1
|
El-Sayed AA. Speciation of vanadium and the interacted solid surface of δ-alumina adsorbent in aqueous media in presence of humic acid. Sci Rep 2024; 14:13017. [PMID: 38844501 PMCID: PMC11156890 DOI: 10.1038/s41598-024-62941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Speciation of vanadium elements in the presence of δ-alumina in aqueous media was studied to simulate the environmental impact of soil/sediment-water interacted system. Factors affecting this process are pH, presence of humic acid, and δ-alumina concentrations as an abundant sediment/soil components. Different species of both vanadium and surface of δ-alumina were deduced theoretically using MintaqA2 programme. Due to the effect of pH, the anionic species of vanadium at pH 1-3 is prevailed and changed to cationic species at pH range 6-10 at different levels of alumina. Additionally, based on the effect of alumina concertation, high percent uptake, almost 100% was found at 10.0 g/1 concentration of alumina while at level of 0.2 g/1 alumina, the maximum adsorption of vanadium was become 91%. The effect of humic acid on the speciation behavior of vanadium (V) was also studied and compared with that of vanadium (IV) based on XANES (X-ray absorption near edge structure). Adsorption behaviors were studied at concentration 4.71E-4M for vanadium at 0.1M ionic strength. The mechanism of vanadium adsorption in the presence of alumina under the same working conditions was studied and explained based on TLM (Triple layer model) where the results proved good validation and verification of the practically produced data.
Collapse
Affiliation(s)
- Ashraf A El-Sayed
- Analytical Chemistry Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| |
Collapse
|
2
|
Yang Y, Huang Y, Liu Y, Jiao G, Dai H, Liu X, Hughes SS. The migration and transformation mechanism of vanadium in a soil-pore water-maize system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169563. [PMID: 38145672 DOI: 10.1016/j.scitotenv.2023.169563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The μ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yunhe Liu
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ganghui Jiao
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaowen Liu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
3
|
Huang Q, Cabral NM, Tong X, Schafranski AS, Kennepohl P, Hill JM. Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways. Molecules 2023; 28:7051. [PMID: 37894530 PMCID: PMC10609519 DOI: 10.3390/molecules28207051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
A series of petroleum coke (petcoke)-derived solid acid catalysts were prepared via nitric acid treatment with or without ball milling pretreatment. The inherent sulfur in petcoke was converted to sulfonic groups, which were active sites for the esterification of octanoic acid and methanol at 60 °C, with ester yields of 14-43%. More specifically, samples without ball milling treated at 120 °C for 3 h had a total acidity of 4.67 mmol/g, which was 1.6 times that of the samples treated at 80 °C, despite their -SO3H acidities being similar (~0.08 mmol/g). The samples treated for 24 h had higher -SO3H (0.10 mmol/g) and total acidity (5.25 mmol/g) but not increased catalytic activity. Ball milling increased the defects and exposed aromatic hydrogen groups on petcoke, which facilitated further acid oxidation (0.12 mmol -SO3H/g for both materials and total acidity of 5.18 mmol/g and 5.01 mmol/g for BP-N-3/120 and BP-N-8/90, respectively) and an increased ester yield. DFT calculations were used to analyze the pathways of sulfonic acid group formation, and the reaction pathway with NO2• was the most thermodynamically and kinetically favourable. The activities of the prepared catalysts were related to the number of -SO3H acid sites, the total acidity, and the oxygen content, with the latter two factors having a negative impact.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Natalia M. Cabral
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Xing Tong
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Annelisa S. Schafranski
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Josephine M. Hill
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| |
Collapse
|
4
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Wu ZZ, Gan ZW, Zhang YX, Chen SB, Gan CD, Yang K, Yang JY. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. CHEMOSPHERE 2023:139222. [PMID: 37343642 DOI: 10.1016/j.chemosphere.2023.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Hitherto, the effect of vanadium on higher plant growth remains an open topic. Therefore, nontargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to 0.1 mg L-1 (B group) and 0.5 mg L-1 (C group) pentavalent vanadium [(V(V)] versus control (A group) in this study. Results revealed that vanadium exposure significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up- and down-regulated was 21 and 23 in B_vs_A, 27 and 33 in C_vs_A, and 24 and 43 in C_vs_B, respectively. The number for significantly up- and down-regulated differential metabolites was 17 and 15 in B_vs_A, 43 and 20 in C_vs_A, and 24 and 16 in C_vs_B, respectively. Metabolomics and transcriptomics co-analysis characterized three significantly enriched metabolic pathways in C_vs_A comparing group, viz., α-linolenic acid metabolism, flavonoid biosynthesis, and phenylpropanoid biosynthesis, from which some differentially expressed genes and differential metabolites participated. The metabolite of traumatic acid in α-linolenic acid metabolism and apigenin in flavonoid biosynthesis were markedly upregulated, while phenylalanine in phenylpropanoid biosynthesis was remarkably downregulated. The genes of allene oxide cyclase (AOC) and acetyl-CoA acyltransferase (fadA) in α-linolenic acid metabolism, and chalcone synthase (CHS), flavonoid 3'-monooxygenase (CYP75B1), and flavonol synthase (FLS) in flavonoid biosynthesis, and caffeoyl-CoA O-methyltransferase (CCoAOMT) in phenylpropanoid biosynthesis were significantly downregulated. While shikimate O-hydroxycinnamoyltransferase (HCT) in flavanoid and phenylpropanoid biosynthesis were conspicuously upregulated. Briefly, vanadium exposure induces a readjustment yielding in metabolite and the correlative synthetic precursors (transcripts/unigenes) in some branched metabolic pathways. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by vanadium on plant growth and development.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Wei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - You-Xian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Si-Bei Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
6
|
Kay ML, Jasiak I, Klemt WH, Wiklund JA, Faber JA, MacDonald LA, Telford JVK, Savage CAM, Cooke CA, Wolfe BB, Hall RI. Paleolimnological evaluation of metal(loid) enrichment from oil sands and gold mining operations in northwestern Canada. ENVIRONMENTAL RESEARCH 2023; 216:114439. [PMID: 36174760 DOI: 10.1016/j.envres.2022.114439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.
Collapse
Affiliation(s)
- Mitchell L Kay
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Izabela Jasiak
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Wynona H Klemt
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Johan A Wiklund
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jelle A Faber
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Lauren A MacDonald
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - James V K Telford
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada; Ministry of Forests, Lands, Natural Resource Operations & Rural Development Victoria, British Columbia, V8W 9M1, Canada
| | - Cory A M Savage
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Colin A Cooke
- Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, T5J 5C6, Canada; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
7
|
Ajarem JS, Hegazy AK, Allam GA, Allam AA, Maodaa SN, Mahmoud AM. Impact of petroleum industry on goats in Saudi Arabia: heavy metal accumulation, oxidative stress, and tissue injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2836-2849. [PMID: 35939190 DOI: 10.1007/s11356-022-22309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) constitute a group of persistent toxic pollutants, and the petroleum industry is one of the sources of these metals. This study aimed to evaluate the levels of lead (Pb), cadmium (Cd), nickel (Ni), and vanadium (V) in Plantago ovata and milk and tissues of domestic goats in the eastern region of Saudi Arabia. Plant samples and blood, milk, muscle, liver, and kidney samples were collected from domestic goats and the levels of Pb, Cd, V, and Ni were determined. Liver and kidney tissue injury, oxidative stress, and expression of pro-inflammatory and apoptosis markers were evaluated. Pb, Cd, V, and Ni were increased in Plantago ovata as well as in milk, blood, muscle, liver, and kidney of goats collected from the polluted site. Aminotransferases, creatinine, and urea were increased in serum, and histopathological changes were observed in the liver and kidney of goats at the oil extraction site. Malondialdehyde and the expression levels of pro-inflammatory cytokines, Bax, and caspase-3 were increased, whereas cellular antioxidants and Bcl-2 were decreased in liver and kidney of goats at the polluted site. In conclusion, petroleum industry caused liver and kidney injury, oxidative stress, and upregulated pro-inflammatory and apoptosis markers in goats. These findings highlight the negative impact of petroleum industry on the environment and call attention to the assessment of its effect on the health of nearby communities.
Collapse
Affiliation(s)
- Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad K Hegazy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Gamal A Allam
- Immunology Section, Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Allam
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Saleh N Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
8
|
Shotyk W. Environmental significance of trace elements in the Athabasca Bituminous Sands: facts and misconceptions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1279-1302. [PMID: 35816113 DOI: 10.1039/d2em00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bituminous sands of Alberta, Canada, represent the second largest reserves of hydrocarbons on earth. Open pit bitumen mining and upgrading of the Athabasca Bituminous Sands (ABS), the largest of the deposits, began in 1967. Concerns about fugitive release of trace elements (TEs) to the environment began with studies of V, as this is the most abundant trace metal in bitumen. Recent studies, however, have extended to Ag, As, Be, Cd, Cr, Cu, Pb, Sb, and Tl, and this has led to considerable confusion about which TEs are relevant to ecosystem health. While V along with Ni, Mo, Se and Re are enriched in bitumen, Ag, As, Be, Cd, Cr, Cu, Pb, Sb and Tl are found almost exclusively in the mineral (i.e. sand) fraction of the ABS, with limited opportunity to become bioaccessible, much less bioavailable. Here, a summary is given of ten misunderstandings that have arisen regarding TEs in the environment of the ABS region. To help illustrate the significance of the misconceptions that have arisen regarding (a) air and (b) water resources, published and unpublished TE data obtained from the metal-free, ultraclean SWAMP lab is presented for: (a) snow, moss, and peat cores from bogs, and (b) the dissolved, particulate, and colloidal fractions of water from the Athabasca River (AR), as well as pristine groundwater. Natural enrichments of Ni in plants such as Rat Root (Acorus calamus) and pine (Pinus banksiana), Tl in fish (Percopsis omiscomaycus) and Cd in cranberries (Vaccinium oxycoccus), Labrador Tea (Rhododendron groenlandicum) and beaver (Castor canadensis), are also presented.
Collapse
Affiliation(s)
- William Shotyk
- Bocock Chair for Agriculture and the Environment, Department of Renewable Resources, University of Alberta, 348B, South Academic Building, Edmonton, Alberta T6G 2H1, Canada.
| |
Collapse
|
9
|
Abernathy M, Schaefer MV, Ramirez R, Garniwan A, Lee I, Zaera F, Polizzotto ML, Ying SC. Vanadate Retention by Iron and Manganese Oxides. ACS EARTH & SPACE CHEMISTRY 2022; 6:2041-2052. [PMID: 36016759 PMCID: PMC9393891 DOI: 10.1021/acsearthspacechem.2c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic emissions of vanadium (V) into terrestrial and aquatic surface systems now match those of geogenic processes, and yet, the geochemistry of vanadium is poorly described in comparison to other comparable contaminants like arsenic. In oxic systems, V is present as an oxyanion with a +5 formal charge on the V center, typically described as H x VO4 (3-x)-, but also here as V(V). Iron (Fe) and manganese (Mn) (oxy)hydroxides represent key mineral phases in the cycling of V(V) at the solid-solution interface, and yet, fundamental descriptions of these surface-processes are not available. Here, we utilize extended X-ray absorption fine structure (EXAFS) and thermodynamic calculations to compare the surface complexation of V(V) by the common Fe and Mn mineral phases ferrihydrite, hematite, goethite, birnessite, and pyrolusite at pH 7. Inner-sphere V(V) complexes were detected on all phases, with mononuclear V(V) species dominating the adsorbed species distribution. Our results demonstrate that V(V) adsorption is exergonic for a variety of surfaces with differing amounts of terminal -OH groups and metal-O bond saturations, implicating the conjunctive role of varied mineral surfaces in controlling the mobility and fate of V(V) in terrestrial and aquatic systems.
Collapse
Affiliation(s)
- Macon
J. Abernathy
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael V. Schaefer
- Department
of Earth and Environmental Science, New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Roxana Ramirez
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Abdi Garniwan
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Ilkeun Lee
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Francisco Zaera
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Matthew L. Polizzotto
- Department
of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Samantha C. Ying
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Heavy Metal Accumulation, Tissue Injury, Oxidative Stress, and Inflammation in Dromedary Camels Living near Petroleum Industry Sites in Saudi Arabia. Animals (Basel) 2022; 12:ani12060707. [PMID: 35327104 PMCID: PMC8944594 DOI: 10.3390/ani12060707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The petroleum industry can impact the environment and human health. Heavy metals (HMs), including lead (Pb), cadmium (Cd), nickel (Ni), and vanadium (V), are toxic pollutants found in petroleum that can cause several severe diseases. This study investigated the impact of the oil industry on the Arabian camel (Camelus dromedarius) in the eastern region of Saudi Arabia, pointing to HMs accumulation, tissue injury, redox imbalance, inflammation, and apoptosis. Soil and camel samples (milk, blood, muscle, liver, and kidney) were collected from a site near an oil industry field and another two sites to analyze HMs. Pb, Cd, Ni, and V were increased in the soil and in the camel’s milk, blood, muscle, liver, and kidney at the polluted site. Serum aminotransferases, urea, and creatinine were elevated, and histopathological alterations were observed in the liver and kidney of camels at the oil industry site. Hepatic and renal lipid peroxidation, pro-inflammatory cytokines, Bax, and caspase-3 were increased, whereas cellular antioxidants and Bcl-2 declined in camels at the oil extraction site. In conclusion, the oil industry caused soil and tissue accumulation of HMs, liver and kidney injury, oxidative stress, and apoptosis in camels living close to the oil extraction site. These findings pinpoint the negative impact of the oil industry on the environment, animal, and human health.
Collapse
|
11
|
Zhang X, Chen Z, Cheng L, Xu L, Bi X, Liu Q. Valorization of fluid petroleum coke for efficient catalytic destruction of biomass gasification tar. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127297. [PMID: 34601413 DOI: 10.1016/j.jhazmat.2021.127297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Large volumes of waste petroleum coke stockpiled in open yard not only represent a huge loss of valuable material but also pose a significant risk to the environment. This work proposed an innovative strategy for waste petroleum coke valorization by exploring its catalytic performance of biomass gasification tar destruction. Waste petroleum coke was firstly activated by potassium hydroxide (KOH) to obtain high specific surface area as well as low sulfur and ash contents. Petroleum coke derived catalyst showed superior performance than a commercial activated carbon derived catalyst for destruction of naphthalene as the tar model compound. The petroleum coke derived catalyst exhibited 99.1% naphthalene destruction efficiency at 800 °C but deactivated quickly under N2 atmosphere. Under H2 and steam atmospheres, the catalytic activities were 98.6% and 96.5% for 8 h, respectively. To study the correlation between catalytic performance and the structure of carbon catalyst, elemental analysis, scanning electron microscope (SEM) analysis, transmission electron microscope (TEM) analysis, X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller method (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature programmed oxidation (TPO) analysis and Raman spectroscopy were performed on both fresh and spent catalysts. Results demonstrated that the hydrogen-rich groups (small rings and amorphous carbon) and oxygen-containing groups may account for the good resistance to coke deposition under H2 and steam atmospheres.
Collapse
Affiliation(s)
- Xurui Zhang
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zezhou Chen
- College of Engineering, Huzhou University, Huzhou 313000, China
| | - Long Cheng
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada
| | - Linlin Xu
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Xiaotao Bi
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada.
| | - Qingya Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Abdolahnezhad M, Lindsay MBJ. Geochemical conditions influence vanadium, nickel, and molybdenum release from oil sands fluid petroleum coke. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 245:103955. [PMID: 35030380 DOI: 10.1016/j.jconhyd.2022.103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Petroleum coke is a potential source of vanadium (V), nickel (Ni), and molybdenum (Mo) to water resources in Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada. Large stockpiles of this bitumen upgrading byproduct will be incorporated into mine closure landscapes and understanding the processes and conditions controlling the release and transport of these transition metals is critical for effective reclamation. We performed a series of laboratory column experiments to quantify V, Ni, and Mo release from fluid petroleum coke receiving meteoric water (MW), oil sands process-affected water (OSPW), and acid rock drainage (ARD) influents. We found that influent water chemistry strongly influences metal release, with variations among metals largely attributed to pH-dependent aqueous speciation and surface reactions. Cumulative V, Ni, and Mo mass release was greatest for columns receiving the low-pH ARD influent. Additionally, cumulative V and Mo mass release were greater in columns receiving OSPW compared to MW influent, whereas cumulative Ni mass release was greater in columns receiving MW compared to OSPW influent. Nevertheless, only a small proportion of total V, Ni, and Mo was released during the experiments, with the majority occurring during the first 10 pore volumes (PVs). This study offers insight into geochemical controls on V, Ni, and Mo release from fluid petroleum coke that supports ongoing development of oil sands mine reclamation strategies for landscapes that contain petroleum coke.
Collapse
Affiliation(s)
- Mojtaba Abdolahnezhad
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| |
Collapse
|
13
|
Mamun AA, Celo V, Dabek-Zlotorzynska E, Charland JP, Cheng I, Zhang L. Characterization and source apportionment of airborne particulate elements in the Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147748. [PMID: 34134367 DOI: 10.1016/j.scitotenv.2021.147748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The oil sands industries in Alberta, Canada are potential sources of particulate-bound elements in the region. This study explored the ambient concentrations and size distributions, and conducted source apportionment of 48 particulate elements, based on samples collected in 2016-2017 at four air monitoring sites in the Athabasca oil sands region: Fort McKay (AMS1), Buffalo Viewpoint (AMS4), Wapasu Creek (AMS17), and Stoney Mountain (AMS18). Element concentrations in fine and coarse particulate matter (PM2.5 and PM2.5-10 respectively) at the four sites were generally lower than their typical concentrations at other urban and industrial sites in North America. Among all elements, S was the most abundant in PM2.5 with mean concentrations ranging from 189 ng/m3 (AMS18) to 284 ng/m3 (AMS1). Of the trace, toxic elements in PM2.5, Zn was the most abundant with mean concentrations ranging from 3.43 ng/m3 (AMS18) to 5.37 ng/m3 (AMS4). Positive Matrix Factorization (PMF) modeling of the element concentrations in PM2.5 was used for source apportionment for Zone1 (including AMS 1, 4, and 17, situated closer to industrial activities) and for Zone2 (including AMS18, a background site). The sources of elements for Zone1, included crustal dust, bitumen processing, haul road dust, and biomass burning that explained ~33%, ~43%, ~15%, and ~9% of the total resolved elemental mass, respectively. The sources of elements for Zone2, included Pb-rich source, biomass burning, fugitive oil sands, crustal dust, and bitumen processing explaining ~8%, ~7%, ~3%, ~22%, and ~60% of the total resolved elemental mass, respectively. Elemental mass concentrations of the bitumen processing source factor at Zone2 was two-thirds of that in Zone1. Overall, mass proportions of the bitumen processing source factor at all four sites were significant, suggesting that the oil sands industries played a key role in ambient element concentration levels in the region.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Valbona Celo
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada.
| | - Ewa Dabek-Zlotorzynska
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Jean-Pierre Charland
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
14
|
Shi J, Li Z, Zhang B, Li L, Sun W. Synergy between pyridine anaerobic mineralization and vanadium (V) oxyanion bio-reduction for aquifer remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126339. [PMID: 34118535 DOI: 10.1016/j.jhazmat.2021.126339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The co-occurrence of toxic pyridine (Pyr) and vanadium (V) oxyanion [V(V)] in aquifer has been of emerging concern. However, interactions between their biogeochemical fates remain poorly characterized, with absence of efficient route to decontamination of this combined pollution. In this work, microbial-driven Pyr degradation coupled to V(V) reduction was demonstrated for the first time. Removal efficiencies of Pyr and V(V) reached 94.8 ± 1.55% and 51.2 ± 0.20% in 72 h operation. The supplementation of co-substrate (glucose) deteriorated Pyr degradation slightly, but significantly promoted V(V) reduction efficiency to 84.5 ± 0.635%. Pyr was mineralized with NH4+-N accumulation, while insoluble vanadium (IV) was the major product from V(V) bio-reduction. It was observed that Bacillus and Pseudomonas realized synchronous Pyr and V(V) removals independently. Interspecific synergy between Pyr degraders and V(V) reducers also functioned with addition of co-substrate. V(V) was bio-reduced through alternative electron acceptor pathway conducted by gene nirS encoded nitrite reductase, which was evidenced by gene abundance and enzyme activity. Cytochrome c, nicotinamide adenine dinucleotide and extracellular polymeric substances also contributed to the coupled bioprocess. This work provides new insights into biogeochemical activities of Pyr and V(V), and proposes novel strategy for remediation of their co-contaminated aquifer.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zongyan Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lei Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
15
|
Klemt WH, Brua RB, Culp JM, Hicks K, Wolfe BB, Hall RI. Evaluating Lower Athabasca River Sediment Metal Concentrations from Alberta Oil Sands Monitoring Programs Using Predevelopment Baselines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8817-8828. [PMID: 34105946 DOI: 10.1021/acs.est.1c01761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Since 1997, sediment metal concentrations have been monitored in the Alberta Oil Sands Region (AOSR) of the Lower Athabasca River by the Regional Aquatics Monitoring Program (RAMP; 1997-2002), the Joint Oil Sands Monitoring Program (JOSM; 2012-2014), and the Oil Sands Monitoring Program (OSM; 2015-present). However, it has remained difficult to differentiate industrial sources from natural sources and quantify the extent of pollution due to inadequate knowledge of predevelopment reference conditions. Here, baselines were constructed using predevelopment (i.e., pre-1967) sediment concentrations of US EPA priority pollutants (Be, Cr, Cu, Ni, Pb) and V, an element elevated in bitumen and associated waste materials, normalized to Al concentration in cores from floodplain and upland lakes within the AOSR to characterize the natural range of variability. The Lower Athabasca River sediment metal monitoring data were examined in the context of the predevelopment baselines. Most metals are below the threshold for minimal enrichment (<1.5x baseline) except for chromium (up to 4.8x) in some RAMP samples. The predevelopment baselines for sediment metal concentrations will be of particular importance as the oil sands industry potentially shifts from a no-release policy to the treatment and release of oil sands process waters directly to the Lower Athabasca River.
Collapse
Affiliation(s)
- Wynona H Klemt
- Department of Biology, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
| | - Robert B Brua
- Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan Canada S7N 3H5
| | - Joseph M Culp
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
- Environment and Climate Change Canada, Canadian Centre for Inland Waters, Burlington, Ontario Canada L7R 4A6
| | - Keegan Hicks
- Alberta Environment and Parks, Resource Stewardship Division, 4938 89 Street, Edmonton, Alberta Canada T6E 5K1
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
| |
Collapse
|
16
|
Chételat J, Nielsen SG, Auro M, Carpenter D, Mundy L, Thomas PJ. Vanadium Stable Isotopes in Biota of Terrestrial and Aquatic Food Chains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4813-4821. [PMID: 33755433 DOI: 10.1021/acs.est.0c07509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vanadium, a potentially toxic metal, is enriched in the environment from anthropogenic releases, particularly during fossil fuel production and use and steel manufacturing. Metal stable isotopes are sophisticated tools to trace pollution; however, only recent analytical advances have allowed for the accurate and precise measurement of vanadium isotope ratios (δ51V). To examine its potential as a tracer in terrestrial and aquatic ecosystems, δ51V was measured in soil, plant, lichen, marten, and lake sediment from sites near vanadium emissions at oil sands mines (Alberta, Canada) and in the sediment and biota (algae, zooplankton, fish) from a remote subarctic lake (Northwest Territories, Canada). Samples from Alberta had distinct δ51V values with marten liver the lowest (-1.7 ± 0.3‰), followed by lichen (-0.9 ± 0.1‰), soil (-0.7 ± 0.1‰), sediment (-0.5 ± 0.2‰), and plant root (-0.3 ± 0.2‰). Average values were lower than Alberta bitumen and petroleum coke (-0.1 ± 0.1‰). Plant roots had systematically higher δ51V than the soil from which they grew (Δ51Vplant-soil = 0.4 ± 0.1‰), while δ51V of lichen and aquatic biota were lower (0.1-0.3‰) than likely crustal sources. These δ51V measurements in terrestrial and aquatic biota demonstrate promise for tracer applications, although further study of its biological fractionation is needed.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Sune G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
| | - Maureen Auro
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
| | - David Carpenter
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Lukas Mundy
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| |
Collapse
|
17
|
Abstract
Fe(II)-bearing minerals (magnetite, siderite, green rust, etc.) are common products of microbial Fe(III) reduction, and they provide a reservoir of reducing capacity in many subsurface environments that may contribute to the reduction of redox active elements such as vanadium; which can exist as V(V), V(IV), and V(III) under conditions typical of near-surface aquatic and terrestrial environments. To better understand the redox behavior of V under ferrugenic/sulfidogenic conditions, we examined the interactions of V(V) (1 mM) in aqueous suspensions containing 50 mM Fe(II) as magnetite, siderite, vivianite, green rust, or mackinawite, using X-ray absorption spectroscopy at the V K-edge to determine the valence state of V. Two additional systems of increased complexity were also examined, containing either 60 mM Fe(II) as biogenic green rust (BioGR) or 40 mM Fe(II) as a mixture of biogenic siderite, mackinawite, and magnetite (BioSMM). Within 48 h, total solution-phase V concentrations decreased to <20 µM in all but the vivianite and the biogenic BiSMM systems; however, >99.5% of V was removed from solution in the BioSMM and vivianite systems within 7 and 20 months, respectively. The most rapid reduction was observed in the mackinawite system, where V(V) was reduced to V(III) within 48 h. Complete reduction of V(V) to V(III) occurred within 4 months in the green rust system, 7 months in the siderite system, and 20 months in the BioGR system. Vanadium(V) was only partially reduced in the magnetite, vivianite, and BioSMM systems, where within 7 months the average V valence state stabilized at 3.7, 3.7, and 3.4, respectively. The reduction of V(V) in soils and sediments has been largely attributed to microbial activity, presumably involving direct enzymatic reduction of V(V); however the reduction of V(V) by Fe(II)-bearing minerals suggests that abiotic or coupled biotic–abiotic processes may also play a critical role in V redox chemistry, and thus need to be considered in modeling the global biogeochemical cycling of V.
Collapse
|
18
|
Sun X, Qiu L, Kolton M, Häggblom M, Xu R, Kong T, Gao P, Li B, Jiang C, Sun W. V V Reduction by Polaromonas spp. in Vanadium Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14442-14454. [PMID: 33125214 DOI: 10.1021/acs.est.0c05328] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vanadium (V) is an important metal with critical industrial and medical applications. Elevated V contamination, however, can be a threat to the environment and human health. Microorganisms can reduce the more toxic and mobile VV to the less toxic and immobile VIV, which could be a detoxification and energy metabolism strategy adopted by V-reducing bacteria (VRB). The limited understanding of microbial responses to V contamination and the mechanisms for VV reduction, however, hamper our capability to attenuate V contamination. This study focused on determining the microbial responses to elevated V concentration and the mechanisms of VV reduction in V tailings. The bacterial communities were characterized and compared between the V tailings and the less contaminated adjacent mineral soils. Further, VV-reducing enrichments indicated that bacteria associated with Polaromonas, a genus belonging to the family Burkholderiaceae, were potentially responsible for VV reduction. Retrieved metagenome-assembled genomes (MAGs) suggested that the Polaromonas spp. encoded genes (cymA, omcA, and narG) were responsible for VV reduction. Additionally, Polaromonas spp. was metabolically versatile and could use both organic and inorganic electron donors. The metabolic versatility of Polaromonas spp. may be important for its ability to flourish in the V tailings.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
19
|
Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu Y, Jiang J. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135637. [PMID: 31810710 DOI: 10.1016/j.scitotenv.2019.135637] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Vanadium is a multivalent redox-sensitive metal that is widely distributed in the environment. Low levels of vanadium elevate plant height, root length, and biomass production due to enhanced chlorophyll biosynthesis, seed germination, essential element uptake, and nitrogen assimilation and utilization. However, high vanadium concentrations disrupt energy metabolism and matter cycling; inhibit key enzymes mediating energy production, protein synthesis, ion transportation, and other important physiological processes; and lead to growth retardation, root and shoot abnormalities, and even death of plants. The threshold level of toxicity is highly plant species-specific, and in most cases, the half maximal effective concentration (EC50) of vanadium for plants grown under hydroponic conditions and in soil varies from 1 to 50 mg/L, and from 18 to 510 mg/kg, respectively. Plants such as Chinese green mustard, chickpea, and bunny cactus could accumulate high concentrations of vanadium in their tissues, and thus are suitable for decontaminating and reclaiming of vanadium-polluted soils on a large scale. Soil pH, organic matter, and the contents of iron and aluminum (hydr)oxides, phosphorus, calcium, and other coexisting elements affect the bioavailability, toxicity, and plant uptake of vanadium. Mediation of these conditions or properties in vanadium-contaminated soils could improve plant tolerance, accumulation, or exclusion, thereby enhancing phytoremediation efficiency. Phytoremediation with the assistance of soil amendments and microorganisms is a promising method for decontamination of vanadium polluted soils.
Collapse
Affiliation(s)
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuejing Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiwei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Vessey CJ, Lindsay MBJ. Aqueous Vanadate Removal by Iron(II)-Bearing Phases under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4006-4015. [PMID: 32142601 DOI: 10.1021/acs.est.9b06250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vanadium contamination is a growing environmental hazard worldwide. Aqueous vanadate (HxVVO4(3-x)-(aq)) concentrations are often controlled by surface complexation with metal (oxyhydr)oxides in oxic environments. However, the geochemical behavior of this toxic redox-sensitive oxyanion in anoxic environments is poorly constrained. Here, we describe results of batch experiments to determine kinetics and mechanisms of aqueous H2VVO4- (100 μM) removal under anoxic conditions in suspensions (2.0 g L-1) of magnetite, siderite, pyrite, and mackinawite. We present results of parallel experiments using ferrihydrite (2.0 g L-1) and Fe2+(aq) (200 μM) for comparison. Siderite and mackinawite reached near complete removal (46 μmol g-1) of aqueous vanadate after 3 h and rates were generally consistent with ferrihydrite, whereas magnetite removed 18 μmol g-1 of aqueous vanadate after 48 h and uptake by pyrite was limited. Removal during reaction with Fe2+(aq) was observed after 8 h, concomitant with precipitation of secondary Fe phases. X-ray absorption spectroscopy revealed V(V) reduction to V(IV) and formation of bidentate corner-sharing surface complexes on magnetite and siderite, and with Fe2+(aq) reaction products. These data also suggest that V(IV) is incorporated into the mackinawite structure. Overall, we demonstrate that Fe(II)-bearing phases can promote aqueous vanadate attenuation and, therefore, limit dissolved V concentrations in anoxic environments.
Collapse
Affiliation(s)
- Colton J Vessey
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
21
|
Liu P, Ptacek CJ, Blowes DW, Finfrock YZ. Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:915-922. [PMID: 30708306 DOI: 10.1016/j.scitotenv.2019.01.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
A previous long-term microcosm experiment showed mercury (Hg) in the aqueous phase of contaminated sediment was effectively stabilized through the addition of biochar. The present study focuses on the application of synchrotron-related methods to evaluate the distribution and speciation of Hg in the biochar particles reacted for 235, 387, and 1030 days. The study provided more information on Hg stabilization mechanisms in addition to the information obtained by the previous studies. Confocal micro-X-ray fluorescence imaging (CMXRFI) and micro-X-ray fluorescence (micro-XRF) maps show that mercury co-exists with S, Cu, Fe, Mn, and Zn on the surface and inside the particles of biochar. Extended X-ray absorption fine structure (EXAFS) modeling shows that Hg is in an oxide form on the surface of an iron (hydro)oxide particle from fresh sediment and in Hg-sulfide forms in biochar samples. S X-ray absorption near-edge structure (XANES) analyses show that sulfide is present within the biochar particles. After amendment with biochars, a fraction of the Hg originally present in unstable forms (dissolvable, HgO, colloidal, nano, etc.) in the sediment was likely stabilized as less soluble Hg-sulfide phases on the surface or within the biochar particle. These results suggest Hg accumulation by the biochar particles renders it less potential for transport and bioavailability.
Collapse
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430000, PR China; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source, 44 Innovation Bld., Saskatoon S7N2V3, Saskatchewan, Canada; CLS@APS Sector 20, Advanced Photon Source, 9700 South Cass Ave., Lemont, IL 60439, United States of America
| |
Collapse
|
22
|
Liu P, Ptacek CJ, Blowes DW, Finfrock YZ, Steinepreis M, Budimir F. A Method for Redox Mapping by Confocal Micro-X-ray Fluorescence Imaging: Using Chromium Species in a Biochar Particle as an Example. Anal Chem 2019; 91:5142-5149. [DOI: 10.1021/acs.analchem.8b05718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, People’s Republic of China
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Carol J. Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Y. Zou Finfrock
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Science Division,
Canadian Light Source, Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2 V3, Canada
| | - Mark Steinepreis
- Stantec Consulting,
Ltd., 100-300 Hagey Blvd., Waterloo, ON N2L 0A4, Canada
| | - Filip Budimir
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
23
|
Wen J, Ning P, Cao H, Zhao H, Sun Z, Zhang Y. Novel method for characterization of aqueous vanadium species: A perspective for the transition metal chemical speciation studies. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:91-99. [PMID: 30342292 DOI: 10.1016/j.jhazmat.2018.09.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 05/26/2023]
Abstract
Identification the polymerization nature of vanadium bearing solution is difficult, yet it is of great environmental concern due to the possible carcinogenic effects as well as high-value sustainable necessities. Thus, seeking for simple and efficient characterization methods of tracking vanadium species is in urgent demand. In this work, high-resolution electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) coupled with thermodynamic calculations was employed to measure vanadium-containing samples. Evolutions of four characteristic vanadium species, H2VO4- (0-1%), V2 species (0-1%), V4 species (1-20%), and V10 species (60-95%), were comprehensively studied from acidic to neutral conditions, based on which thermodynamic model and vanadium phase diagram were established to visualize transformation pathways. More than 30 types of aqueous vanadium species could be semi-quantitatively detected by employing this method with less than 5% relative error, and the corresponding existing forms and concentration of these vanadium species could be well predicted. The vanadium species identified in MS results were confirmed by NMR. This method can be widely used for the understanding of vanadium speciation in practical examples, especially involving V(V), Cr(VI) ions or organic complexes.
Collapse
Affiliation(s)
- Jiawei Wen
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China; School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Pengge Ning
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China.
| | - Hongbin Cao
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China; School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - He Zhao
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China
| | - Zhi Sun
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China
| | - Yi Zhang
- Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China; School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| |
Collapse
|
24
|
Robertson JM, Nesbitt JA, Lindsay MBJ. Aqueous- and solid-phase molybdenum geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. CHEMOSPHERE 2019; 217:715-723. [PMID: 30448751 DOI: 10.1016/j.chemosphere.2018.11.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Fluid petroleum coke generated at oil sands operations in the Athabasca Oil Sands Region of northern Alberta, Canada, contains elevated concentrations of molybdenum (Mo) and other metals including nickel (Ni) and vanadium (V). Solid-phase Mo concentrations in fluid petroleum coke are typically 10 to 100 times lower than V and Ni, yet dissolved Mo concentrations in associated pore waters are often comparable with these metals. We collected pore water and solids from fluid petroleum coke deposits in the AOSR to examine geochemical controls on Mo mobility. Dissolved Mo concentrations increased with depth below the water table, reaching maxima of 1.4-2.2 mg L-1, within a mixing zone between slightly acidic and oxic meteoric water and mildly alkaline and anoxic oil sands process-affected water (OSPW). Dissolved Mo concentrations decreased slightly with depth below the mixing zone. X-ray absorption spectroscopy revealed that Mo(VI) and Mo(IV) species were present in coke solids. The Mo(VI) occurred as tetrahedrally coordinated MoO42- adsorbed via inner- and outer-sphere complexation, and was coordinated in an environment similar to Fe-(hydr)oxide surface complexes. The OSPW likely promoted desorption of outer-sphere Mo(VI) complexes, resulting in higher dissolved Mo concentrations in the mixing zone. The principal Mo(IV) species was MoS2, which originated as a catalyst added upstream of the fluid coking process. Although MoS2 is likely stable under anoxic conditions below the mixing zone, oxidative weathering in the presence of meteoric water may promote long-term Mo release.
Collapse
Affiliation(s)
- Jared M Robertson
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Jake A Nesbitt
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
25
|
Nesbitt JA, Robertson JM, Swerhone LA, Lindsay MBJ. Nickel geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nickel (Ni) leaching from oil sands petroleum coke can have toxicological effects on aquatic organisms. However, geochemical controls on Ni release, transport, and attenuation within coke deposits remains limited. We examined the geochemistry of fluid coke and associated pore waters from two deposits at an oil sands mine near Fort McMurray, Alberta, Canada. Synchrotron-based micro-X-ray fluorescence (μXRF) and micro-X-ray absorption near edge structure (μXANES) spectroscopy show that Ni(II)-porphyrin complexes dominate, but inorganic phases including Ni(II)-sulfide and Ni(II)-oxide comprise a minor component of fluid coke. Sequential chemical extractions suggested that sorption–desorption reactions may influence Ni mobility within fluid coke deposits. Although only a small proportion of total Ni (<4%) is susceptible to leaching under environmentally relevant concentrations, dissolved Ni concentrations ( n = 65) range from 2 to 120 μg·L−1 (median 7.8 μg·L−1) within the two deposits and generally decrease with depth below the water table. Pore water Ni concentrations are negatively correlated with pH, but not with dissolved sulfate, bicarbonate, or chloride. Overall, our findings suggest that pore water pH and sorption–desorption reactions are principal controls on dissolved Ni concentrations within oil sands fluid petroleum coke deposits.
Collapse
Affiliation(s)
- Jake A. Nesbitt
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jared M. Robertson
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Lawrence A. Swerhone
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Matthew B. J. Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
26
|
Abstract
Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.
Collapse
Affiliation(s)
- William H Schlesinger
- Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Emily M Klein
- Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Avner Vengosh
- Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708
| |
Collapse
|
27
|
Wisawapipat W, Kretzschmar R. Solid Phase Speciation and Solubility of Vanadium in Highly Weathered Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8254-8262. [PMID: 28657305 DOI: 10.1021/acs.est.7b01005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vanadium (V) is increasingly recognized both as a medical trace element with essential biological functions and as a potentially toxic environmental pollutant, yet the current knowledge on V speciation in soils is limited. Here, we investigated the chemical speciation and extractability of V in highly weathered tropical soils, which are often rich in V compared to soils of temperate climatic regions. Vanadium K-edge X-ray absorption near edge structure (XANES) spectra of soil samples, along with a range of reference compounds differing in V-oxidation state and coordination chemistry, revealed the predominance of V4+/5+ in a primarily octahedral or tetrahedral coordination. The soil spectra were best fitted with linear combinations of reference spectra of V4+ in the structure of kaolinite, V5+ adsorbed to kaolinite, and other V5+-sorbed solids. Vanadate adsorbed to goethite, ferrihydrite, gibbsite, and/or Fe(III)-natural organic matter complexes and V4+ in the structure of goethite may be present, but cannot unequivocally be distinguished from each other by XANES spectroscopy. Sequential and single chemical extractions provided complementary information on the solubility of V under various conditions. The most labile V fractions, interpreted as weakly and strongly adsorbed V5+, are the most relevant to V mobility and bioavailability in the environment, and accounted for only ∼2% of total soil V. Our results demonstrate that kaolinite and Fe oxides can effectively sequester V in highly weathered soils by mechanisms of adsorption and structural incorporation and are relevant to other Fe-oxide-rich environments under acidic and oxic conditions.
Collapse
Affiliation(s)
- Worachart Wisawapipat
- Department of Soil Science, Faculty of Agriculture, Kasetsart University , Bangkok 10900, Thailand
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CHN , 8092 Zürich, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CHN , 8092 Zürich, Switzerland
| |
Collapse
|