapse
Affiliation(s)
- Yuqin Lu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Jia Jia
- Zhejiang Province Environmental Engineering Technology Appraisal Center, Hangzhou 310012, China;
| | - Hengfeng Miao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
- Correspondence: ; Tel.: +86-510-8532-6516
| |
Collapse
|
14
|
Ma C, Yi C, Li F, Shen C, Wang Z, Sand W, Liu Y. Mitigation of Membrane Fouling Using an Electroactive Polyether Sulfone Membrane. MEMBRANES 2020; 10:membranes10020021. [PMID: 32019206 PMCID: PMC7074576 DOI: 10.3390/membranes10020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/13/2023]
Abstract
Membrane fouling is the bottleneck limiting the wide application of membrane processes. Herein, we adopted an electroactive polyether sulfone (PES) membrane capable of mitigating fouling by various negatively charged foulants. To evaluate anti-fouling performance and the underlying mechanism of this electroactive PES membrane, three types of model foulants were selected rationally (e.g., bovine serum albumin (BSA) and sodium alginate (SA) as non-migratory foulants, yeast as a proliferative foulant and emulsified oil as a spreadable foulant). Water flux and total organic carbon (TOC) removal efficiency in the filtering process of various foulants were tested under an electric field. Results suggest that under electrochemical assistance, the electroactive PES membrane has an enhanced anti-fouling efficacy. Furthermore, a low electrical field was also effective in mitigating the membrane fouling caused by a mixture of various foulants (containing BSA, SA, yeast and emulsified oil). This result can be attributed to the presence of electrostatic repulsion, which keeps foulants away from the membrane surface. Thereby it hinders the formation of a cake layer and mitigates membrane pore blocking. This work implies that an electrochemical control might provide a promising way to mitigate membrane fouling.
Collapse
Affiliation(s)
- Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chao Yi
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- Correspondence: ; Tel.: +86-21-6779-8752
| |
Collapse
|
15
|
Yang W, Son M, Rossi R, Vrouwenvelder JS, Logan BE. Adapting Aluminum-Doped Zinc Oxide for Electrically Conductive Membranes Fabricated by Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:963-969. [PMID: 31834766 DOI: 10.1021/acsami.9b20385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of electrically conductive membranes has recently drawn great interest in water treatment as an approach to reduce biofouling. Most conductive membranes are made by binding nanoparticles (carbon nanotubes or graphene) to a polymeric membrane using additional polymers, but this method risks leaching these nanomaterials into the environment. A new approach was developed here based on producing an electrically conductive layer of aluminum-doped zinc oxide (AZO) by atomic layer deposition. The aqueous instability of AZO, which is a critical challenge for water applications, was solved by capping the AZO layer with an ultrathin (∼11 nm) TiO2 layer (AZO/TiO2). The combined film exhibited prolonged stability in water and had a low sheet resistance of 67 Ω/sq with a 120 nm-thick coating, while the noncapped AZO coating quickly deteriorated as shown by a large increase in membrane resistance. The AZO/TiO2 membranes had enhanced resistance to biofouling, with a 72% reduction in bacterial counts in the absence of an applied current due to its higher hydrophilicity than the bare polymeric membrane, and it achieved an additional 50% reduction in bacterial colonization with an applied voltage. The use of TiO2-capped AZO layers provides a new approach for producing conductive membranes using abundant materials, and it avoids the risk of releasing nanoparticles into the environment.
Collapse
Affiliation(s)
- Wulin Yang
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Moon Son
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ruggero Rossi
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
16
|
Bell D, Sengpiel R, Wessling M. Metallized hollow fiber membranes for electrochemical fouling control. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
18
|
Liang S, Li M, Cao J, Zuo K, Bian Y, Xiao K, Huang X. Integrated ultrafiltration–capacitive-deionization (UCDI) for enhanced antifouling performance and synchronous removal of organic matter and salts. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Bao X, Wu Q, Shi W, Wang W, Zhu Z, Zhang Z, Zhang R, Zhang B, Guo Y, Cui F. Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Son M, Kim T, Yang W, Gorski CA, Logan BE. Electro-Forward Osmosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8352-8361. [PMID: 31267728 DOI: 10.1021/acs.est.9b01481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of ion migration induced by an electrical field on water flux in a forward osmosis (FO) process was examined using a thin-film composite (TFC) membrane, held between two cation exchange membranes. An applied fixed current of 100 mA (1.7 mA cm-2) was sustained by the proton flux through the TFC-BW membrane using a feed of 34 mM NaCl, and a 257 mM NaCl draw solution. Protons generated at the anode were transported through the cation exchange membrane and into the draw solution, lowering the pH of the draw solution. Additional proton transport through the TFC-BW membrane also lowered the pH of the feed solution. The localized accumulation of the protons on the draw side of the TFC-BW membrane resulted in high concentration polarization modulus of 1.41 × 105, which enhanced the water flux into the draw solution (5.56 LMH at 100 mA), compared to the control (1.10 LMH with no current). These results using this electro-forward osmosis (EFO) process demonstrated that enhanced water flux into the draw solution could be achieved using ion accumulation induced by an electrical field. The EFO system could be used for FO applications where a limited use of draw solute is necessary.
Collapse
Affiliation(s)
- Moon Son
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, and Institute for a Sustainable Environment , Clarkson University , Potsdam , New York 13699 , United States
| | - Wulin Yang
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
21
|
Fan X, Liu Y, Wang X, Quan X, Chen S. Improvement of Antifouling and Antimicrobial Abilities on Silver-Carbon Nanotube Based Membranes under Electrochemical Assistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5292-5300. [PMID: 30933494 DOI: 10.1021/acs.est.9b00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excellent fouling resistance to various foulants is crucial to maintain the separation performance of membranes in providing potable water. Antimicrobial modification is effective for antibiofouling but fails to mitigate organic fouling. Improving surface charges can improve the resistance to charged foulants, but the lack of antimicrobial ability results in bacterial aggregation. Herein, a silver nanoparticle modified carbon nanotube (Ag-CNT)/ceramic membrane was prepared with enhanced antifouling and antimicrobial properties under electrochemical assistance. The presence of silver nanoparticles endows the composite membrane with antimicrobial ability by which biofilm formation is inhibited. Its steady-state flux is 1.9 times higher than that for an unmodified membrane in filtering bacterial suspension. Although the formation of organic fouling did weaken the biofouling resistance, the negatively charged bacteria and organic matter can be sufficiently repelled away from the cathodic membrane under electrochemical assistance. The flux loss under a low-voltage of 2.0 V decreased to <10% from >35% for the membrane alone when bacteria and organic matter coexisted in the feedwater. More importantly, silver dissolution was significantly inhibited via an in situ electroreduction process by which the Ag+ concentration in the effluent (<1.0 μg/L) was about 2 orders of magnitude lower than that without voltage. The integration of antimicrobial modification and electrochemistry offers a new prospect in the development of membranes with high fouling resistance in water treatment.
Collapse
Affiliation(s)
- Xinfei Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
- College of Environmental Science and Engineering , Dalian Maritime University , Dalian 116026 , China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xiaochen Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
22
|
Hao X, Gao S, Tian J, Sun Y, Cui F, Tang CY. Calcium-Carboxyl Intrabridging during Interfacial Polymerization: A Novel Strategy to Improve Antifouling Performance of Thin Film Composite Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4371-4379. [PMID: 30888808 DOI: 10.1021/acs.est.8b05690] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study reports a novel intrabridging strategy to improve the antifouling performance of a thin-film composite (TFC) membrane. We demonstrate that the addition of Ca2+ during the interfacial polymerization reaction led to the formation of stable Ca2+-carboxyl complexes within the polyamide rejection layer. This intrabridging of carboxyl groups by Ca2+ effectively sequestrated them, reducing their availability for binding divalent metal ions in the aqueous solution and for forming foulant-metal-membrane interbridges. Membrane fouling and cleaning experiments confirmed improved flux stability and fouling reversibility for the Ca2+ modified membranes. The greatly enhanced antifouling performance of these membranes, together with their better surface hydrophilicity and greater water permeability, makes the intrabridging approach highly attractive in overcoming the classical permeability-selectivity-antifouling trade-off. Our findings pave a new direction for synthesizing high-performance TFC membranes.
Collapse
Affiliation(s)
- Xiujuan Hao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Shanshan Gao
- School of Civil Engineering and Transportation , Hebei University of Technology , Tianjin 300401 , China
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
- School of Civil Engineering and Transportation , Hebei University of Technology , Tianjin 300401 , China
| | - Yan Sun
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering , Chongqing University , Chongqing 400044 , China
| | - Chuyang Y Tang
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- Department of Civil Engineering , the University of Hong Kong , Pokfulam Road , Hong Kong S.A.R. , China
| |
Collapse
|
23
|
Wang K, Xu L, Li K, Liu L, Zhang Y, Wang J. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rastgar M, Bozorg A, Shakeri A, Sadrzadeh M. Substantially improved antifouling properties in electro-oxidative graphene laminate forward osmosis membrane. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Li C, Guo X, Wang X, Fan S, Zhou Q, Shao H, Hu W, Li C, Tong L, Kumar RR, Huang J. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Maddela NR, Zhou Z, Yu Z, Zhao S, Meng F. Functional Determinants of Extracellular Polymeric Substances in Membrane Biofouling: Experimental Evidence from Pure-Cultured Sludge Bacteria. Appl Environ Microbiol 2018; 84:e00756-18. [PMID: 29858205 PMCID: PMC6052268 DOI: 10.1128/aem.00756-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/20/2018] [Indexed: 01/26/2023] Open
Abstract
The aim of this work was to better understand the roles of extracellular polymeric substances (EPS) in membrane biofouling at the single-strain level. In the present study, a total of 23 bacterial strains were isolated from a sludge sample. The EPS extracted from pure-cultured bacteria were assessed for their fouling potentials and were simultaneously analyzed using Fourier transform infrared spectroscopy (FTIR). Further, the impact of calcium on the chemical composition of EPS and membrane fouling behavior was investigated in a strain-dependent manner. The EPS of the 23 bacterial strains exhibited different IR features for protein and polysaccharide regions. In addition, an α-1,4-glycosidic linkage (920 cm-1) and amide II (1,550 cm-1) correlated very well with the fouling potentials of all pure-cultured bacteria. In contrast to low-fouling strains, medium- and high-fouling strains exhibited two distinct peaks at 1,020 cm-1 (uronic acids) and 1,250 cm-1 (O-acetyl), which accelerate membrane fouling given their gelling capacities. In the presence of calcium, the fouling potential of a high-fouling strain (Bacillus sp. strain JSB10) was profoundly reduced (P < 0.0005) due to the binding activity of an α-1,4-glycosidic linkage and amide II with calcium. However, the impact of calcium on a low-fouling strain (Vagococcus sp. strain JSB21) was insignificant. Two-dimensional FTIR correlation spectroscopic (2D-FTIR-COS) analysis further revealed that the susceptibilities of functional groups to calcium largely relied on the composition and abundance of the above-described functional groups in EPS. These findings suggest that bacterial strains with different fouling potentials exhibit varied responses to calcium.IMPORTANCE Membrane biofouling is one of the main challenges for the operation of membrane-based processes used for water and wastewater treatment. This study revealed the functional determinants of EPS in membrane biofouling of 23 bacterial strains isolated from a full-scale membrane bioreactor (MBR) plant. We found that an α-1,4-glycosidic bond, amide II, and uronic acids of EPS significantly correlated with the fouling potentials of bacteria. The roles of these EPS groups in membrane fouling were impacted by calcium resulting from EPS-calcium interactions. In addition, our results also demonstrated that any perturbations in the sludge bacterial community in MBRs can lead to varied filtration potentials of the bulk liquor.
Collapse
Affiliation(s)
- Naga Raju Maddela
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Katuri KP, Kalathil S, Ragab A, Bian B, Alqahtani MF, Pant D, Saikaly PE. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707072. [PMID: 29707854 DOI: 10.1002/adma.201707072] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.
Collapse
Affiliation(s)
- Krishna P Katuri
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shafeer Kalathil
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ala'a Ragab
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Bian
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Manal F Alqahtani
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
Rahimpour A, Seyedpour SF, Aghapour Aktij S, Dadashi Firouzjaei M, Zirehpour A, Arabi Shamsabadi A, Khoshhal Salestan S, Jabbari M, Soroush M. Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5246-5258. [PMID: 29589940 DOI: 10.1021/acs.est.8b00804] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.
Collapse
Affiliation(s)
- Ahmad Rahimpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - S Fatemeh Seyedpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Sadegh Aghapour Aktij
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Dadashi Firouzjaei
- Department of Chemical & Biological Engineering , University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Alireza Zirehpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Saeed Khoshhal Salestan
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Jabbari
- Swedish Centre for Resource Recovery , University of Borås , S-50190 Borås , Sweden
| | - Masoud Soroush
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
29
|
Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.046] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Cai R, Tao G, He H, Song K, Zuo H, Jiang W, Wang Y. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications. Molecules 2017; 22:E721. [PMID: 28468293 PMCID: PMC6154384 DOI: 10.3390/molecules22050721] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022] Open
Abstract
Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs) modified on polydopamine-coated sericin/polyvinyl alcohol (PVA) composite films was developed. Polydopamine (PDA) acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.
Collapse
Affiliation(s)
- Rui Cai
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Kai Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Wenchao Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
31
|
Guangzhi Y, Binbin Y, Shen S, Zhihong T, Dengguang Y, Junhe Y. Preparation and dispersity of carbon nanospheres by carbonizing polyacrylonitrile microspheres. RSC Adv 2017. [DOI: 10.1039/c6ra28129j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyacrylonitrile microspheres of about 240 nm were synthesized and used as a precursor for preparing carbon nanospheres (CNs) by oxidation and sequential carbonization.
Collapse
Affiliation(s)
- Yang Guangzhi
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yu Binbin
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Song Shen
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Tang Zhihong
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yu Dengguang
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yang Junhe
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|